Solving Cubic Equations

Benedict Gross and William Stein

January, 2012

Algebraic equations

Pythagoras (600 BCE) Baudhāyana (800 BCE)

Differential equations

$$
F^{\prime}(T)=F(T) \quad d F / d T=F \quad F(0)=1
$$

$$
F(T)=\exp (T)=1+T+T^{2} / 2+T^{3} / 6+T^{4} / 24+T^{5} / 120+\ldots
$$

Pythagorean triples

$a^{2}+b^{2}=c^{2}$ has solutions $(3,4,5),(5,12,13),(7,24,25), \ldots$
There are more solutions on a Babylonian tablet (1800 BCE):

The general solution of $a^{2}+b^{2}=c^{2}$
$x=a / c$ and $y=b / c$ satisfy the equation $x^{2}+y^{2}=1$

$$
t=\frac{y}{1+x} \quad x=\frac{1-t^{2}}{1+t^{2}} \quad y=\frac{2 t}{1+t^{2}}
$$

Write $t=p / q$. Then

$$
\begin{gathered}
x=\frac{q^{2}-p^{2}}{q^{2}+p^{2}} \quad y=\frac{2 q p}{q^{2}+p^{2}} \\
a=q^{2}-p^{2} \quad b=2 q p \quad c=q^{2}+p^{2} \\
t=1 / 2 \longrightarrow(a, b, c)=(3,4,5) \\
t=2 / 3 \longrightarrow(a, b, c)=(5,12,13) \\
t=3 / 4 \longrightarrow(a, b, c)=(7,24,25)
\end{gathered}
$$

Cubic equations

After linear and quadratic equations come cubic equations, like

$$
x^{3}+y^{3}=1 \quad y^{2}+y=x^{3}-x
$$

Here there may be either a finite or an infinite number of rational solutions.

The graph

$$
y^{2}+y=x^{3}-x
$$

The limit of a secant line is a tangent

$$
y^{2}+y=x^{3}-x
$$

Large solutions

If the number of solutions is infinite, they quickly become large.

```
(0, 0)
(1, 0)
(-1, -1)
(2, -3)
(1/4, -5/8)
(6, 14)
(-5/9, 8/27)
(21/25, -69/125)
(-20/49, -435/343)
(161/16, -2065/64)
(116/529, -3612/12167)
(1357/841, 28888/24389)
(-3741/3481, -43355/205379)
(18526/16641, -2616119/2146689)
(8385/98596, -28076979/30959144)
(480106/4225, 332513754/274625)
(-239785/2337841, 331948240/3574558889)
(12551561/13608721, -8280062505/50202571769)
(-59997896/67387681, -641260644409/553185473329)
(683916417/264517696, -18784454671297/4302115807744)
(1849037896/6941055969, -318128427505160/578280195945297)
(51678803961/12925188721, 10663732503571536/1469451780501769)
(-270896443865/384768368209,66316334575107447/238670664494938073)
```


Even the simplest solution can be large

$y^{2}+y=x^{3}-5115523309 x-140826120488927$
 Numerator of x-coordinate of smallest solution (5454 digits):

Denominator:

42550442729
0,

The rank

The rank of E is essentially the number of independent solutions.

- rank $(E)=0$ means there are finitely many solutions.
- rank $(E)>0$ means there are infinitely many solutions.
- The curve $E(a)$ with equation

$$
y(y+1)=x(x-1)(x+a)
$$

has rank $=0,1,2,3,4$ for $a=0,1,2,4,16$.

The rank is finite

Can it be arbitrarily large?

The current record is $\operatorname{rank}(E)=28$

$y^{2}+x y+y=x^{3}-x^{2}-20067762415575526585033208209338542750930230312178956502 x+$ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429

Bryan Birch and Peter Swinnerton-Dyer made a prediction for the rank, based on the average number of solutions at prime numbers p.

Primes

A prime p is a number greater than 1 that is not divisible by any smaller number.
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61$, $67,71,73,79,83,89,97,101,103,107,109, \ldots$
There are infinitely many primes. The largest explicit prime known is $2^{43112609}-1$ with $12,978,189$ digits.

The Prime Number 2^{9689}

478220278805461202952839298660005909741497172402236500851334510991837895094266297027892768 611270789458682472098152425631930658505267683408748083442943326479742589324762368833102163 320895484735480579994334130982598901374380618710958104314868081377832153049671560156328262 441404039814320762203627219040859079053720347525610556407157926386787524098557335652265610 854212857732105787905232886503535587361567936365588992571157442015383209175242284304691881 142740066213555930351685370397681268638575037622778794958058208183126172570100349820651232 987267723348951095346937568303703837399969677158578890563911552261340549570718452415821920 822376644205901459333065700972215396237685342377048613857808977562130116781129916640736174 660669780818675796691467124607371290420058840892318638773788767529288695379706698096740605 353012285353903696549022478492464900795489867850331465554647550450168618735486696437455261 412064078294962245202778896213860266593314768769632208950427879162465151931232783175655377 937719452467339581928148666857638401959072017941334958297031939388438881049454604034208753 656362833215207318161430072176937142623851754052084521466531330118355196259184955893849902 534878037671647707393063443684008446825593744345169031599934913766463896897261419901530490 654781905622717122494707073971630095377574344130792050186353223446654564569577433188504497 825014866346737213039209989485214519099823287877248665051301081676990289251871925006694721 570653621624869624056925686555429622155221156042777866254593699880107018616260147647429345 983018365127336346273267588306070141035925482914977433929717368076561095959991130918978823 835013163567266143596921823997719693387439540399662367558052821120713639637085805605116078 177098545257698803233381293927275210194462952749031383555198519709592888523641530178921867 514101454120309619127093436903952209828031766894206132557234964363840305648734929088422378 629288747223121903238528103409182430661894774072726552428489330447486145494207679904173944 716583828167141043583120679050191452732628737033997470720601688256282740427017032260672798 034347932642573009183981307771932245539476396060658821432660315614149074055769805516626304 444758375671151649018119344223685942415184379538933576543212994405485534515585927342456182 514681371472060628778102124092370802149229834963517952727030296297015692768651163505008040 728267425236264469571076976886613730278931360967438271901738550848466337347612084356798306 505955807293511063754424080735066708298723377976887493898358452309563899612061631863439196 711208646438464947096323007272920091258614726799976249670985276950353573392441620265772074 124868359220282898331114083392330243391779797699031142584361935093675448381119440881276338 808420445180491245438388418080094527562666805762895476338464130510775377324708249580453335 571748196502507081973046642282610569751056428979895118219288597635222905389894873761464213 9910911535864505818992696826225754111

Primality testing

Determining that $n>1$ is a prime can be done quickly.

"PRIMES is in P "

AKS: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena (2002) If n fails the primality test, it is more difficult to factor it.
123018668453011775513049495838496272077285356959533 479219732245215172640050726365751874520219978646938 995647494277406384592519255732630345373154826850791 702612214291346167042921431160222124047927473779408 $0665351419597459856902143413=$ RSA-768 =
334780716989568987860441698482126908177047949837137 685689124313889828837938780022876147116525317430877 37814467999489
\times
367460436667995904282446337996279526322791581643430 876426760322838157396665112792333734171433968102700 92798736308917

What do we mean by a solution of the cubic equation at the prime number p ?

$$
y^{2}+y=x^{3}-x
$$

$(x, y) \equiv(3,1)$ is a solution at $p=11$
There are finitely many solutions $A(p)$ at each prime p.

It is common to write

$$
A(p)=p+1-a(p)
$$

We define the L-function of E by the infinite product

$$
L(E, s)=\prod_{p}\left(1-a(p) p^{-s}+p^{1-2 s}\right)^{-1}=\sum a(n) n^{-s}
$$

This definition only works in the region $s>3 / 2$, where the infinite product converges.

If we formally set $s=1$ in the product, we get

$$
\prod_{p}\left(1-a(p) p^{-1}+p^{-1}\right)^{-1}=\prod_{p} p / A(p)
$$

If $A(p)$ is large on average compared with p, this will approach 0 . The larger $A(p)$ is on average, the faster it will tend to 0 .

The conjecture of Birch and Swinnerton-Dyer

1. The function $L(E, s)$ has a natural (analytic) continuation to a neighborhood of $s=1$.
2. The order of vanishing of $L(E, s)$ at $s=1$ is equal to the rank of E.
3. The leading term in the Taylor expansion of $L(E, s)$ at $s=1$ is given by certain arithmetic invariants of E.

$$
L(E, s)=c(E)(s-1)^{r a n k(E)}+\ldots
$$

The most mysterious arithmetic invariant was studied by John Tate and Igor Shafarevich, who conjectured that it is finite. Tate called this invariant $Ш$.

Natural (analytic) continuation
The infinite sum $\sum_{n=0}^{\infty} x^{n}$ converges when $-1<x<1$.

The natural (analytic) continuation of $L(E, s)=\sum a(n) n^{-s}$ was obtained by Andrew Wiles and Richard Taylor (1995). They proved that the function defined by the infinite series

$$
F(\tau)=\sum a(n) e^{2 \pi i n \tau}
$$

is a modular form.

Combining a limit formula I proved with Don Zagier (1983) with work of Victor Kolyvagin (1986) we can now show the following.
If $L(E, 1) \neq 0$ the rank is zero, so there are finitely many solutions.

If $L(E, 1)=0$ and $L^{\prime}(E, 1) \neq 0$ the rank is one, so there are infinitely many solutions.
In both cases, we can also show that \amalg is finite.

When the order of $L(E, s)$ at $s=1$ is greater than one we cannot prove anything in general...
But the computer has been a great guide.
Here is a summary of the evidence for the simplest rank 2 curve

$$
y(y+1)=x(x-1)(x+2)
$$

- the order of vanishing is equal to 2
- most primes up to 50,000 do not divide the order of $Ш$

The average rank

Manjul Bhargava has recently made progress on the study of the average rank, for ALL cubic curves with rational coefficients.

Enumerating the curves

- Every such curve has a unique equation of the form $y^{2}=x^{3}+A x+B$ where A and B are integers (not divisible by p^{4} and p^{6}, for any prime p).
- Define the height $H(E)$ as the maximum of the positive integers $|A|^{3}$ and $|B|^{2}$.
- For any positive real number X, there are only finitely many curves with $H(E) \leq X$.
- Call this number $N(X)$. It grows at the same rate as $(X)^{1 / 2}(X)^{1 / 3}=X^{5 / 6}$.
- Define the average rank by the limit as $X \rightarrow \infty$ of

$$
\frac{1}{N(X)} \sum_{H(E) \leq X} \operatorname{rank}(E)
$$

- We suspect that this limit exists, and is equal to $1 / 2$.
- In fact, we think that on average half the curves have rank zero and half have rank one.
- Bhargava and Shankar have shown why there is an upper bound on the limit, and have obtained a specific upper bound which is less than 1.

Thank you

