{{{ def animate_contraction(g, e, frames = 12, **kwds): v1, v2 = e if not g.has_edge(v1,v2): raise ValueError("Given edge not found on Graph") ls = [] posd = g.get_pos() for j in range(frames): gp = Graph(g) posdp = dict(posd) p1 = posdp[v1] p2 = posdp[v2] posdp[v2] = [a*(frames-j)/frames + b*j/frames for a,b in zip(p2,p1)] gp.set_pos(posdp) ls.append(plot(gp, **kwds)) return ls def animate_vertex_deletion(g, v, frames = 12, **kwds): kwds2 = dict(kwds) if 'vertex_colors' in kwds: cs = dict(kwds['vertex_colors']) for c, vs in kwds['vertex_colors'].items(): if v in vs: vs2 = list(vs) vs2.remove(v) cs[c] = vs2 kwds2['vertex_colors'] = cs else: kwds2 = dict(kwds) g2 = Graph(g) posd = dict(g.get_pos()) del posd[v] g2.delete_vertex(v) g2.set_pos(posd) return [plot(g, **kwds),plot(g2, **kwds2)]*int(frames/2) def animate_edge_deletion(g, e, frames = 12, **kwds): v1, v2 = e g2 = Graph(g) g2.delete_edge(e) return [plot(g, **kwds),plot(g2, **kwds)]*int(frames/2) def animate_glide(g, pos1, pos2, frames = 12, **kwds): ls = [] for j in range(frames): gp = Graph(g) pos = {} for v in gp.vertices(): p1 = pos1[v] p2 = pos2[v] pos[v] = [b*j/frames + a*(frames-j)/frames for a,b in zip(p1,p2)] gp.set_pos(pos) ls.append(plot(gp, **kwds)) return ls def medio(p1, p2): return tuple((a+b)/2 for a,b in zip(p1, p2)) def new_color(): return (0.1+0.8*random(), 0.1+0.8*random(), 0.1+0.8*random()) def animate_minor(g, m, frames = 12, pause = 50, step_time = 100): '''Crea una animación que muestra cómo un grafo tiene un menor m ''' posd = dict(g.get_pos()) posg = posd.values() posm = m.get_pos().values() xmax = max(max(x for x,y in posg), max(x for x,y in posm)) ymax = max(max(y for x,y in posg), max(y for x,y in posm)) xmin = min(min(x for x,y in posg), min(x for x,y in posm)) ymin = min(min(y for x,y in posg), min(y for x,y in posm)) dd = g.minor(m) #Set colors m_colors = dict((v,new_color()) for v in m.vertices()) g_colors = dict((m_colors[k],vs) for k,vs in dd.items()) extra_vs = (set(g.vertices()) - set(v for vs in dd.values() for v in vs)) g_colors[(0,0,0)] = list(extra_vs) #pics contains the frames of the animation #no colors at the beggining gg = Graph(g) pics = [plot(gg)]*frames #First: eliminate extra vertices for v in extra_vs: pics.extend(animate_vertex_deletion(gg, v, frames, vertex_colors = g_colors)) gg.delete_vertex(v) del posd[v] g_colors[(0,0,0)].remove(v) del g_colors[(0,0,0)] #Second: contract edges for color, vs in g_colors.items(): while len(vs) > 1: for j in range(1, len(vs)): if gg.has_edge(vs[0], vs[j]): break pics.extend(animate_contraction(gg, (vs[0], vs[j]), frames, vertex_colors = g_colors)) for v in gg.neighbors(vs[j]): gg.add_edge(vs[0],v) gg.delete_vertex(vs[j]) del posd[vs[j]] gg.set_pos(posd) posd = dict(gg.get_pos()) del vs[j] #Relabel vertices of m so that they match with those of gg m = Graph(m) dd0 = dict((k, vs[0]) for k,vs in dd.items() ) m.relabel(dd0) #Third: glide to position in m pos_m = m.get_pos() pos_g = gg.get_pos() pics.extend(animate_glide(gg, pos_g, pos_m, frames, vertex_colors = g_colors)) gg.set_pos(pos_m) #Fourth: delete redundant edges for e in gg.edges(labels = False): if not m.has_edge(e): pics.extend(animate_edge_deletion(gg, e, frames, vertex_colors = g_colors)) gg.delete_edge(*e) #And wait for a moment pics.extend([plot(gg, vertex_colors = g_colors)]*frames) return animate(pics, xmin = xmin - 0.1, xmax = xmax + 0.1, ymin = ymin - 0.1, ymax = ymax + 0.1) }}}