= Sage Interactions - Differential Equations = goto [[interact|interact main page]] <> == Euler's Method in one variable == by Marshall Hampton. This needs some polishing but its usable as is. {{{#!sagecell def tab_list(y, headers = None): ''' Converts a list into an html table with borders. ''' s = '' if headers: for q in headers: s = s + '' for x in y: s = s + '' for q in x: s = s + '' s = s + '' s = s + '
' + str(q) + '
' + str(q) + '
' return s var('x y') @interact def euler_method(y_exact_in = input_box('-cos(x)+1.0', type = str, label = 'Exact solution = '), y_prime_in = input_box('sin(x)', type = str, label = "y' = "), start = input_box(0.0, label = 'x starting value: '), stop = input_box(6.0, label = 'x stopping value: '), startval = input_box(0.0, label = 'y starting value: '), nsteps = slider([2^m for m in range(0,10)], default = 10, label = 'Number of steps: '), show_steps = slider([2^m for m in range(0,10)], default = 8, label = 'Number of steps shown in table: ')): y_exact = lambda x: eval(y_exact_in) y_prime = lambda x,y: eval(y_prime_in) stepsize = float((stop-start)/nsteps) steps_shown = min(nsteps,show_steps) sol = [startval] xvals = [start] for step in range(nsteps): sol.append(sol[-1] + stepsize*y_prime(xvals[-1],sol[-1])) xvals.append(xvals[-1] + stepsize) sol_max = max(sol + [find_local_maximum(y_exact,start,stop)[0]]) sol_min = min(sol + [find_local_minimum(y_exact,start,stop)[0]]) show(plot(y_exact(x),start,stop,rgbcolor=(1,0,0))+line([[xvals[index],sol[index]] for index in range(len(sol))]),xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min) if nsteps < steps_shown: table_range = list(range(len(sol))) else: table_range = list(range(floor(steps_shown/2))) + list(range(len(sol)-floor(steps_shown/2),len(sol))) pretty_print(html(tab_list([[i,xvals[i],sol[i]] for i in table_range], headers = ['step','x','y']))) }}} {{attachment:eulermethod.png}} == Vector Fields and Euler's Method == by Mike Hansen (tested and updated by William Stein, and later by Dan Drake) {{{#!sagecell x,y = var('x,y') from sage.ext.fast_eval import fast_float @interact def _(f = input_box(default=y), g=input_box(default=-x*y+x^3-x), xmin=input_box(default=-1), xmax=input_box(default=1), ymin=input_box(default=-1), ymax=input_box(default=1), start_x=input_box(default=0.5), start_y=input_box(default=0.5), step_size=(0.01,(0.001, 0.2)), steps=(600,(0, 1400)) ): ff = fast_float(f, 'x', 'y') gg = fast_float(g, 'x', 'y') steps = int(steps) points = [ (start_x, start_y) ] for i in range(steps): xx, yy = points[-1] try: points.append( (xx + step_size * ff(xx,yy), yy + step_size * gg(xx,yy)) ) except (ValueError, ArithmeticError, TypeError): break starting_point = point(points[0], pointsize=50) solution = line(points) vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax) ) result = vector_field + starting_point + solution pretty_print(html(r"$\displaystyle\frac{dx}{dt} = %s$ $ \displaystyle\frac{dy}{dt} = %s$" % (latex(f),latex(g)))) result.show(xmin=xmin,xmax=xmax,ymin=ymin,ymax=ymax) }}} {{attachment:euler.png}} == Vector Field with Runga-Kutta-Fehlberg == by Harald Schilly {{{#!sagecell # Solve ODEs using sophisticated Methods like Runga-Kutta-Fehlberg # by Harald Schilly, April 2008 # (jacobian doesn't work, please fix ...) var('x y') @interact def _(fin = input_box(default=y+exp(x/10)-1/3*((x-1/2)^2+y^3)*x-x*y^3), gin=input_box(default=x^3-x+1/100*exp(y*x^2+x*y^2)-0.7*x), xmin=input_box(default=-1), xmax=input_box(default=1.8), ymin=input_box(default=-1.3), ymax=input_box(default=1.5), x_start=(-1,(-2,2)), y_start=(0,(-2,2)), error=(0.5,(0,1)), t_length=(23,(0, 100)) , num_of_points = (1500,(5,2000)), algorithm = selector([ ("rkf45" , "runga-kutta-felhberg (4,5)"), ("rk2" , "embedded runga-kutta (2,3)"), ("rk4" , "4th order classical runga-kutta"), ("rk8pd" , 'runga-kutta prince-dormand (8,9)'), ("rk2imp" , "implicit 2nd order runga-kutta at gaussian points"), ("rk4imp" , "implicit 4th order runga-kutta at gaussian points"), ("bsimp" , "implicit burlisch-stoer (requires jacobian)"), ("gear1" , "M=1 implicit gear"), ("gear2" , "M=2 implicit gear") ])): f(x,y)=fin g(x,y)=gin ff = f._fast_float_(*f.args()) gg = g._fast_float_(*g.args()) #solve path = [] err = error xerr = 0 for yerr in [-err, 0, +err]: T=ode_solver() T.algorithm=algorithm T.function = lambda t, yp: [ff(yp[0],yp[1]), gg(yp[0],yp[1])] T.jacobian = lambda t, yp: [[diff(fun,dval)(yp[0],yp[1]) for dval in [x,y]] for fun in [f,g]] T.ode_solve(y_0=[x_start + xerr, y_start + yerr],t_span=[0,t_length],num_points=num_of_points) path.append(line([p[1] for p in T.solution])) #plot vector_field = plot_vector_field( (f,g), (x,xmin,xmax), (y,ymin,ymax) ) starting_point = point([x_start, y_start], pointsize=50) show(vector_field + starting_point + sum(path), aspect_ratio=1, figsize=[8,9]) }}} {{attachment:ode_runga_kutta.png}} == Linear two-dimensional ODEs == by Marshall Hampton {{{ %cython cpdef c_euler_m(double t0, double x10, double x20, double tend, int steps, double a11, double a12, double a21, double a22, double cutoff = 10): cdef double h = (tend-t0)/steps traj = [[x10,x20]] cdef double x1current = x10 cdef double x2current = x20 cdef int i cdef double newx1 cdef double newx2 for i in range(0,steps): newx1 = x1current + h*a11*x1current + h*a12*x2current newx2 = x2current + h*a21*x1current + h*a22*x2current if newx1 > cutoff or newx2 > cutoff or newx1 < -cutoff or newx2 < -cutoff: break traj.append([newx1,newx2]) x1current = newx1 x2current = newx2 return traj }}} {{{ @interact def planarsystem(a11 = slider(srange(-10,10,1/10),default = -1), a12 = slider(srange(-10,10,1/10),default = -1), a21 = slider(srange(-10,10,1/10),default = 1), a22 = slider(srange(-10,10,1/10),default = -1), time_tracked = slider(srange(1,100,1.0),default=10)): A = matrix(RDF,[[a11,a12],[a21,a22]]) eigs = A.eigenvalues() pretty_print(html('
$x\' = Ax$ dynamics
$A = '+latex(A)+'$, eigenvalues: $%2.2f + %2.2fI, %2.2f + %2.2fI$
'%(eigs[0].real(),eigs[0].imag(),eigs[1].real(),eigs[1].imag()))) trajs = Graphics() for q in srange(0,2*pi,.15): astart = randint(1,10) ntraj = c_euler_m(0,cos(q),sin(q),time_tracked,300,a11,a12,a21,a22) for i in range(astart,len(ntraj)-1,10): trajs = trajs + arrow(ntraj[i],ntraj[i+1],width=1, arrowsize=2) trajs = trajs + line(ntraj) ntraj = c_euler_m(0,cos(q),sin(q),-time_tracked,300,a11,a12,a21,a22) trajs = trajs + line(ntraj) for i in range(astart,len(ntraj)-1,10): trajs = trajs + arrow(ntraj[i+1],ntraj[i],width=1, arrowsize=2) show(trajs, figsize = [6,6], xmin = -1, xmax = 1, ymin = -1, ymax = 1) }}} {{attachment:linear2x2.png}} == Euler's Method, Improved Euler, and 4th order Runge-Kutta in one variable == by Marshall Hampton. This is a more baroque version of the Euler's method demo above. {{{#!sagecell def ImpEulerMethod(xstart, ystart, xfinish, nsteps, f): sol = [ystart] xvals = [xstart] h = N((xfinish-xstart)/nsteps) for step in range(nsteps): k1 = f(xvals[-1],sol[-1]) k2 = f(xvals[-1] + h,sol[-1] + k1*h) sol.append(sol[-1] + h*(k1+k2)/2) xvals.append(xvals[-1] + h) return list(zip(xvals,sol)) def RK4Method(xstart, ystart, xfinish, nsteps, f): sol = [ystart] xvals = [xstart] h = N((xfinish-xstart)/nsteps) for step in range(nsteps): k1 = f(xvals[-1],sol[-1]) k2 = f(xvals[-1] + h/2,sol[-1] + k1*h/2) k3 = f(xvals[-1] + h/2,sol[-1] + k2*h/2) k4 = f(xvals[-1] + h,sol[-1] + k3*h) sol.append(sol[-1] + h*(k1+2*k2+2*k3+k4)/6) xvals.append(xvals[-1] + h) return list(zip(xvals,sol)) def tab_list(y, headers = None): ''' Converts a list into an html table with borders. ''' s = '' if headers: for q in headers: s = s + '' for x in y: s = s + '' for q in x: s = s + '' s = s + '' s = s + '
' + str(q) + '
' + str(q) + '
' return s var('x, y') @interact def euler_method(q = range_slider(0,10,.1,(0,6),'x range'), y_exact_in = input_box('-cos(x)+2.0', type = str, label = 'Exact solution = '), y_prime_in = input_box('sin(x)', type = str, label = "y' = "), startval = input_box(1.0, label = 'Starting value for y: '), nsteps = slider([2^m for m in range(0,10)], default = 10, label = 'Number of steps: '), show_steps = slider([2^m for m in range(0,10)], default = 8, label = 'Number of steps shown in table: ')): start = q[0] stop = q[1] y_exact = lambda x: eval(y_exact_in) y_prime = lambda x,y: eval(y_prime_in) stepsize = float((stop-start)/nsteps) steps_shown = min(nsteps,show_steps) sol2 = ImpEulerMethod(start, startval, stop, nsteps, y_prime) sol3 = RK4Method(start, startval, stop, nsteps, y_prime) sol = [startval] xvals = [start] for step in range(nsteps): sol.append(sol[-1] + stepsize*y_prime(xvals[-1],sol[-1])) xvals.append(xvals[-1] + stepsize) sol_max = max(sol + [find_local_maximum(y_exact,start,stop)[0]]) sol_min = min(sol + [find_local_minimum(y_exact,start,stop)[0]]) slopes = plot_slope_field(y_prime(x=x,y=y), (start,stop), (sol_min, sol_max)) exact_plot = plot(y_exact(x),start,stop,rgbcolor=(1,0,0)) euler_plot = line([[xvals[index],sol[index]] for index in range(len(sol))]) rk4_plot = line(sol3, rgbcolor = (0,0,.125)) imp_plot = line(sol2, rgbcolor = (1,0,1)) show(slopes +exact_plot + euler_plot + imp_plot+ rk4_plot,xmin=start,xmax = stop, ymax = sol_max, ymin = sol_min) if nsteps < steps_shown: table_range = list(range(len(sol))) else: table_range = list(range(floor(steps_shown/2))) + list(range(len(sol)-floor(steps_shown/2),len(sol))) html(tab_list([[i,xvals[i],sol[i],sol2[i][1],sol3[i][1],y_exact(xvals[i])] for i in table_range], headers = ['step','x','Euler','Imp. Euler', 'RK4','Exact'])) }}} {{attachment:rk4.png}} == Mass/Spring systems == by Jason Grout These two interacts involve some Cython code or other scipy imports, so I've posted a file containing them. You can download the worksheet or copy it online. * https://sage.math.washington.edu/home/pub/42 * https://sage.math.washington.edu/home/pub/43 == Picard iteration example == by Marshall Hampton and David Joyner {{{#!sagecell def picard_iteration(f, a, c, iterations): r''' Computes the N-th Picard iterate for the IVP x' = f(t,x), x(a) = c. EXAMPLES:: sage: var('x t s') (x, t, s) sage: a = 0; c = 2 sage: f = lambda t,x: 1-x sage: picard_iteration(f, a, c, 0) 2 sage: picard_iteration(f, a, c, 1) 2 - t sage: picard_iteration(f, a, c, 2) t^2/2 - t + 2 sage: picard_iteration(f, a, c, 3) -t^3/6 + t^2/2 - t + 2 ''' if iterations == 0: return c if iterations == 1: x0 = lambda t: c + integral(f(t=s,x=c), s, a, t) return expand(x0(t)) for i in range(iterations): x_old = lambda s: picard_iteration(f, a, c, iterations-1).subs(t=s) x0 = lambda t: c + integral(f(t=s,x=x_old(s)), s, a, t) return expand(x0(t)) @interact def picarder(n_iterations = slider(0,20,1,default = 2)): var('x,t,s') f = lambda t,x:x html(r"Exact solution to $x' = x$, $x(0) = 1$ is $x = \exp(t)$
") pic = picard_iteration(f,0,1,n_iterations) html('The Picard iteration approximation after ' + str(n_iterations) + ' iterations is:
') html('$'+latex(pic)+'$') exact = plot(exp(t),(t,0,2)) pic_plot = plot(pic,(t,0,2), rgbcolor = (1,0,0)) show(exact + pic_plot) }}} {{attachment:picard.png}} == Euler-Maruyama method and geometric Brownian motion (a common simple model of the stock market) == by Marshall Hampton {{{#!sagecell def EulerMaruyama(xstart, ystart, xfinish, nsteps, f1, f2): sol = [ystart] xvals = [xstart] h = N((xfinish-xstart)/nsteps) for step in range(nsteps): sol.append(sol[-1] + h*f1(sol[-1]) + h^(.5)*f2(sol[-1])*normalvariate(0,1)) xvals.append(xvals[-1] + h) return list(zip(xvals,sol)) out = Graphics() save(out,'temp') @interact def EulerMaruyamaExample(mu = slider(srange(0,10,.1),default=2.0), sigma = slider(srange(0,10,.1),default=0.5), plots_at_a_time = slider(range(1,100),default=10), number_of_steps = slider(range(1,1000),default=100), clear_plot = checkbox(True), auto_update=False): html('
Example of the Euler-Maruyama method applied to
the stochastic differential equation for geometric Brownian motion
') html(r'
$S = S_0 + \int_0^t \mu S dt + \int_0^t \sigma S dW$
') emplot = list_plot(EulerMaruyama(0,1,1,number_of_steps,lambda x: mu*x,lambda x:sigma*x),plotjoined=True) for i in range(1,plots_at_a_time): emplot = emplot + list_plot(EulerMaruyama(0,1,1,100,lambda x: mu*x,lambda x:sigma*x),plotjoined=True) if clear_plot: out = emplot save(out,'temp') else: out = load('temp') out = out + emplot save(out,'temp') show(out, figsize = [8,5]) }}} {{attachment:eulermaruyama.png}} == Autonomous equations and stable/unstable fixed points == by Marshall Hampton This needs the Cython functon defined in a seperate cell. Note that it is not a particularly good example of Cython use. {{{ %cython cpdef RK4_1d(f, double t_start, double y_start, double t_end, int steps, double y_upper = 10**6, double y_lower = -10**6): ''' Fourth-order scalar Runge-Kutta solver with fixed time steps. f must be a function of t,y, where y is just a scalar variable. ''' cdef double step_size = (t_end - t_start)/steps cdef double t_current = t_start cdef double y_current = y_start cdef list answer_table = [] cdef int j answer_table.append([t_current,y_current]) for j in range(0,steps): k1=f(t_current, y_current) k2=f(t_current+step_size/2, y_current + k1*step_size/2) k3=f(t_current+step_size/2, y_current + k2*step_size/2) k4=f(t_current+step_size, y_current + k3*step_size) t_current += step_size y_current = y_current + (step_size/6)*(k1+2*k2+2*k3+k4) if y_current > y_upper or y_current < y_lower: j = steps answer_table.append([t_current,y_current]) return answer_table }}} {{{ from sage.rings.polynomial.real_roots import * var('x') @interact def autonomous_plot(poly=input_box(x*(x-1)*(x-2),label='polynomial'), t_end = slider(1,10,step_size = .1)): var('x') y = polygen(ZZ) ypoly = sage_eval(repr(poly).replace('x','y'),locals=locals()) rr = real_roots(ypoly, max_diameter = 1/100) eps = 0.2 delvals = .04 minr = min([x[0][0] for x in rr]) maxr = max([x[0][1] for x in rr]) svals = [(minr-eps)*t+(1-t)*(maxr+eps) for t in srange(0,1+delvals,delvals)] def polyf(t,xi): return poly(x=xi) paths = [RK4_1d(polyf,0.0,q,t_end,100.0) for q in svals] miny = max(minr-eps,min([min([q1[1] for q1 in q]) for q in paths])) maxy = min(maxr+eps,max([max([q1[1] for q1 in q]) for q in paths])) solpaths = sum([line(q) for q in paths]) fixedpoints = sum([line([[0,(q[0][0]+q[0][1])/2],[t_end,(q[0][0]+q[0][1])/2]], rgbcolor = (1,0,0)) for q in rr]) var('t') html("Autonomous differential equation $x' = p(x)$") show(solpaths+fixedpoints, ymin = miny, ymax = maxy, xmin = 0, xmax = t_end, figsize = [6,4]) }}} {{attachment:Autonomous1.png}} == Heat equation using Fourier series == by Pablo Angulo {{{#!sagecell var('x') x0 = 0 k=1 f = x*exp(-x^2) p = plot(f,0,2*pi, thickness=2) c = 1/pi orden=10 alpha=[(n,c*numerical_integral(f*sin(x*n/2),0,2*pi)[0] ) for n in range(1,orden)] @interact def _(tiempo = (0.1*j for j in (0..10)) ): ft = sum( a*sin(x*n/2)*exp(-k*(n/2)^2*tiempo) for n,a in alpha) pt = plot(ft, 0, 2*pi, color='green', thickness=2) show( p + pt, ymin = -.2) }}} {{attachment:heat_fourier.png}} == Heat equation using finite diferences in cython == by Pablo Angulo {{{ %cython #cython code implementing a very simple finite diference scheme import numpy as np def calor_cython(u0,float dx, float k,float t_f,int tsteps): cdef int m cdef float dt cdef float s u=np.array(u0) dt=t_f/tsteps s=k*dt/(dx**2) #we cannot use ^ for exponentiation in cython for m in range(tsteps): u[1:-1]=(1-2*s)*u[1:-1]+s*u[0:-2]+s*u[2:] return u }}} {{{ #interact box wrapping the code above var('x') @interact def _(f=input_box(default=x*exp(-x^2),label='f(x)'), longitud=input_box(default=2*pi), tiempo=input_box(default=0.1), M=input_box(default=100), k=input_box(default=1), tsteps=input_box(default=2000) ): efe=f._fast_float_(x) dx=float(longitud/M) xs=[n*dx for n in range(M+1)] u0=[efe(a) for a in xs] s=k*(tiempo/tsteps) /dx^2 if s>0.5: print('s=%f > 1/2!!! The method is not stable' % s) ut=calor_cython(u0,dx,k,tiempo,tsteps) show( line2d(list(zip(xs, u0))) + line2d(list(zip(xs, ut)), rgbcolor='green') ) }}} {{attachment:heat_findif.png}} == DE with boundary values == The following interact demo looks at the DE+BC y'+y=0, y(0)=a, y(b)=c, and has a slider for b. When b=pi "problems arise":-) {{{#!sagecell var('x') @interact def BCs(b=input_box(1,label='BC at far endpoint'), c = slider(1,5,step_size = .01), a = 1): P1 = text(r"$y''+y=0,\ y(0) = a,\ y(b) = c$",(4,-1/(c-3.14152))) P2 = plot(a*cos(x)+(b-a*cos(c))*sin(x)/sin(c),x,0,5) (P1+P2).show() }}} [[attachment:de-interact-with-BCs.sws]]