
Cryptography examples using Sage

Christopher Davis

UC Irvine
davis@math.uci.edu

http://math.uci.edu/~davis

Sage Education Days 5
June 21st, 2013

1 / 20

http://math.uci.edu/~davis


Outline of the talk

1 Course overview

2 Screenshots

3 Private key cryptography example

4 Public key cryptography example

5 What worked best?

2 / 20



About the course

These materials were designed for UC Irvine Math 173A &
Math 173B. Undergraduate cryptography courses.
No number theory or programming prerequisites.
Textbook: An introduction to mathematical
crypography by Hoffstein, Pipher, and Silverman.

3 / 20



Substitution cipher

4 / 20



Computational complexity graphs

Students were asked to find numbers which took Sage 1
second to factor, 10 seconds to factor, > 60 seconds to factor.
They posted the results on a messageboard, and the data was
plotted.

5 / 20



Quadratic sieve

6 / 20



Part 1: Private key cryptography

Relatively small portion of the course: about 3 weeks out
of 20 total.
Materials more “fun”, less mathematically sophisticated.
Accessible to essentially any audience.

7 / 20



Frequency analysis

Encryption systems which encrypt English text using
substitutions tend to be vulnerable to frequency analysis.
Three important examples:

Shift cipher (or Caesar cipher);
Substitution cipher;
Vigenère cipher.

Frequency analysis is painful by hand, but easy with Sage.

8 / 20



The Vigenère cryptosystem

Goal: Encrypt a piece of English text by making
substitutions letter-by-letter.
Shared private key: A list of numbers (shift amounts).

The first letter is shifted by 2, the fourth letter by -1, the fifth
letter by 2 again, etc.

9 / 20



Deciphering Vigenère ciphertext, first step

First step is to determine the key length. Look for repeated
strings.

The function findgaplengths returns the distance
separating repeated strings. (In the above image, it looks
for repeated strings of length 6.)
Expectation: the key length should divide many of these
gap lengths.

10 / 20



Deciphering Vigenère ciphertext, second step

Once we have determined key length 5 (say), the second
step is to determine the entries in the key.

key = [?, ?, ?, ?, ?]

Separate out every 5th letter and calculate the letter
distribution. Then determine which shift amount makes the
letter distribution most closely match English.
In the following, we’ll see that shift -9 works best.
Repeat for the letters in the “1 modulo 5” positions, etc.

11 / 20



Letter distributions

Figure: Letter distributions after
picking out every 4th letter

Figure: Letter distributions after
picking out every 5th letter

12 / 20



Sample assignments for the Vigenère cipher

1 Some text has been encrypted using a Vigenère cipher
with key length 4-8. Decipher it using Sage helper
functions.

2 Some (longer) text has been encrypted using a Vigenère
cipher with key length < 20. Write a program which will
decipher it automatically.

13 / 20



Public key example: Diffie-Hellman key exchange

Goal: For two people, Alice and Bob, to produce a shared
secret number, without ever exchanging any data in
private.
Starting data: A prime p and a generator g for (Z/pZ)×.
Alice has a secret exponent a. Bob has b.
Alice and Bob publish ga mod p and gb mod p.
Alice and Bob can both compute gab mod p easily, but (we
think) nobody else can.

14 / 20



Public key cryptography comments

Public key cryptography relies on one-to-one functions
which are difficult to invert.
In the Diffie-Hellman example, this function is

Z/(p − 1)Z→ (Z/pZ)×

a 7→ ga mod p

“Obvious” benefit to using Sage: can use sizes of numbers
for which the functions are genuinely difficult to invert.
Practice with Sage makes clear to the students that an
operation like modular exponentiation is much
“easier/faster” than an operation like a discrete logarithm.

15 / 20



Powers of 2 modulo 263

Figure: This modular exponentiation function is so random, it’s not
surprising it’s difficult to invert.

16 / 20



Computation times related to Diffie-Hellman

Figure: Here p has 7 digits.
Computation times for
(1) Modular exponentiation,
(2) trial-and-error discrete log,
(3) a piece of collision algorithm.

Figure: Here p has 14 digits.
The collision algorithm is close
to becoming impractical here. In
the lab, students were asked to
choose p with about 10 more
digits.

17 / 20



Three sample Diffie-Hellman assignments

1 Determine ranges where we can’t perform the collision
algorithm in a reasonable amount of time.

2 With a partner, perform a Diffie-Hellman key exchange
using numbers slightly larger than are practical with the
collision algorithm.

3 Use the Pohlig-Hellman algorithm to reveal another team’s
message.

18 / 20



Course summary: What worked best?

If an assignment would end with a number being revealed,
have the students use that number to decipher a block of
ciphertext.
For public key assignments, have students communicate
entirely on a public messageboard.
Have sequential assignments:

First assignment: straighforward exchange with a partner
using a cryptosystem.
Next assignment: stealing another team’s exchanged
message using an attack on the cryptosystem.

19 / 20



Thank you!

Thank you for your attention!

Any questions?

20 / 20


	Course overview
	Screenshots
	Private key cryptography example
	Public key cryptography example
	What worked best?

