Sage Quick Reference:

Combinatorics and Graph Theory

Barry Balof
Sage Version 5.9
http://wiki.sagemath.org/quickref
GNU Free Document License, extend for your own use Based on work by Rob Beezer, Steven R. Turner

$\mathrm{L}=[2,17,3,17]$ an ordered list

Lists

L[i] the i th element of L
lists begin with the 0th element
L. append (x) adds x to L
L.remove (x) removes x from L
$\mathrm{L}[\mathrm{i}: \mathrm{j}]$ the i-th through $(j-1)$-th element of L
range (a) list of integers from 0 to $a-1$
range (a, b) list of integers from a to $b-1$
[a..b] list of integers from a to b
range (a,b, c)
every c-th integer starting at a and less than b
len(L) length of L
$M=[i \wedge 2$ for i in range(13)]
list of squares of integers 0 through 12
$\mathrm{N}=\left[\mathrm{i}^{\wedge} 2\right.$ for i in range(13) if is_prime(i)]
list of squares of prime integers between 0 and 12
$M+N$ the concatenation of lists M and N
sorted(L) a sorted version of L (L is not changed)
L.sort() sorts L (L is changed)
set(L) an unordered list of unique elements

Permutations and Combinations

Permutations (L) list of permutations of L
Permutations (L, 2) list of 2-permutations of L
Combinations (L) list of all combinations of L (the power set) as lists
Combinations ($\mathrm{L}, 2$) list of 2-combinations of L as lists Partitions (n) list of unordered partitions of n
Compositions(n) list of compositions (ordered partitions) of n
Subsets(n) list of subsets of $\{1,2, \ldots n\}$ as sets. Subsets (n, k) list of k-element subsets of $\{1,2, \ldots n\}$ as sets.

Poset Examples Operations

$\mathrm{P}=$ posets.BooleanLattice(n) P is the poset of subsets of a five element set
$\mathrm{P}=$ posets. ChainPoset (6) P is a 6 element chain (linear) poset
$\mathrm{P}=$ posets.AntichainPoset(6) P is a 6 element chain (linear) poset
$\mathrm{P}=$ posets.DiamondPoset (8) P is an antichain of 6 elements, each element of which is greater than a minimal element and less than a maximal element.
$P=\operatorname{Poset}(\{0:[3], 1:[2,3], 2:[3,4], 3:[4], 4:[])$ Creates a poset where each element is followed by its list of successors (where transitivity is implied). $P=\operatorname{Poset}(\{0:[3], 1:[2,3], 2:[3,4], 3:[4], 4:[])$ Creates a poset where each element is followed by its list of successors (where transitivity is implied).
P.maximal_chains() List of maximal chains of P
P.antichains() List of antichains of P
P.linear_extensions() List of linear extensions of P

Binomial and Polynomial Constructions

binomial (a, b) ($\left.\begin{array}{l}a \\ b\end{array}\right)$
list (binomial (8, i) for i in xrange (9)) list of biniomial coefficients of the form $\binom{8}{i}$ (the 8th row of Pascal's Triangle)
multinomial ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) $\binom{a+b+c+d}{a, b, c, d}$
$\mathrm{p}=$ an expanded polynomial in any number of variables p.coefficients() returns a list of the coefficients of p. p.coefficient $\left(x^{\wedge} 2\right)$ returns the coefficient of x^{2} in p .

Special Number Sequences

fibonacci(n) returns the nth Fibonacci Number, with $F_{1}=F_{2}=1$
bell_number (n) returns the nth Bell Number catalan_number (n) returns the nth Catalan Number stirling_number1 $(\mathrm{n}, \mathrm{k})\left[\begin{array}{l}n \\ k\end{array}\right]$, the Stirling number of the first kind
stirling_number2(n, k) $\left\{\begin{array}{l}n \\ k\end{array}\right\}$, the Stirling number of the second kind
$a=$ sloane.A000045 sets a as sequence A000045 in Sloane's OEIS. Use sloane. A <tab> for a list of SAGE enabled sequences.

Graph Constructions

Sage has many, many (many!) examples of graphs. Type graphs. then press $\langle t a b\rangle$ for a complete list.
G. show() draws a plot of G.
G.plot() draws a plot of G.
$G=\operatorname{Graph}([(1,3),(3,8),(5,2)])$ creates a graph with specified edges (vertices are implied)
$G=\operatorname{Graph}(\{0:[1,2,3], 2:[4]\})$ creates a graph with listed adjacencies
$\mathrm{G}=$ graphs.RandomGNP(n, p) creates a random graph on n vertices, where each edge is included with probability p.
G.add_vertex(v) adds a vertex v to G.
G.add_edge ((a, b)) adds an edge (a, b) to G .
G.add_cycle([5,6,7,8]) adds a cycle on vertices G (note: SAGE will use existing vertices if these are included, or add vertices as necessary.)
G.delete_vertex(v) deletes the vertex v from G.
etc....

Graph Queries

G.is_planar() returns True if G is planar
G.is_bipartite() returns True if G is bipartite
G.is_eulerian() returns True if G is Eulerian
G.is_hamiltonian() returns True if G is Hamiltonian
G.is_connected() returns True if G is connected
G.is_isomorphic(H) returns True if G and H are isomorphic

Graph Statistics

G.size() number of edges of G
G.order () number of vertices of G
G.girth() length of the shortext cycle of G
G.chromatic_polynomial() returns the chromatic polynomial of G
G.automorphism_group(G) returns the autmorphism group of G

Graph Examples

K_{5}

Ladder Graph (5)

Cube Graph (4).
Note that the vertices are labled with $0-1$ strings.

More Help

"tab-completion" on partial commands
"tab-completion" on <object.> for all relevant methods <command>? for summary and examples

