
Sage Quick Reference:
Combinatorics and Graph Theory

Barry Balof
Sage Version 5.9

http://wiki.sagemath.org/quickref

GNU Free Document License, extend for your own use
Based on work by Rob Beezer, Steven R. Turner

Lists

L = [2,17,3,17] an ordered list

L[i] the ith element of L
lists begin with the 0th element

L.append(x) adds x to L

L.remove(x) removes x from L

L[i:j] the i-th through (j − 1)-th element of L

range(a) list of integers from 0 to a− 1
range(a,b) list of integers from a to b− 1
[a..b] list of integers from a to b
range(a,b,c)

every c-th integer starting at a and less than b

len(L) length of L

M = [i^2 for i in range(13)]

list of squares of integers 0 through 12

N = [i^2 for i in range(13) if is_prime(i)]

list of squares of prime integers between 0 and 12

M + N the concatenation of lists M and N

sorted(L) a sorted version of L (L is not changed)
L.sort() sorts L (L is changed)

set(L) an unordered list of unique elements

Permutations and Combinations

Permutations(L) list of permutations of L
Permutations(L,2) list of 2-permutations of L
Combinations(L) list of all combinations of L (the power
set) as lists
Combinations(L,2) list of 2-combinations of L as lists
Partitions(n) list of unordered partitions of n
Compositions(n) list of compositions (ordered partitions)
of n
Subsets(n) list of subsets of {1, 2, . . . n} as sets.
Subsets(n,k) list of k-element subsets of {1, 2, . . . n} as
sets.

Poset Examples Operations

P = posets.BooleanLattice(n) P is the poset of sub-
sets of a five element set
P = posets.ChainPoset(6) P is a 6 element chain (lin-
ear) poset
P = posets.AntichainPoset(6) P is a 6 element chain
(linear) poset
P = posets.DiamondPoset(8) P is an antichain of 6 el-
ements, each element of which is greater than a minimal
element and less than a maximal element.

P = Poset({0:[3],1:[2,3],2:[3,4],3:[4],4:[]) Cre-
ates a poset where each element is followed by
its list of successors (where transitivity is implied).
P = Poset({0:[3],1:[2,3],2:[3,4],3:[4],4:[]) Cre-
ates a poset where each element is followed by its list of
successors (where transitivity is implied).

P.maximal_chains() List of maximal chains of P
P.antichains() List of antichains of P
P.linear_extensions() List of linear extensions of P

Binomial and Polynomial Constructions

binomial(a,b)
(
a
b

)
list(binomial(8, i) for i in xrange(9)) list of bin-
iomial coefficients of the form

(
8
i

)
(the 8th row of Pascal’s

Triangle)
multinomial(a,b,c,d)

(
a+b+c+d
a,b,c,d

)
p= an expanded polynomial in any number of variables
p.coefficients() returns a list of the coefficients of p.
p.coefficient(x^2) returns the coefficient of x2 in p.

Special Number Sequences

fibonacci(n) returns the nth Fibonacci Number, with
F1 = F2 = 1
bell_number(n) returns the nth Bell Number
catalan_number(n) returns the nth Catalan Number
stirling_number1(n,k)

[
n
k

]
, the Stirling number of the

first kind
stirling_number2(n,k)

{
n
k

}
, the Stirling number of

the second kind
a=sloane.A000045 sets a as sequence A000045 in

Sloane’s OEIS. Use sloane.A <tab> for a list of SAGE
enabled sequences.

Graph Constructions

Sage has many, many (many!) examples of graphs. Type
graphs. then press 〈tab〉 for a complete list.

G.show() draws a plot of G.
G.plot() draws a plot of G.
G = Graph([(1,3),(3,8),(5,2)]) creates a graph with
specified edges (vertices are implied)
G = Graph({0:[1,2,3], 2:[4]}) creates a graph with
listed adjacencies
G = graphs.RandomGNP(n, p) creates a random graph
on n vertices, where each edge is included with probability
p.

G.add_vertex(v) adds a vertex v to G.
G.add_edge((a,b)) adds an edge (a,b) to G.
G.add_cycle([5,6,7,8]) adds a cycle on vertices G
(note: SAGE will use existing vertices if these are in-
cluded, or add vertices as necessary.)
G.delete_vertex(v) deletes the vertex v from G.
etc....

Graph Queries

G.is_planar() returns True if G is planar
G.is_bipartite() returns True if G is bipartite
G.is_eulerian() returns True if G is Eulerian
G.is_hamiltonian() returns True if G is Hamiltonian
G.is_connected() returns True if G is connected
G.is_isomorphic(H) returns True if G and H are iso-
morphic

Graph Statistics

G.size() number of edges of G
G.order() number of vertices of G
G.girth() length of the shortext cycle of G
G.chromatic_polynomial() returns the chromatic poly-
nomial of G
G.automorphism_group(G) returns the autmorphism
group of G

Graph Examples

K5

Petersen Graph

Ladder Graph (5)

Cube Graph (4).
Note that the vertices are labled with 0-1 strings.

More Help

“tab-completion” on partial commands
“tab-completion” on <object.> for all relevant methods
<command>? for summary and examples

