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Instructions
This tutorial session is color coded to assist you in finding information on the page. It
is online, but it is important to take notes and to work some of the examples on paper.

• You can move forward through the pages 〈Next〉, backward 〈Prev〉, or view all the
slides in this tutorial 〈Index〉.
• The 〈Back to Calc I〉 button returns you to the course home page.

• A full symbolic algebra package 〈Sage〉 is accessible online. You can download and
install it on your own computer, without a web app, by visiting www.sagemath.org.

• An online calculus text 〈CalcText〉 provides a quick search of basic calculus topics.

• You can get help from Google Calculus 〈GoogleCalc〉.
• A monochrome copy of this module is suitable for printing 〈Print〉.

When all else fails, feel free to contact your instructor.

Overview
Up to now we have only considered limits as they approach a fixed number a:

lim
x→a

f (x).

Often we are interested as well in the long-term behavior of a function:

Question:

a What happens to the y values as x increases without bound? That is,
what is

lim
x→∞ f (x)?

a What happens to the y values as x decreases without bound? That is,
what is

lim
x→−∞ f (x)?
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Three sample problems
Let

a f (x)=
3x+1

x
,

a s(x)= sin(x), and

a d (x)=
1

x
.

We want to estimate, or even evaluate,

lim
x→±∞ f (x) and lim

x→±∞ s(x) and lim
x→±∞d (x),

assuming they exist!.
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The limit at infinity
Recall from previous lessons that:

a the mathematical term limit indicates the value a variable or a function approaches;

a we can use numerical or graphical methods to estimate the value of a limit, if it
exists; and

a we can use the precise definition of a limit (ε-δ) to show rigorously that our estimate
is correct, or that none exists.

Module: limits at infinity 3

Infinity is not a number!
It is important to keep in mind that

infinity is not a number!

We cannot “substitute” it in place of x, add to it, subtract from it, and so forth.
Infinity is a word that we use as a shorthand for an idea: namely, increasing or de-

creasing without bound.
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SAGE worksheets
In this lab you will not need a special SAGE worksheet, but you will need to have a new
SAGE worksheet handy, so go ahead and login to SAGE and open a new worksheet.
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First example: numerical
Let’s use all three methods on the first example,

lim
x→±∞ f (x) where f (x)=

3x+1

x
.

We will start with a numerical estimate: what happens to the values of f as x increases
without bound?
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First example: numerical
Let’s use all three methods on the first example,

lim
x→±∞ f (x) where f (x)=

3x+1

x
.

We will start with a numerical estimate: what happens to the values of f as x increases
without bound?

Since x increases without bound, we’ll build a table of x-y values where x increases.
Feel free to pick grotesquely big numbers!

x 1 10 100 1000 10000 1,000,000,000
y ? ? ? ? ? ?
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First example: numerical
Let’s use all three methods on the first example,

lim
x→±∞ f (x) where f (x)=

3x+1

x
.

We will start with a numerical estimate: what happens to the values of f as x increases
without bound?

Since x increases without bound, we’ll build a table of x-y values where x increases.
Feel free to pick grotesquely big numbers!

x 1 10 100 1000 10000 1,000,000,000
y ? ? ? ? ? ?

Remember that you can use SAGE to pass quickly through the computations: define
a function f , then evaluate f at each point. You can also use a loop: [f(a) for a in

[1,10,...]] as described in the module on intuitive limits.
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First example: numerical
Let’s use all three methods on the first example,

lim
x→±∞ f (x) where f (x)=

3x+1

x
.

We will start with a numerical estimate: what happens to the values of f as x increases
without bound?

Since x increases without bound, we’ll build a table of x-y values where x increases.
Feel free to pick grotesquely big numbers!

x 1.0 10.0 100.0 1000.0 10000.0 1,000,000,000.0 →∞
y 4.0 3.1 3.01 3.001 3.0001 3.000000001 → 3

If everything goes well, you should see numbers corresponding to the table above. This
suggests that

lim
x→∞ f (x)= 3.
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First example: graphical
Let’s use all three methods on the first example,

lim
x→±∞ f (x) where f (x)=

3x+1

x
.

Let’s try a graphical approach. Plot the graph of f (x) several times, with different
maximum values of x.
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First example: graphical
Let’s use all three methods on the first example,

lim
x→±∞ f (x) where f (x)=

3x+1

x
.

Let’s try a graphical approach. Plot the graph of f (x) several times, with different
maximum values of x.

If we try plot(f,-10,10) we see the following (plot may vary):

From the graph we might guess that

lim
x→∞ f (x)= 0.

But this disagrees with our numerical estimate!
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What happened?
Take a closer look at the graph:

Do you see how the y values have such large magnitude? They go up to 100-ish and
down to -1900-ish.

To get a more accurate picture, we can use the show() command with the ymin and
ymax attributes. Try typing this:

fplot = plot(f,-10,10)

fplot.show(ymin=-10,ymax=10)
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First example: graphical
This new approach gives us a much better picture:

This new plot suggests that the y values approach 3.

Module: limits at infinity 9

First example: graphical
However, our graph isn’t that convincing. It suggests that the y values approach 3. But
we’re only going out to x = 10. Lots of funny things can happen beyond x = 10.

To get around this, experiment with the x-interval in the plot.
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First example: graphical
However, our graph isn’t that convincing. It suggests that the y values approach 3. But
we’re only going out to x = 10. Lots of funny things can happen beyond x = 10.

To get around this, experiment with the x-interval in the plot.
We might, for example, try the interval [1,100]:
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First example: graphical
However, our graph isn’t that convincing. It suggests that the y values approach 3. But
we’re only going out to x = 10. Lots of funny things can happen beyond x = 10.

To get around this, experiment with the x-interval in the plot.
Or the interval [1,10000]:
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First example: graphical
However, our graph isn’t that convincing. It suggests that the y values approach 3. But
we’re only going out to x = 10. Lots of funny things can happen beyond x = 10.

To get around this, experiment with the x-interval in the plot.
You can also shrink the y-interval in the show() command to [2.9,3.1]:

(Use ymin=2.9,ymax=3.1 as options to show().)
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First example: graphical
However, our graph isn’t that convincing. It suggests that the y values approach 3. But
we’re only going out to x = 10. Lots of funny things can happen beyond x = 10.

To get around this, experiment with the x-interval in the plot.
No matter how we change the graph, it appears that the y values are approaching

y = 3 as x increases without bound. Intuitively, we believe that

lim
x→∞ f (x)= 3.

(The same also appears to be true for −∞.)
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

For any measurable distance ε, we want to know that eventually the y value of f (x)
is indistinguishable from the limit 3.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

In other words, we want

a for all ε> 0,

a sooner or later, every x value

a produces a y value that is closer to L than ε.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

| f (x)−L|< 0.01.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

| f (x)−L|< 0.01����3x+1

x
−3
����< 0.01.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want����3x+1

x
−3
����< 0.01

−0.01<
3x+1

x
−3< 0.01.

(Property of this absolute value inequality.)
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

−0.01<
3x+1

x
−3< 0.01

3−0.01<
3x+1

x
< 3+0.01.

(Added 3 to both sides.)
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

3−0.01<
3x+1

x
< 3+0.01

x(3−0.01)< 3x+1< x(3+0.01).

(Multiplied x to both sides.
Since x > 0 as x→∞,

the direction of the inequalities does not change.)
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

x(3−0.01)< 3x+1< x(3+0.01)
−0.01x < 1< 0.01x.

(Subtracted 3x from both sides.)

Module: limits at infinity 10

A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

−0.01x < 1< 0.01x

−0.01x < 1 and 1< 0.01x.

(Meaning of the inequality.)
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

−0.01x < 1 and 1< 0.01x

so we want x >− 1

0.01
and x >

1

0.01
.

The larger of these is 1/0.01= 100, so we want x > 100.
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A precise approach!
How can we convince ourselves that a limit at infinity is L? We will need a precise
definition for the limit at infinity.

Rethinking our wording again,

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

Let’s try this with the example, using ε= 0.01. We want

−0.01x < 1 and 1< 0.01x

so we want x >− 1

0.01
and x >

1

0.01
.

The larger of these is 1/0.01= 100, so we want x > 100.
In fact, f (101)≈ 3.0099 and

|3.0099−3|= .0099< .01.
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Second example
Let’s look at s(x)= sin(x).
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Second example: numerical
Let’s look at s(x)= sin(x).

If we build a table of values extending towards infinity. . .

x 1.0 10.0 100.0 1000.0 10000.0 1,000,000,000.0
y 0.8415 -0.5540 -0.5063 0.8269 -0.3056 0.5458

. . . we don’t see any trend to one special number.
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Second example: graphical
Let’s look at s(x)= sin(x).

If we plot the function for intervals with larger and larger x values. . .
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Second example: graphical
Let’s look at s(x)= sin(x).

If we plot the function for intervals with larger and larger x values. . .

. . . we see that s oscillates between -1 and 1. Still there is no trend to one special value.
It looks as if there is no limit.
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Second example: precise
Let’s look at s(x)= sin(x).

Recall the precise definition.

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

In our case,

a For any hypothetical limit L,

a if ε= 0.9,

a then regardless of the value of N ,

a we can find infinitely many x values

a such that |sin(x)−L|>ε.
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Second example: precise
Let’s look at s(x)= sin(x).

Recall the precise definition.

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

For any hypothetical limit L, if ε= 0.9, then regardless of the value of N , we can find
infinitely many x values such that |sin(x)−L|>ε.

For example, if L= 0, then s
�
π
2

�
= 1, s

�
5π
2

�
= 1, s

�
9π
2

�
= 1, . . . . This pattern con-

tinues for ever, so the limit of the y values does not approach 0 even though y = 0
infinitely many times at x = 0,π,2π, . . ..
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Second example: precise
Let’s look at s(x)= sin(x).

Recall the precise definition.

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

For any hypothetical limit L, if ε= 0.9, then regardless of the value of N , we can find
infinitely many x values such that |sin(x)−L|>ε.

We could play this same game with any value of L. (Try it!) So,

lim
x→∞ s(x) does not exist.
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Third example
Finally, we’ll look at d (x)= 1/x.
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Third example: note
Finally, we’ll look at d (x)= 1/x.

This is an important and useful function. Along with its limits, d (x) recurs quite a
bit in Calculus.
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Third example: numerical approach
Finally, we’ll look at d (x)= 1/x.

Use the numerical approach to fill in the question marks, and obtain an estimate for
limx→∞1/x.

x 1.0 10.0 100.0 1000.0 10000.0 1,000,000,000.0
y ? ? ? ? ? ?

The values should seem to approach a number.
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Third example: numerical approach
Finally, we’ll look at d (x)= 1/x.

Use the numerical approach to fill in the question marks, and obtain an estimate for
limx→∞1/x.

x 1.0 10.0 100.0 1000.0 10000.0 1,000,000,000.0
y 1.0 0.1 0.01 0.001 0.0001 0.000000001

The values should seem to approach a number.
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Third example: graphical approach
Finally, we’ll look at d (x)= 1/x.

Use the numerical approach to fill in the question marks, and obtain an estimate for
limx→∞1/x.

x 1.0 10.0 100.0 1000.0 10000.0 1,000,000,000.0
y 1.0 0.1 0.01 0.001 0.0001 0.000000001

Use the graphical approach to generate two or three plots, and check that the guess
you’d obtain from the graph agrees with the guess that you’d obtain from your table.
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Third example: graphical approach
Finally, we’ll look at d (x)= 1/x.
Use the numerical approach to fill in the question marks, and obtain an estimate for

limx→∞1/x.

x 1.0 10.0 100.0 1000.0 10000.0 1,000,000,000.0
y 1.0 0.1 0.01 0.001 0.0001 0.000000001

Use the graphical approach to generate two or three plots, and check that the guess
you’d obtain from the graph agrees with the guess that you’d obtain from your table.

You should have obtained the estimate

lim
x→∞

1

x
= 0.

Let’s check this using the precise definition!
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Third example: precise
For any ε, we want to find a value of N such that if x >N then |1/x−0|<ε. That is,����1x

����<ε.
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Third example: precise
For any ε, we want to find a value of N such that if x >N then |1/x−0|<ε. That is,����1x

����<ε
−ε< 1

x
<ε.

(Property of this absolute value inequality.)
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Third example: precise
For any ε, we want to find a value of N such that if x >N then |1/x−0|<ε. That is,

−ε< 1

x
<ε

−εx < 1<εx.

(Multiplied both sides by x.
Since x > 0 as x→∞,

we don’t have to change the direction of the
inequality.)
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Third example: precise
For any ε, we want to find a value of N such that if x >N then |1/x−0|<ε. That is,

−εx < 1<εx

−εx < 1 and 1<εx.

(Meaning of this inequality.)
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Third example: precise
For any ε, we want to find a value of N such that if x>N then |1/x−0|<ε. That is,

−εx < 1 and 1<εx

so x >−1

ε
and x >

1

ε
.
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Third example: precise
For any ε, we want to find a value of N such that if x >N then |1/x−0|<ε. That is,

−εx < 1<εx

so x >−1

ε
and x >

1

ε
.

The larger of these two values is 1/ε.
If, for example, ε= 0.1, then every value of x that is greater than 1/ε= 10 would

satisfy |d (x)|<ε. (Check it!) This proves that limx→∞d (x)= 0.



Module: limits at infinity 14

BIG-TIME FACT
As mentioned, the fact we just proved is something you should remember for future
reference:

Theorem:

lim
x→∞

1

x
= 0.
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The other direction
In all the examples we looked at in this module, we focused on positive infinity. Similar
arguments can be made for limits at negative infinity. The definition that you would
use is

Definition: (Limit at −∞)
limx→−∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x <N

a | f (x)−L|<ε.

In this case, multiplying or dividing the inequalities by x would require you to change
the direction of the inequality.
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Conclusion
a When we want to analyze how the y values of a function f behave when x increases

(or decreases) without bound, we talk about this as the limit of f as x approaches
infinity (or negative infinity).

a This limit is defined as

Definition: (Limit at∞)
limx→∞ f (x)= L if

a for all ε> 0,

a there exists N such that for every x >N

a | f (x)−L|<ε.

a As with limits at finite values, there can only be one value for such a limit, and they
do not always exist.

a All three methods of estimating or evaluating a limits—numerical, graphical, and
precise—can be used for limits at infinity.

a An important limit at infinity to remember is limx→∞1/x = 0.
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End of Module

Please review your work, select another
module, or select an option from the top
menu.
You may also obtain a black and white
condensed version of this tutorial by click-
ing the 〈Print〉 icon, and then saving or
printing the pdf file.

Department of Mathematics at
The University of

Southern Mississippi


