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Instructions
This tutorial session is color coded to assist you in finding information on the page. It
is online, but it is important to take notes and to work some of the examples on paper.

• You can move forward through the pages 〈Next〉, backward 〈Prev〉, or view all the
slides in this tutorial 〈Index〉.

• The 〈Back to Calc I〉 button returns you to the course home page.

• A full symbolic algebra package 〈Sage〉 is accessible online. You can download and
install it on your own computer, without a web app, by visiting www.sagemath.org.

• An online calculus text 〈CalcText〉 provides a quick search of basic calculus topics.

• You can get help from Google Calculus 〈GoogleCalc〉.

• A monochrome copy of this module is suitable for printing 〈Print〉.

When all else fails, feel free to contact your instructor.



Properties of the Limit
We use limits a great deal in Calculus. As a result, we need to analyze the limit carefully
and identify any properties that might prove useful. We will in fact apply some of the
properties discussed here in future modules.
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Defining the problem
We would like to evaluate the following limits without numerical or graphical approx-
imation, and without verifying ε and δ.

a limx→0 c , where c is any real number.

a limh→0 (e
x f (h)), where x is any real number and f is any function in terms of h and

not x.

a limh→0
f (x)
g (x) when we know limh→0 f (x) and limh→0 g (x).

a Other algebraic combinations of f and g .
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SAGE worksheets
You should open the SAGElet “Limits: ε-δ”.
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A word on continuity
If you have not studied the module on continuity yet, you can ignore this slide. Oth-
erwise, read on.

You instructor may have chosen to discuss with you the topic of continuity before
covering this material. If so, you may notice that some of the properties we will give
seem redundant with what was discussed in that slide. This is not really true. We
gave in that module a theorem that certain functions were continuous. We did not
prove the theorem, however, and with good reason: the proof of that theorem relies
on properties of the limit described below.
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A word on proofs
If you have not studied the module on limits using ε-δ, you can ignore any slide that
talks about ε-δ. Many instructors choose not to dwell on this approach.

It is possible to prove all of the properties that we describe in this module using an
ε-δ argument. We will prove only a few of them this way; the others we will state
without any argument at all.
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First properties
The first properties that we describe deal with a constant or a constant multiple.

Theorem: Let c be a constant with respect to x. Then for any a ∈R and
for any function f (x),

a limx→a c = c ; and

a limx→a f (x)= c limx→a f (x), if the latter limit exists.
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First properties
The first properties that we describe deal with a constant or a constant multiple.

Theorem: Let c be a constant with respect to x. Then for any a ∈R and
for any function f (x),

a limx→a c = c ; and

a limx→a f (x)= c limx→a f (x), if the latter limit exists.

For an example of the first property,

lim
x→3

4= 4.
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First properties
The first properties that we describe deal with a constant or a constant multiple.

Theorem: Let c be a constant with respect to x. Then for any a ∈R and
for any function f (x),

a limx→a c = c ; and

a limx→a f (x)= c limx→a f (x), if the latter limit exists.

For an example of the second property,

lim
x→1

4x2= 4 lim
x→1

x2= 4 ·1= 4.
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First properties
The first properties that we describe deal with a constant or a constant multiple.

Theorem: Let c be a constant with respect to x. Then for any a ∈R and
for any function f (x),

a limx→a c = c ; and

a limx→a f (x)= c limx→a f (x), if the latter limit exists.

Another example of the second property that we will use in a future module is

lim
h→0
(e x f (h))= e x lim

h→0
f (h)

where f is a function in terms of h and not x. Notice that e x depends only on h, so it
is constant with respect to h.
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Proof of the limit of a constant: concept
It is relatively easy to prove these two properties using an ε-δ argument.

We remind you that the ε-δ argument comes from the precise definition of a limit:

Definition: (Precise definition of the limit)
limx→a f (x)= L if

a for all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.
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Proof of the limit of a constant: concept
It is relatively easy to prove these two properties using an ε-δ argument. In the SAGE
worksheet “Limits: ε-δ”, set f to be the constant 1. (To do this, you must type lambda
x: 1 in the f box. This strange notation is due to a bug which ought to be resolved
soon.) You should see the following plot.
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Proof of the limit of a constant: concept
It is relatively easy to prove these two properties using an ε-δ argument. In the SAGE
worksheet “Limits: ε-δ”, set f to be the constant 1. (To do this, you must type lambda
x: 1 in the f box. This strange notation is due to a bug which ought to be resolved
soon.) You should see the following plot.

Look carefully at the plot. Notice that the graph of f does not pass through the pink
regions. This means that you have found an appropriate value of δ to guarantee that
the distance between L and f (x) is smaller than ε, satisfying the definition of the limit.
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Proof of the limit of a constant: concept
It is relatively easy to prove these two properties using an ε-δ argument. In the SAGE
worksheet “Limits: ε-δ”, set f to be the constant 1. (To do this, you must type lambda
x: 1 in the f box. This strange notation is due to a bug which ought to be resolved
soon.) You should see the following plot.

Now look more carefully. Experiment with different values of δ. Can you find any
value of δ such that f (x) passes through the pink regions?
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Proof of the limit of a constant: concept
It is relatively easy to prove these two properties using an ε-δ argument. In the SAGE
worksheet “Limits: ε-δ”, set f to be the constant 1. (To do this, you must type lambda
x: 1 in the f box. This strange notation is due to a bug which ought to be resolved
soon.) You should see the following plot.

Now look more carefully. Experiment with different values of δ. Can you find any
value of δ such that the graph of f (x) passes through the pink regions?

You should not be able to find such a value. In fact, | f (x)−L|= |1−1|= 0<ε regard-
less of the value of ε.
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Proof of the limit of a constant
We can generalize this argument to show that for any constant function f (x) = c and
for any real number a, limx→a f (x)= c . Let ε be any positive real number, and then

| f (x)−L|= |c− c |= 0<ε.

You can choose any value of δ and satisfy the precise definition of the limit.
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Proof of the limit of a constant multiple: concept
To determine how to prove the limit of a constant multiple, we’ll take a similar ap-
proach, and try an example function and an example constant. Let f (x) = x2, a = 1,
and c =−2. We want to see if we can show that

lim
x→1
(−2x2)=−2 lim

x→1
x2.
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Proof of the limit of a constant multiple: concept
To determine how to prove the limit of a constant multiple, we’ll take a similar ap-
proach, and try an example function and an example constant. Let f (x) = x2, a = 1,
and c =−2. We want to see if we can show that

lim
x→1
(−2x2)=−2 lim

x→1
x2.

A glance at the graph suggests that limx→1 x2= 1. Look again at the SAGElet, and
start with f (x)= x2. Using ε= 0.1, find δ satisfying the definition of the limit.
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Proof of the limit of a constant multiple: concept
To determine how to prove the limit of a constant multiple, we’ll take a similar ap-
proach, and try an example function and an example constant. Let f (x) = x2, a = 1,
and c =−2. We want to see if we can show that

lim
x→1
(−2x2)=−2 lim

x→1
x2.

A glance at the graph suggests that limx→1 x2= 1. Look again at the SAGElet, and
start with f (x)= x2. Using ε= 0.1, find δ satisfying the definition of the limit.

You should find that δ ≈ 0.05 works. (In fact the correct answer is δ =−1+
p

1.1≈
0.0488.)
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Proof of the limit of a constant multiple: concept
To determine how to prove the limit of a constant multiple, we’ll take a similar ap-
proach, and try an example function and an example constant. Let f (x) = x2, a = 1,
and c =−2. We want to see if we can show that

lim
x→1
(−2x2)=−2 lim

x→1
x2.

Using δ = 0.05 guarantees that | f (x)−1|< 0.1.
Now try the SAGElet with c f (x) =−2x2. Keep δ = 0.05. What value of ε works

with this δ to guarantees that |c f (x)− cL|<ε? (Note cL=−2 ·1=−2.)
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Proof of the limit of a constant multiple: concept
To determine how to prove the limit of a constant multiple, we’ll take a similar ap-
proach, and try an example function and an example constant. Let f (x) = x2, a = 1,
and c =−2. We want to see if we can show that

lim
x→1
(−2x2)=−2 lim

x→1
x2.

Using δ = 0.05 guarantees that | f (x)−1|< 0.1.
Now try the SAGElet with c f (x) =−2x2. Keep δ = 0.05. What value of ε works

with this δ to guarantees that |c f (x)− cL|<ε? (Note cL=−2 ·1=−2.)

You should find that ε= 0.2. This is twice the value of the previous epsilon.
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Proof of the limit of a constant multiple: concept
To determine how to prove the limit of a constant multiple, we’ll take a similar ap-
proach, and try an example function and an example constant. Let f (x) = x, a = 1,
and c = 5. We want to see if we can show that

lim
x→1

5x = 5 lim
x→1

x.

Using δ = 0.05 guarantees that | f (x)−1|< 0.1.
Now try the SAGElet with c f (x) =−2x2. Keep δ = 0.05. What value of ε works

with this δ to guarantees that |c f (x)− cL|<ε? (Note cL=−2 ·1=−2.)

You should find that ε= 0.2. This is twice the value of the previous epsilon.
Perhaps the δ that makes ε work for c f (x), is the same as the δ that makes ε/|c |

work for f (x).
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Proof of the limit of a constant multiple
We try this in a proof. We want to show that limx→a c f (x)= c limx→a f (x), if the latter
limit exists. Assume that the latter limit does exist; that is, limx→a f (x)= L.

We need to show that limx→a c f (x)= cL.
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Proof of the limit of a constant multiple
We try this in a proof. We want to show that limx→a c f (x)= c limx→a f (x), if the latter
limit exists. Assume that the latter limit does exist; that is, limx→a f (x)= L.

We need to show that limx→a c f (x)= cL.
If c = 0 then c f (x) = 0, and we are talking about the limit of a constant. We have

already discussed this case, so we can assume that c 6= 0.
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Proof of the limit of a constant multiple
We try this in a proof. We want to show that limx→a c f (x)= c limx→a f (x), if the latter
limit exists. Assume that the latter limit does exist; that is, limx→a f (x)= L.

We need to show that limx→a c f (x)= cL.
By the definition of a limit, we must show that for every positive ε we can find a

positive δ satisfying

|x−a|<δ =⇒ |c f (x)− cL|<ε.

Let ε′=ε/|c |; this is a positive number. Since L is the limit of f (x) as x→ a, the precise
definition of a limit tells us that there exists δ such that

|x−a|<δ =⇒ | f (x)−L|<ε′.
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Proof of the limit of a constant multiple
We try this in a proof. We want to show that limx→a c f (x)= c limx→a f (x), if the latter
limit exists. Assume that the latter limit does exist; that is, limx→a f (x)= L.

We need to show that limx→a c f (x)= cL.
By the definition of a limit, we must show that for every positive ε we can find a

positive δ satisfying

|x−a|<δ =⇒ |c f (x)− cL|<ε.

Let ε′=ε/|c |; this is a positive number. Since L is the limit of f (x) as x→ a, the precise
definition of a limit tells us that there exists δ such that

|x−a|<δ =⇒ | f (x)−L|<ε′.

Then
|c f (x)− cL|= |c( f (x)−L)|= |c | · | f (x)−L|< |c | ·ε′= ε.
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Proof of the limit of a constant multiple
We try this in a proof. We want to show that limx→a c f (x)= c limx→a f (x), if the latter
limit exists. Assume that the latter limit does exist; that is, limx→a f (x)= L.

We need to show that limx→a c f (x)= cL.
By the definition of a limit, we must show that for every positive ε we can find a

positive δ satisfying

|x−a|<δ =⇒ |c f (x)− cL|<ε.

Let ε′=ε/|c |; this is a positive number. Since L is the limit of f (x) as x→ a, the precise
definition of a limit tells us that there exists δ such that

|x−a|<δ =⇒ | f (x)−L|<ε′.

Then
|c f (x)− cL|= |c( f (x)−L)|= |c | · | f (x)−L|< |c | ·ε′= ε.

We have found δ such that if |x−a|<δ, then |c f (x)− cL|<ε. We have proved the
second part of the theorem:

lim
x→a

c f (x)= cL= c lim
x→a

f (x).
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

The graph of f (x)= x gives credence to the theorem.

Figure 1: If you approach x = 0 from both sides, it looks as if the limit is 0.
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

Let’s experiment a little with the SAGElet to see how δ corresponds to ε. Change
f to x, and pick any x-value you like. What is the largest value of δ that satisfies the
precise definition of the limit for ε= 0.1?
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

Let’s experiment a little with the SAGElet to see how δ corresponds to ε. Change
f to x, and pick any x-value you like. What is the value of δ that satisfies the precise
definition of the limit for ε= 0.1?

It looks here as if δ = 0.1 works. What if we change ε to 0.01?
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

Let’s experiment a little with the SAGElet to see how δ corresponds to ε. Change
f to x, and pick any x-value you like. What is the value of δ that satisfies the precise
definition of the limit for ε= 0.01?

It looks here as if δ = 0.01 works. What if we change ε to 0.5?
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

Let’s experiment a little with the SAGElet to see how δ corresponds to ε. Change
f to x, and pick any x-value you like. What is the value of δ that satisfies the precise
definition of the limit for ε= 0.5?

It looks here as if δ = 0.5 works.
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

In each case, δ had the same value as ε. Let’s try that in a proof.
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The limit of x
Our next property is very convenient.

Theorem: For all a ∈R,
lim
x→a

x = a.

In each case, δ had the same value as ε. Let’s try that in a proof.
Let ε be any positive real number, and set δ = ε. Assume that |x−a|<ε. Then

| f (x)−L|= |x−a|.

By hypothesis, |x−a|<δ = ε, so

| f (x)−L|<ε.

We have thus proved the theorem.
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More properties
Here are almost all the remaining properties. We do not prove them.

Theorem: Let a ∈R, and f and g functions such that limx→a f (x) = L
and limx→a g (x)=M .

a The limit of a sum is the sum of the limits:
limx→a ( f (x)± g (x))= L+M .

a The limit of a product is the product of the limits:
limx→a ( f (x)g (x))= LM .

a The limit of a quotient is the quotient of the limits:
If M 6= 0, then limx→a ( f (x)/g (x))= L/M .

a If n ∈N then limx→a xn= an and limx→a
npx = npL.

a If n ∈N then limx→a f (x)n= Ln and limx→a
n
p

f (x)= npL,
provided that npL exists.

a If f is a polynomial or rational expression and a is in the domain of f ,
then you can substitute the value x = a into f to find the limit:

limx→a f (x)= f (a).
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Examples
Suppose we have two probes whose value at x is modeled by the functions f (x) and
g (x), and we know that limx→3 f (x)=−2.5 and limx→3 g (x)= 0. Then

lim
x→3
( f (x)+ g (x))=−2.5

lim
x→3

g (x)

f (x)
= 0

lim
x→3

4
Æ

− f (x)= 4
q

− lim
x→3

f (x)≈ 1.2574.

We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.
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Examples
We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.

Limits can exist even when the denominator of a quotient approaches zero. This is
not the same as division by zero, because we are considering x→ a and not x = a. You
saw an example of this in a previous module, when we showed that

lim
x→0

x2− x

x
=−1

even though limx→0 x = 0!
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Examples
We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.

Algebraically, we can show this as follows:

lim
x→0

x2− x

x
= lim

x→0

��x(x−1)

��x
(Factored common x in numerator.)
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Examples
We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.

Algebraically, we can show this as follows:

lim
x→0

x2− x

x
= lim

x→0

��x(x−1)

��x
= lim

x→0
(x−1)

= lim
x→0

x− lim
x→0
(−1)

=−1.

(Notice that we used the properties of
(1) the sum of a limit,

(2) the limit of a constant, and
(3) the limit of x.)
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Examples
We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.

On the other hand, limits do not have to exist, either. If f (x)= |x|x , then

lim
x→0−

f (x)= lim
x→0−

−x

x
=−1...

(If x→ 0−, the value of x is negative, so |x|=−x.
This puzzles people who read it the first time,
so think about it carefully—it is not a typo!)
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Examples
We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.

On the other hand, limits do not have to exist, either. If f (x)= |x|x , then

lim
x→0−

f (x)= lim
x→0−

−x

x
=−1

but
lim

x→0+
f (x)= lim

x→0+

x

x
= 1.
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Examples
We have to be careful with division by zero. In particular, we cannot say that

lim
x→3

f (x)

g (x)
does not exist.

On the other hand, limits do not have to exist, either. If f (x)= |x|x , then

lim
x→0−

f (x)= lim
x→0−

−x

x
=−1

but
lim

x→0+
f (x)= lim

x→0+

x

x
= 1.

So
lim

x→0−
f (x) 6= lim

x→0+
f (x)

and there is no two-sided limit.

When division by zero appears in a limit, further investigation is needed.
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Conclusion
a We identified (and used!) a number of properties of the limit. These properties will

be useful in future modules.

a We proved some properties using the precise definition of the limit (ε-δ). The others
can also be proved, of course.

a If we are using the quotient property of limits and encounter division by zero, then
further investigation is needed. A useful tool for such investigation is factoring.
Another useful tool is analyzing the one-sided limits.
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End of Module

Please review your work, select another
module, or select an option from the top
menu.
You may also obtain a black and white
condensed version of this tutorial by click-
ing the 〈Print〉 icon, and then saving or
printing the pdf file.

Department of Mathematics at
The University of

Southern Mississippi


