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Instructions
This tutorial session is color coded to assist you in finding information on the page. It
is online, but it is important to take notes and to work some of the examples on paper.

• You can move forward through the pages 〈Next〉, backward 〈Prev〉, or view all the
slides in this tutorial 〈Index〉.

• The 〈Back to Calc I〉 button returns you to the course home page.

• A full symbolic algebra package 〈Sage〉 is accessible online. You can download and
install it on your own computer, without a web app, by visiting www.sagemath.org.

• An online calculus text 〈CalcText〉 provides a quick search of basic calculus topics.

• You can get help from Google Calculus 〈GoogleCalc〉.

• A monochrome copy of this module is suitable for printing 〈Print〉.

When all else fails, feel free to contact your instructor.



Related Rates
The derivative expresses the instantaneous rate of change. We can use this fact to solve
problems involving rates of change that are related to each other.
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Defining the problem
Question:

a The radius of a ripple in a pond grows at a rate of 5 cm/s. How fast is
the circumference changing at 3 seconds?

a The radius of a ripple in a pond grows at a rate of 5 cm/s. How fast is
the area changing at 3 seconds?

a A camera is directed at the launch of a rocket. The camera is
3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?
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Leibniz notation
In most modules we have favored Newton’s notation f ′ for the derivative of a function
f . In this module we will use Leibniz notation d f /d t instead. Why? Clarity of
expression. All the problems can be solved using Newton’s notation, but Newton’s
notation does not indicate the independent variable. Problems in related rates usually
have several variables that depend on time, and the derivatives are always with respect
to time, which the Leibniz notation d f /d t emphasizes.
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First example: Experimentation
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
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First example: Experimentation
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
You can visualize this using the SAGElet “The Ripple Effect: Circumference”. It

animates the ripple, and approximates dC/d t using the secant lines. Experiment with
different values of d r/d t (“change in radius per second”) and see if you can determine
a pattern.
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First Example: Experimentation
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
You can visualize this using the SAGElet “The Ripple Effect: Circumference”. It

animates the ripple, and approximates dC/d t using the secant lines. Experiment with
different values of d r/d t (“change in radius per second”) and see if you can determine
a pattern.

Interestingly, any fixed choice of d r/d t gives a constant value for dC/d t , regardless
of the value of r . Here are some values that we found:

d r
d t 0 1 5 10
dC
d t 0 2π 10π 20π

This suggests the relationship dC/d t = 2π(d r/d t ). Since d r/d t is constant, so is
dC/d t . But can we prove it?
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First Example: Concept
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
If we had a relationship between r and C , we could differentiate it with respect to t .

Since the radius r and the circumference C depend on time t , the Chain Rule would
give us quantities d r/d t and dC/d t . We would end up with a relationship between
the rates!
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First Example: Concept
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
If we had a relationship between r and C , we could differentiate it with respect to t .

Since the radius r and the circumference C depend on time t , the Chain Rule would
give us quantities d r/d t and dC/d t . We would end up with a relationship between
the rates!

This is the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.
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First Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
This is the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.

An equation that relates r and C is

C= 2πr .
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First Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
This is the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.

Differentiating with respect to time gives

C= 2πr
dC

d t
= 2π

d r

d t
.
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First Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the circumference changing at 3 seconds?

The problem asks us to find dC/d t , given that d r/d t = 5.
This is the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.

Substituting d r/d t = 5, we have

dC

d t
= 2π

d r

d t
dC

d t
= 10π.

Since t does not appear in the equation, dC/d t =10π for all values of t . At 3 seconds,
therefore, the circumference is increasing at 10π cm/s, approximately. This agrees with
the answer found by experimentation.
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Second Example: Experimentation
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
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Second Example: Experimentation
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
You can visualize this using the SAGElet “The Ripple Effect: Area”. It animates the

ripple, and approximates dA/d t using the secant lines of A. Experiment with different
values of d r/d t (“change in radius per second”) and see if you can determine a pattern.
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Second Example: Experimentation
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
You can visualize this using the SAGElet “The Ripple Effect: Area”. It animates the

ripple, and approximates dA/d t using the secant lines of A. Experiment with different
values of d r/d t (“change in radius per second”) and see if you can determine a pattern.

Unlike the circumference problems, fixed values of d r/d t do not result in a constant
dA/d t , depending on the value of r . Here are some values that we found with r ′= 5:

t 1 2 3 4 5
r 5 10 15 20 25

dA/d t 25π 75π 125π 175π 225π

Notice that dA/d t ≈ 125π when t = 3. It seems to obey the pattern

dA

d t
= 2πr ·

d r

d t
−
�

d r

d t

�2

π.

(This pattern is not obvious! Don’t worry if you couldn’t guess it.) But can we prove
it?
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Second Example: Concept
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
As in the previous example, if we had a relationship between r and A, then we could

differentiate it with respect to t and obtain a relationship between the rates d r/d t and
dC/d t .
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Second Example: Concept
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
As in the previous example, if we had a relationship between r and A, then we could

differentiate it with respect to t and obtain a relationship between the rates d r/d t and
dA/d t .

Recall the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.
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Second Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
Recall the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.

An equation that relates r and A is

A=πr 2.
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Second Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
Recall the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.

Differentiating with respect to time gives

A=πr 2

dA

d t
= 2πr ·

d r

d t
.
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Second Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
Recall the general procedure for related rates:

a find an equation that relates the quantities;

a differentiate with respect to time; and

a solve for the unknown rate.

Substituting d r/d t = 5, we have

dA

d t
= 2πr ·

d r

d t
dA

d t
= 10πr .

But what is r ?
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Second Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
Substituting d r/d t = 5, we have

dA

d t
= 2πr ·

d r

d t
dA

d t
= 10πr .

But what is r ?
It can happen when solving a related-rate problem that you need to determine the

value of a quantity that was not given. In this case, we know that the radius increases
at a rate of 5 cm/s. This is a linear relationship, so r = 5t . At this particular moment
(3 seconds) t = 3, so r = 15.
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Second Example: Solution
Question: The radius of a ripple in a pond increasing at a rate of 5 cm/s.
How fast is the area changing at 3 seconds?

The problem asks us to find dA/d t , given that d r/d t = 5.
Substituting d r/d t = 5, we have

dA

d t
= 2πr ·

d r

d t
dA

d t
= 10πr .

But what is r ?
It can happen when solving a related-rate problem that you need to determine the

value of a quantity that was not given. In this case, we know that the radius increases
at a rate of 5 cm/s. This is a linear relationship, so r = 5t . At this particular moment
(3 seconds) t = 3, so r = 15.

Hence
dA

d t
= 150π.
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Second Example: Comparison to approximation
Unlike the example with circumference, the approximation here was somewhat off.
Using secant lines, the SAGElet approximated dA/d t ≈125π. The correct answer was
instead dA/d t = 150π. The error is due to a term in the pattern we identified with
the approximation, dA/d t ≈ 2πr (d r/d t )−(d r/d t )2π. Increasing the value of “units
per second” in the SAGElet obtains better approximations, because the secant lines are
computed closer to t = 3. (Try it!) For example, we obtained the following results with
different values of “units per second”:

t 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

n= 1 75π 125π 175π

n= 2 87.5π 112.5π 137.5π 162.5π 187.5π

n= 4 93.75π 106.25π 118.75π 131.25π 143.75π 156.25π 168.75π 181.25π 193.75π

Figure 1: Values of dA/d t for different values n of “units per second”.

As n increases, the accuracy of the approximation of dA/d t increases.
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
How can we relate the two rates? The quantities α and h are related by a right

triangle:

α
camera

rocket

h

3 km

Notice that the measurement h lies on the side opposite α, and we also know that the
side adjacent α is constant at 3 km. We can relate the quantities using trigonometry:

tanα=
h

3
.
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
This allows us to differentiate and relate the rates:

tanα=
h

3

sec2α ·
dα

d t
=

d h/d t

3
.

(Remember from the Chain Rule that, since we
differentiate with respect to t ,

the derivatives must be multiplied by d h/d t and
dα/d t as appropriate.)
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
We can substitute known values at this instant:

tanα=
h

3

sec2α ·
dα

d t
=

d h/d t

3

sec2α ·
dα

d t
=

1500

3
= 500.

But what is the value of α?
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
We can substitute known values at this instant:

tanα=
h

3

sec2α ·
dα

d t
=

d h/d t

3

sec2α ·
dα

d t
=

1500

3
= 500.

But what is the value of α?

Again we resort to the original equation. Since tanα= h/3, then α=arctan(h/3). Thus

α= arctan
1

3
.
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
Thus:

tanα=
h

3

sec2α ·
dα

d t
=

d h/d t

3

sec2α ·
dα

d t
=

1500

3
= 500

sec2
�

arctan
1

3

�

·
dα

d t
= 500.
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
Thus:

tanα=
h

3

sec2α ·
dα

d t
=

d h/d t

3

sec2α ·
dα

d t
=

1500

3
= 500

sec2 (arctan500) ·
dα

d t
= 500

dα

d t
=

500

sec2
�

arctan 1
3

�.
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Third Example
Question: A camera is directed at the launch of a rocket. The camera
is 3 km from the rocket. Once the rocket rises 1 km, it has a speed of
1500 km/hr. How fast must the angle of the camera change to remain
fixed on the rocket?

The problem asks us to find dα/d t , given that d h/d t = 1500.
Thus:

tanα=
h

3
...

dα

d t
=

500

sec2
�

arctan 1
3

�.

From trigonometry, sec2
�

arctan 1
3

�

=
p

10
3 . Hence

dα

d t
=

500
p

10
3

=
1500
p

3
≈ 866 radians per hour.
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Conclusion

a Problems that involve related rates can be solved by taking derivatives.

a The method of solution is to

a find an equation that relates the quantities;
a differentiate with respect to time; and
a solve for the unknown rate.

a Quantities that are constant should not be substituted in before taking the deriva-
tive.

a Sometimes you will have to go back and re-examine an equation in order to deter-
mine the value of a quantity.



Module: Derivatives of logarithmic functions 11

End of Module

Please review your work, select another
module, or select an option from the top
menu.
You may also obtain a black and white
condensed version of this tutorial by click-
ing the 〈Print〉 icon, and then saving or
printing the pdf file.

Department of Mathematics at
The University of

Southern Mississippi


