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Instructions
This tutorial session is color coded to assist you in finding information on the page. It
is online, but it is important to take notes and to work some of the examples on paper.

• You can move forward through the pages 〈Next〉, backward 〈Prev〉, or view all the
slides in this tutorial 〈Index〉.

• The 〈Back to Calc I〉 button returns you to the course home page.

• A full symbolic algebra package 〈Sage〉 is accessible online. You can download and
install it on your own computer, without a web app, by visiting www.sagemath.org.

• An online calculus text 〈CalcText〉 provides a quick search of basic calculus topics.

• You can get help from Google Calculus 〈GoogleCalc〉.

• A monochrome copy of this module is suitable for printing 〈Print〉.

When all else fails, feel free to contact your instructor.



Overview
In general, it is not sufficient to examine the graph of a function to decide on the limit,
because any practical graph lacks information that may be essential to the final result.
This requires us to move from the intuitive notion of a limit (which until now has
been numerical and/or geometric) to the precise notion of a limit (which is logical and
algebraic).
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A Sample problem
Let

a f (x)=
x2− x

x
, and

a w (x)= sin
�1

x

�

.

Our goal is to find a precise way to explain our intuitions that

lim
x→0

f (x)=−1 but lim
x→0

w(x) does not exist.
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SAGE worksheets
In this lab you will need the SAGElet “Limits: ε-δ”. Open it in SAGE.
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Setup Limits: ε-δ
First we will set up the applet. When you first start it, you should see something like
this:
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Setup Limits: ε-δ
We will set up the applet to work with f (x) first. Make the following assignments:

a f → (x2− x)/x

a a→ 0

a L→−1

a δ→ 0.1

a ε→ 0.1

a xmi n→−1

a xmax→ 1



Assignment: the precise notion of a limit 4

The precise definition of a limit
We want to express the idea that as x draws near to a, the y values f (x) draw so near
to L that you cannot find any meaningful distance between them. Stated precisely,

Definition: limx→a f (x)= L if

a for any measurable distance ε,

a we can find a neighborhood around x = a

a such that for any x value in that neighborhood (except maybe x = a),

a the distance between the y value of f and L is less than ε.
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The precise definition of a limit
We want to express the idea that as x draws near to a, the y values f (x) draw so near to
L that you cannot find any meaningful distance between them. Written more precisely,

Definition: limx→a f (x)= L if

a for all ε> 0,
(“any measurable distance ε”)

a there exists δ > 0
(“a neighborhood around x = a”)

a such that for all x ∈ (a−δ,a+δ) (except maybe x = a),
(“any x value in that neighborhood”)

a | f (x)−L|<ε.
(“the distance between the y values is less than ε”)

Switch back and forth between these two slides to see how the words translate into
symbols.
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The precise definition of a limit
We want to express the idea that as x draws near to a, the y values f (x) draw so near
to L that you cannot find any meaningful distance between them. Rewritten slightly,
we have

Definition: (Precise definition of the limit)
limx→a f (x)= L if

a for all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.
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Example with f (x)
We illustrate this precise definition of a limit using f (x).

Currently, SAGE should show the output above. Right now we set the precision to
ε= 0.1. The goal is that | f (x)−L|<ε, or that the distance between the y values of f and
L is smaller than ε.

Geometrically, you see that the graph of f (x) does not stray into the pink regions of
the plane. How does this reflect the definition?
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Example with f (x)
We illustrate this precise definition of a limit using f (x).

Geometrically, you see that the graph of f (x) does not stray into the pink regions of
the plane. How does this reflect the definition?

The distance between the y values of points in the pink regions and L is larger than
ε. This would violate the desired outcome of a limit: that y values grow very close to
L.

What about smaller values of ε, say ε= 0.01? Change the value of ε in the SAGElet.
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Example with f (x)
We illustrate this precise definition of a limit using f (x).

Geometrically, you see that the graph of f (x) does not stray into the pink regions of
the plane. How does this reflect the definition?

When we make ε smaller, we have a problem: the blue curve of f now passes in the
pink regions of the plane. For these points, | f (x)−L|>ε.
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Example with f (x)
We illustrate this precise definition of a limit using f (x).

Geometrically, you see that the graph of f (x) does not stray into the pink regions of
the plane. How does this reflect the definition?

When we make ε smaller, we have a problem: the blue curve of f now passes in the
pink regions of the plane. For these points, | f (x)−L|>ε.

However, the phrasing of the definition is that “there exists δ”. Maybe we can find
another value of δ so that the curve no longer enters the pink region. To get an idea,
let’s zoom in on the graph. Change the maximum and minimum x values so that we
zoom into the region of the plane x ∈ [−0.2,0.2].
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Example with f (x)
We illustrate this precise definition of a limit using f (x).

Geometrically, you see that the graph of f (x) does not stray into the pink regions of
the plane. How does this reflect the definition?

It looks like we could make it work by choosing a smaller value of δ. Let’s try
δ = 0.01.
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Example with f (x)
We illustrate this precise definition of a limit using f (x).

Geometrically, you see that the graph of f (x) does not stray into the pink regions of
the plane. How does this reflect the definition?

In this case it worked out. Notice that we have δ = ε.
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Proving it
We can show this rigorously by falling back on the definition. We remind you that the
definition is

a For all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.

We want to rewrite

| f (x)−L|<ε

so that it resembles |x−a|< something, or |x−0|< something. Then we could just
pick δ = something.
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Proving it
We can show this rigorously by falling back on the definition. We remind you that the
definition is

a For all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.

That is,

| f (x)−L|<ε
�

�

�

�

�

x2− x

x
− (−1)

�

�

�

�

�

<ε.

(Substituted f and L.)
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Proving it
We can show this rigorously by falling back on the definition. We remind you that the
definition is

a For all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.

That is,

| f (x)−L|<ε
�

�

�

�

�

x2− x

x
− (−1)

�

�

�

�

�

<ε

�

�

�

�

�

x(x−1)

x
+1

�

�

�

�

�

<ε.

(Factored the numerator.)
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Proving it
We can show this rigorously by falling back on the definition. We remind you that the
definition is

a For all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.

That is,

| f (x)−L|<ε
�

�

�

�

�

x(x−1)

x
+1

�

�

�

�

�

<ε

|(x−1)+1|<ε, or |x−0|<ε.

(Division by x when x 6= 0.)

So we want |x|<ε.
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Proving it
We can show this rigorously by falling back on the definition. We remind you that the
definition is

a For all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.

What value of δ should we choose? We want

|x−0|<δ =⇒ |x−0|<ε.

Choosing δ = εmakes it easy.
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Proving it
We can show this rigorously by falling back on the definition. We remind you that the
definition is

a For all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a),

a | f (x)−L|<ε.

What value of δ should we choose? We want

|x−0|<δ =⇒ |x−0|<ε.

Choosing δ = εmakes it easy.
We saw this in the SAGElet: when ε= .1 we chose δ= .1, and when ε= .01 we chose
δ = .01.
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Smaller δ works, too!
Of course you could have chosen a δ that was even smaller than the one required. Try
changing δ to .005 in the SAGE worksheet, and see if the curve passes through the
pink region.
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Smaller δ works, too!
Of course you could have chosen a δ that was even smaller than the one required. Try
changing δ to .005 in the SAGE worksheet, and see if the curve passes through the
pink region.

You should see something like this:

So smaller values of delta work just as well.
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−a|= |x−1|<δ =⇒ | f (x)−L|= |x2−1|<ε.
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−a|= |x−1|<δ =⇒ | f (x)−L|= |x2−1|<ε.

We’ll try again to rewrite the second inequality in the form

|x−a|= |x−1|< something.

Then we can set δ = something and satisfy the definition.
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−1|<δ =⇒ |x2−1|<ε.

The second inequality can be rewritten as

−ε< x2−1<ε.

(Property of the absolute-value inequality <.)
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−1|<δ =⇒ |x2−1|<ε.

The second inequality can be rewritten as

−ε< x2−1<ε

1−ε< x2< 1+ε.

(Isolated x2.)
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−1|<δ =⇒ |x2−1|<ε.

The second inequality can be rewritten as

1−ε< x2< 1+ε
p

1−ε< x <
p

1+ε.

(Took square root of both sides.
In a “small enough” neighborhood of x = a= 1,

x is positive, so we don’t need ±p.)
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−1|<δ =⇒ |x2−1|<ε.

The second inequality can be rewritten as
p

1−ε< x <
p

1+ε
p

1−ε−1< x−1<
p

1+ε−1.

(Subtracted 1 from all sides. Why?
To find a value for δ we need the form |x−1|.)
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−1|<δ =⇒ |x2−1|<ε.

The second inequality can be rewritten as
p

1−ε< x <
p

1+ε
p

1−ε−1< x−1<
p

1+ε−1.

Which value gives a smaller neighborhood around x = a= 1? Some algebra shows thatp
1+ε−1 (we skip that step here).
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General functions
It is not easy to determine a correct value of δ for every function. Even “simple”
functions require care.

Suppose f (x)= x2. How can we show that limx→1 f (x)= 1?
Falling back on the definition, let ε be an arbitrary distance. We want

|x−1|<δ =⇒ |x2−1|<ε.

The second inequality can be rewritten as
p

1−ε< x <
p

1+ε
p

1−ε−1< x−1<
p

1+ε−1.

Try this in the SAGE applet with a few values of ε, and verify that δ=
p

1+ε−1 keeps
the blue function out of the pink regions.
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What about w(x)?
Now consider w(x) = sin(1/x). To help see why this has no limit at x = 0, make the
following changes to the SAGE applet:

a f → s i n(1/x)

a a→ 0

a L→ 0 (we’ll start with a guess that the limit is zero)

a δ→ 0.1

a ε→ 0.1

a xmi n→−1

a xmax→ 1
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What about w(x)?
Your initial graph should look like this:

Notice the intense “wiggling” as x→ 0. The blue curve passes through the pink
regions many, many times, so this value of δ is too large for ε= .1; let’s try a smaller
value of δ, say δ = .01. Be sure to zoom in the x values as well to [−.05,.05].
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What about w(x)?
Now you should see this (or something similar):

The wiggling has not ceased to take us into the pink zone, so δ is still too large for
this value of ε. Let’s try one more smaller value of δ.
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What about w(x)?
Now you should see this (or something similar):

No wonder mathematicians call this the Infinite Wiggle.
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What is going on?
No matter how small we made δ, the graph of w(x) only wiggled all the more in-
tensely. We need to convince ourselves of this.



Assignment: the precise notion of a limit 11

What is going on?
No matter how small we made δ, the graph of w(x) only wiggled all the more in-
tensely. We need to convince ourselves of this.

Notice that the curve touches y=1 many, many times. What x values give sin(x)=1?
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What is going on?
No matter how small we made δ, the graph of w(x) only wiggled all the more in-
tensely. We would like to explain this as much as possible.

Notice that the curve touches y=1 many, many times. What x values give sin(x)=1?
You should know that x = π

2 ,−π2 , 5π
2 ,−5π

2 , . . . produce sin(x)= 1.
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What is going on?
No matter how small we made δ, the graph of w(x) only wiggled all the more in-
tensely. We need to convince ourselves of this.

Notice that the curve touches y=1 many, many times. What x values give sin(x)=1?
You should know that x = π

2 ,−π2 , 5π
2 ,−5π

2 , . . . produce sin(x)= 1.
We are dealing with the function sin(1/x), so look at the reciprocal of these numbers:

x = 2
π,− 2

π, 2
5π,− 2

5π, . . . produce sin(1/x)= 1.
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What is going on?
No matter how small we made δ, the graph of w(x) only wiggled all the more in-
tensely. We need to convince ourselves of this.

Notice that the curve touches y=1 many, many times. What x values give sin(x)=1?
You should know that x = π

2 ,−π2 , 5π
2 ,−5π

2 , . . . produce sin(x)= 1.
We are dealing with the function sin(1/x), so look at the reciprocal of these numbers:

x = 2
π,− 2

π, 2
5π,− 2

5π, . . . produce sin(1/x)= 1.
These values approach zero: 2

π, 2
5π, 2

9π, . . .. The pattern goes on forever, all their y
values are 1, and the limit of these numbers is 0.
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What is going on?
No matter how small we made δ, the graph of w(x) only wiggled all the more in-
tensely. We need to convince ourselves of this.

The upshot?

a Regardless of the value of δ

a we can find x

a such that |x−0|<δ
a but | f (x)−0|= 1> 0.1= ε!
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Thus...
We conclude that

lim
x→0

sin
�1

x

�

does not exist.



Assignment: the precise notion of a limit 13

Conclusion
a You have seen the precise definition of a limit:

Definition: limx→a f (x)= L if

a for all ε> 0,

a there exists δ > 0

a such that for all x satisfying |x−a|<δ (except maybe x = a)

a | f (x)−L|<ε.

a You have had an introduction to finding δ algebraically. It takes a lot of practice to
grow accustomed to it.

a Why does this give us the precise definition of the limit?

a No matter how close (ε) we check near y = L,
a we can find a neighborhood (δ) of x = a
a such that the distance between L and f (x) is less than ε (| f (x)−L|<ε).
a Since ε is any measurable distance, the limit of f (x) is L.

a You can use the SAGElet “Limits: ε-δ” to illustrate this, both when the limit exists
and when it does not.
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End of Module

Please review your work, select another
module, or select an option from the top
menu.
You may also obtain a black and white
condensed version of this tutorial by click-
ing the 〈Print〉 icon, and then saving or
printing the pdf file.

Department of Mathematics at
The University of

Southern Mississippi


