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Instructions
This tutorial session is color coded to assist you in finding information on the page. It
is online, but it is important to take notes and to work some of the examples on paper.

• You can move forward through the pages 〈Next〉, backward 〈Prev〉, or view all the
slides in this tutorial 〈Index〉.

• The 〈Back to Calc I〉 button returns you to the course home page.

• A full symbolic algebra package 〈Sage〉 is accessible online. You can download and
install it on your own computer, without a web app, by visiting www.sagemath.org.

• An online calculus text 〈CalcText〉 provides a quick search of basic calculus topics.

• You can get help from Google Calculus 〈GoogleCalc〉.

• A monochrome copy of this module is suitable for printing 〈Print〉.

When all else fails, feel free to contact your instructor.



Implicit Differentiation
So far we have studied derivatives only in the context of functions of one variable
such as y = f (x). There are cases where we would like to compute the derivative for a
relation that is not a function, or that cannot easily be written in the form y= f (x). In
these circumstances, it can still make sense to compute a derivative—all we need is that
the limit of the slopes of the secant lines exists—but since we cannot isolate y from x,
we need a more general method than the ones used heretofore. We call this method
implicit differentiation.
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Defining the problem
Question: How can we find the derivative at any point of the following
relations quickly?

a x2+y2= 1

a x2e xy = x+y

a arcsin x, a r c t anx, a r c s ec x
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SAGE worksheets
You will need a blank SAGE worksheet for this module.
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Implicit Differentiation
If we look back at the first example,

x2+y2= 1,

we notice that it is possible to solve for y explicitly:

y =±
Æ

1− x2.

This is not a function, but we can choose either the positive or negative branch to
compute the derivative at a given point.
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Implicit Differentiation
If we look back at the first example,

x2+y2= 1,

we notice that it is possible to solve for y explicitly:

y =±
Æ

1− x2.

This is not a function, but we can choose either the positive or negative branch to
compute the derivative at a given point.

On the upper (positive) branch we have

y=
Æ

1− x2=(1− x2)1/2.
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Implicit Differentiation
If we look back at the first example,

x2+y2= 1,

we notice that it is possible to solve for y explicitly:

y =±
Æ

1− x2.

This is not a function, but we can choose either the positive or negative branch to
compute the derivative at a given point.

On the upper (positive) branch we have

y =
Æ

1− x2=(1− x2)1/2

y ′=
1

2
(1− x2)−1/2 · (−2x).

(Don’t forget the Chain Rule.)
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Implicit Differentiation
If we look back at the first example,

x2+y2= 1,

we notice that it is possible to solve for y explicitly:

y =±
Æ

1− x2.

This is not a function, but we can choose either the positive or negative branch to
compute the derivative at a given point.

On the lower (negative) branch we have

y=−
Æ

1− x2=−(1− x2)1/2.
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Implicit Differentiation
If we look back at the first example,

x2+y2= 1,

we notice that it is possible to solve for y explicitly:

y =±
Æ

1− x2.

This is not a function, but we can choose either the positive or negative branch to
compute the derivative at a given point.

On the lower (negative) branch we have

y =−
Æ

1− x2=−(1− x2)1/2

y ′=−
1

2
(1− x2)−1/2 · (−2x).

(Don’t forget the Chain Rule.)
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Implicit Differentiation
If we look back at the first example,

x2+y2= 1,

we notice that it is possible to solve for y explicitly:

y =±
Æ

1− x2.

This is not a function, but we can choose either the positive or negative branch to
compute the derivative at a given point.

Either way, we found

y ′=∓
x

p

1− x2
.
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Implicit Differentiation
Even though y is not a function of x in the circle C , we can find functions y1 and y2

such that C is the union of the points described by two functions.

Thus the relation x2+ y2= 1 defines y as a function of x locally. We can treat y as a
function that depends on x, and differentiate using the Chain Rule.
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First Example
We demonstrate this using the first example.

x2+y2= 1.
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First Example
We demonstrate this using the first example.

x2+y2= 1

2x+2y ·y ′= 0.

(Since y is a function of x, the Chain Rule tells us that
the derivative of y2 is 2y ·y ′.)
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First Example
We demonstrate this using the first example.

x2+y2= 1

2x+2y ·y ′= 0

y ′=−
x

y
.

(Solve for y ′.)
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First Example
We demonstrate this using the first example.

x2+y2= 1

2x+2y ·y ′= 0

y ′=−
x

y
.

We illustrate this by computing the slopes of lines tangent to the circle at various
points.
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First Example
We demonstrate this using the first example.

y ′=−
x

y
.

We illustrate this by computing the slopes of lines tangent to the circle at various
points.

The point (0,1) is on the curve, since 02+12= 1. At this point,

y ′=−0/1= 0.
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First Example
We demonstrate this using the first example.

y ′=−
x

y
.

We illustrate this by computing the slopes of lines tangent to the circle at various
points.

The point (
p

2/2,
p

2/2) is on the curve, since
�p

2
2

�2
+
�p

2
2

�2
= 1. At this point,

y ′=−

p
2

2
p

2
2

=−1.
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First Example
We demonstrate this using the first example.

y ′=−
x

y
.

We illustrate this by computing the slopes of lines tangent to the circle at various
points.

The point (1,0) is on the curve, since 12+02= 1. At this point,

y ′=−
1

0
, corresponding to a vertical line.



Module: Implicit Differentiation 6

Implicit Plots
It isn’t always easy to view the graph of a relation. If you can’t separate y and x, you can
still plot it in SAGE using the implicit_plot() command. For example, the graphs of
the circles were generated using these commands:

circleplot = implicit_plot(x�2+y�2-1,(x,-2,2),(y,-2,2),cmap='jet',plot_points=500)

circleplot.show(aspect_ratio=1)

upperplot = implicit_plot(x�2+y�2-1,(x,-2,2),(y,0,2),cmap='jet',plot_points=500)

lowerplot = implicit_plot(x�2+y�2-1,(x,-2,2),(y,-2,0),cmap='hsv',plot_points=500)

(upperplot+lowerplot).show(aspect_ratio=1)

(Try it!)
The command takes as its first argument an expression exp which corresponds to the

equation exp= 0. We want to plot x2+ y2= 1, which corresponds to x2+ y2−1= 0,
so exp= x2+ y2−1. The second and third arguments are a range of x- and y-values
over which the expression should be graphed. The third argument corresponds to a
color (the usual colors don’t apply in the currect version of SAGE; we advise you to
stick with 'jet' (blue), 'hsv' (red), and summer (green)). The final argument should be
included in order to obtain an accurate graph from SAGE; if the number is too small,
the graph will not be accurate.
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Second Example
We can also differentiate the second example, where it is not possible to isolate y.

x2e xy= x+y.
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Second Example
We can also differentiate the second example, where it is not possible to isolate y.

x2e xy= x+y

2xe xy+ x2e xy ·
�

y+ xy ′
�

= 1+y ′.

(Use the Product Rule and the Chain Rule. We only
write y ′ when we take the derivative of y.)
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Second Example
We can also differentiate the second example, where it is not possible to isolate y.

x2e xy= x+y

2xe xy+ x2e xy ·
�

y+ xy ′
�

= 1+y ′

2xe xy+ x2ye xy+ x3e xy ·y ′= 1+y ′.

(Distribution.)
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Second Example
We can also differentiate the second example, where it is not possible to isolate y.

x2e xy= x+y

2xe xy+ x2e xy ·
�

y+ xy ′
�

= 1+y ′

2xe xy+ x2ye xy+ x3e xy ·y ′= 1+y ′
�

x3e xy−1
�

y ′= 1− e xy
�

x2+2x
�

.

(Everything with y ′ on one side;
everything without it to the other.)
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Second Example
We can also differentiate the second example, where it is not possible to isolate y.

x2e xy= x+y

2xe xy+ x2e xy ·
�

y+ xy ′
�

= 1+y ′

2xe xy+ x2ye xy+ x3e xy ·y ′= 1+y ′
�

x3e xy−1
�

y ′= 1− e xy
�

x2+2x
�

y ′=
1− e xy �x2+2x

�

x3e xy−1
.

(Solve for y ′.)
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Third Example
The third example asks us to find the derivatives of the inverse functions of sin x, tan x,
and sec x. The derivatives of these functions have an interesting form. Implicit dif-
ferentation allows us to find these derivatives. Start with arcsin x:.

y= arcsin x.
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Third Example
The third example asks us to find the derivatives of the inverse functions of sin x, tan x,
and sec x. The derivatives of these functions have an interesting form. Implicit dif-
ferentation allows us to find these derivatives. Start with arcsin x:.

y= arcsin x

siny= x.

(Properties of inverse functions.)
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Third Example
The third example asks us to find the derivatives of the inverse functions of sin x, tan x,
and sec x. The derivatives of these functions have an interesting form. Implicit dif-
ferentation allows us to find these derivatives. Start with arcsin x:.

siny= x

cosy ·y ′= 1.

(Differentiated both sides with respect to x.)
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Third Example
The third example asks us to find the derivatives of the inverse functions of sin x, tan x,
and sec x. The derivatives of these functions have an interesting form. Implicit dif-
ferentation allows us to find these derivatives. Start with arcsin x:.

cosy ·y ′= 1

y ′=
1

cosy
.

(Solve for y ′.)
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Third Example
The third example asks us to find the derivatives of the inverse functions of sin x, tan x,
and sec x. The derivatives of these functions have an interesting form. Implicit dif-
ferentation allows us to find these derivatives. Start with arcsin x:.

y ′=
1

cosy

y ′=
1

cos(arcsin x)
.

(Substitute y = arcsin x.)
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Third Example
The third example asks us to find the derivatives of the inverse functions of sin x, tan x,
and sec x. The derivatives of these functions have an interesting form. Implicit dif-
ferentation allows us to find these derivatives. Start with arcsin x:.

y ′=
1

cos(arcsin x)

y ′=
1

p

1− x2
.

(This is a property learned in precalculus; we explain
it briefly. We want to know cosα where α= arcsin x.
Thus x = sinα, so we can draw a right triangle with

hypotenuse of length 1 that has an angle of measure α
and a leg opposite α of length x. The length of the side

adjacent to α will then be
p

1− x2. )
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Third Example
We have the following.

Theorem: (Derivatives of inverse trig functions)

a If f (x)= arcsin x, then f ′(x)= 1p
1−x2

.

a If f (x)= arctan x, then f ′(x)= 1
1+x2 .

a If f (x)= arcsecx, then f ′(x)= 1

x
p

x2−1
.

(You should check on your own that the other two are
correct.)
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Conclusion
a Implicit differentiation allows us to compute the derivative in cases where y may not

be a function of x.

a Implicit differentation uses the chain rule: whenever you have to take the derivative
of y, you multiply by y ′.

a Implicit differentiation allowed us to determine the derivatives of three new func-
tions:

Theorem: (Derivatives of inverse trig functions)

a If f (x)= arcsin x, then f ′(x)= 1p
1−x2

.

a If f (x)= arctan x, then f ′(x)= 1
1+x2 .

a If f (x)= arcsecx, then f ′(x)= 1

x
p

x2−1
.

You should remember these derivatives.
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End of Module

Please review your work, select another
module, or select an option from the top
menu.
You may also obtain a black and white
condensed version of this tutorial by click-
ing the 〈Print〉 icon, and then saving or
printing the pdf file.

Department of Mathematics at
The University of

Southern Mississippi


