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Instructions
This tutorial session is color coded to assist you in finding information on the page. It
is online, but it is important to take notes and to work some of the examples on paper.

• You can move forward through the pages 〈Next〉, backward 〈Prev〉, or view all the
slides in this tutorial 〈Index〉.
• The 〈Back to Calc I〉 button returns you to the course home page.

• A full symbolic algebra package 〈Sage〉 is accessible online. You can download and
install it on your own computer, without a web app, by visiting www.sagemath.org.

• An online calculus text 〈CalcText〉 provides a quick search of basic calculus topics.

• You can get help from Google Calculus 〈GoogleCalc〉.
• A monochrome copy of this module is suitable for printing 〈Print〉.

When all else fails, feel free to contact your instructor.

Derivatives of logarithmic functions
In this module we determine the derivative of the logarithmic functions ln x. We also
use it to find the derivatives of more difficult functions.
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Defining the problem
Question: What are the derivatives of the following functions?

a y = ln x

a y = x
p

x
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The derivative of ln x
We start with the derivative of ln x. Before showing explicitly what its derivative is,
let’s take an educated guess using the SAGElets “Tangent Line Guesser” and “Function
Factory”.
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(SAGE may report an error after you change the value of f in the SAGElet to ln(x).
This is expected, because a is initially 0 and ln0 is undefined. Change the value of a
and the error should disappear.)
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should look like the one below. You should recognize it; modify f to match it.
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We start with the derivative of ln x. Before showing explicitly what its derivative is,
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Once you have some values, plug them into the Function Factory. Your function
should look like the one below. You should recognize it; modify f to match it.

This looks like 1/x. But is it?
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The derivative of ln x
To find the derivative of ln x, we will use implicit differentiation.

y= ln x.
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To find the derivative of ln x, we will use implicit differentiation.

y = ln x

e y= e ln x .

(The exponential function is one-to-one.)
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The derivative of ln x
To find the derivative of ln x, we will use implicit differentiation.
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e y = e ln x

e y= x.

(The exponential function and the logarithm are
inverse functions.)
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The derivative of ln x
To find the derivative of ln x, we will use implicit differentiation.

y = ln x

e y = e ln x

e y = x

e y ·y ′= 1.

(Took the derivative of both sides with respect to x;
implicit differentation tells us that the derivative of e y

with respect to x is e y ·y ′.)
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To find the derivative of ln x, we will use implicit differentiation.
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e y = e ln x

e y = x

e y ·y ′= 1

y ′= e−y .

(Multiplied both sides by e−y .)
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(Property of logarithms.)
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The derivative of ln x
To find the derivative of ln x, we will use implicit differentiation.

y = ln x

e y = e ln x

e y = x

e y ·y ′= 1

y ′= e−y

y ′= e−ln x

y ′= e ln x−1

y ′= x−1

y ′=
1

x
.

(Property of exponents.)
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The derivative of ln x
The preceding argument confirms our initial guess.

Theorem: The derivative of ln x is 1/x.
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Logarithmic differentiation
Once we know the derivative of the logarithm, we can use it to find derivatives of
functions where the variable is in both the base and the exponent. We call this technique
logarithmic differentiation.
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Logarithmic differentiation
Once we know the derivative of the logarithm, we can use it to find derivatives of
functions where the variable is in both the base and the exponent. We call this technique
logarithmic differentiation.

The second example illustrates the technique. We take the derivative of

y= x
p

x

lny= ln x
p

x

lny=
p

x ln x
1

y
·y ′= 1

2
p

x
ln x+

p
x · 1

x
.

(Took the derivative of both sides. By implicit
differentiation and the derivative of the logarithm,

(lny)′= 1
y ·y ′.

The derivative of the right hand side uses the product
rule.)
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x
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x

!
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(Multiplied y to both sides.)
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(Substitued y = x
p

x—see first line.)
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Derivatives of other logarithms
For the derivative of a different logarithmic base, we can reason from the base conver-
sion rule for logarithms that�

loga x
�′=�ln x

lna

�′
=

1

lna
(ln x)′=

1

lna

1

x
=

1

x lna
.

Thus
Theorem: For any a ∈R where a> 0 and a 6= 1, the derivative of loga x is

1
x lna .
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Conclusion

a We determined the derivative of ln x both geometrically and precisely, using implicit
differentiation.

a The derivative ln x allows us to compute the derivatives of functions with variables
in both the base and the exponent using logarithmic differentiation.
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End of Module

Please review your work, select another
module, or select an option from the top
menu.
You may also obtain a black and white
condensed version of this tutorial by click-
ing the 〈Print〉 icon, and then saving or
printing the pdf file.
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