
Examples of embedding Sage in LATEX with

SageTEX

Dan Drake and others

February 20, 2010

1 Inline Sage, code blocks

This is an example 2+2 = 4. If you raise the current year mod 100 (which equals
10) to the power of the current day (20), you get 100000000000000000000. Also,
2010 modulo 42 is 36.

Code block which uses a variable s to store the solutions:

1+1
var(’a,b,c’)
eqn = [a+b*c==1, b-a*c==0, a+b==5]
s = solve(eqn, a,b,c)

Solutions of eqn = [bc + a = 1,−ac + b = 0, a + b = 5]:[
a =

(
(25I)

√
79 + 25

)(
(6I)

√
79− 34

) , b =

(
(5I)

√
79 + 5

)(
I
√

79 + 11
) , c =

(
1
10

I

) √
79 +

1
10

]
[
a =

(
(25I)

√
79− 25

)(
(6I)

√
79 + 34

) , b =

(
(5I)

√
79− 5

)(
I
√

79− 11
) , c =

(
− 1

10
I

) √
79 +

1
10

]
Now we evaluate the following block:

E = EllipticCurve("37a")

You can’t do assignment inside \sage macros, since Sage doesn’t know how to
typeset the output of such a thing. So you have to use a code block. The elliptic
curve E given by y2 + y = x3 − x has discriminant 37.

You can do anything in a code block that you can do in Sage and/or Python.
Here we save an elliptic curve into a file.

try:
E = load(’E2’)

except IOError:
E = EllipticCurve([1,2,3,4,5])
E.anlist(100000)
E.save(’E2’)

1

The 9999th Fourier coefficient of y2 + xy + 3y = x3 + 2x2 + 4x + 5 is −27.
The following code block doesn’t appear in the typeset file. . . but we can

refer to whatever we did in that code block: e = 7.

var(’x’)
f(x) = log(sin(x)/x)

The Taylor Series of f begins: x 7→ − 1
467775 x10− 1

37800 x8− 1
2835 x6− 1

180 x4− 1
6 x2.

2 Plotting

Here’s a plot of the elliptic curve E.

-1 1 2 3

-10

-5

5

You can use variables to hold plot objects and do stuff with them.

p = plot(f, x, -5, 5)

Here’s a small plot of f from −5 to 5, which I’ve centered:

-4 -2 2 4

50

100

150

On second thought, use the default size of 3/4 the \textwidth and don’t
use axes:

2

Remember, you’re using Sage, and can therefore call upon any of the software
packages Sage is built out of.

f = maxima(’sin(x)^2*exp(x)’)
g = f.integrate(’x’)

Plot g(x), but don’t typeset it.
You can specify a file format and options for includegraphics. The default

is for EPS and PDF files, which are the best choice in almost all situations.
(Although see the section on 3D plotting.)

If you use regular latex to make a DVI file, you’ll see a box, because DVI
files can’t include PNG files. If you use pdflatex that will work. See the
documentation for details.

When using \sageplot, you can pass in just about anything that Sage can
call .save() on to produce a graphics file:

3

-1 123456

50

100

150

200

4

0
1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17 18

19

G4 = DiGraph({1:[2,2,3,5], 2:[3,4], 3:[4], 4:[5,7], 5:[6]},\
multiedges=True)

G4plot = G4.plot(layout=’circular’)

5

1

2

3

4 5

6

7

To fiddle with aspect ratio, first save the plot object:

p = plot(x, 0, 1) + circle((0,0), 1)
p.set_aspect_ratio(1)

Now plot it and see the circular circle and nice 45 degree angle:

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Indentation and so on works fine.

s = 7
s2 = 2^s
P.<x> = GF(2)[]
M = matrix(parent(x),s2)
for i in range(s2):

p = (1+x)^i
pc = p.coeffs()
a = pc.count(1)

6

for j in range(a):
idx = pc.index(1)
M[i,idx+j] = pc.pop(idx)

matrixprogram = matrix_plot(M,cmap=’Greys’)

And here’s the picture:

20 40 60 80 100 120

20

40

60

80

100

120

Reset x in Sage so that it’s not a generator for the polynomial ring: x

2.1 Plotting (combinatorial) graphs with TikZ

Sage now includes some nice support for plotting graphs using TikZ. Here, we
mean things with vertices and edges, not graphs of a function of one or two
variables.

First define our graph:

g = graphs.PetersenGraph()
g.set_latex_options(tkz_style=’Art’)

Now just do \sage{} on it to plot it. You’ll need to use the tkz-berge
package for this to work; that package in turn depends on tkz-graph and TikZ.
See “LATEX Options for Graphs” in the Sage reference manual for more details.

7

http://www.texample.net/tikz/
http://altermundus.com/pages/graphtheory.html
http://altermundus.com/pages/graph.html
http://sagemath.org/doc/reference/sage/graphs/graph_latex.html

0

1

2 3

4
5

6

7 8

9

The above command just outputs a tikzpicture environment, and you
can control that environment using anything supported by TikZ—although the
output of \sage{g} explicitly hard-codes a lot of things and cannot be flexibly
controlled in its current form.

0

1

2

3

4

5

6
7

8

9

2.2 3D plotting

3D plotting right now is problematic because there’s no convenient way to pro-
duce vector graphics. We can make PNGs, though, and since the sageplot
command defaults to EPS and PDF, you must specify a valid format for 3D
plotting. Sage right now (version 4.2.1) can’t produce EPS or PDF files from
plot3d objects, so if you don’t specify a valid format, things will go badly. You
can specify the “imagemagick” option, which will use the Imagemagick convert
utility to make EPS files. See the documentation for details.

Here’s the famous Sage cube graph in 3D.

G = graphs.CubeGraph(5)

8

And here’s a regular sort of 3D plot. Since plot3d objects don’t properly
support the kind of .save() method that we need, so we have to work around
it a bit and do things manually. Note that we can’t use \jobname below. The
sage.misc.viewer.BROWSER bit tells Sage to not pop up a viewer program;
otherwise, when you run the .sage script, it will try to start a viewer program
on the resulting image, which we don’t want.

sage.misc.viewer.BROWSER=’’
x, y = var(’x y’)
g = plot3d(sin(pi*(x^2+y^2))/2,(x,-1,1),(y,-1,1))
g.show(filename=’sage-plots-for-example.tex/my-3d-plot’, viewer=’tachyon’)

9

3 Pausing SageTEX

Sometimes you want to “pause” for a bit while writing your document if you
have embedded a long calculation or just want to concentrate on the LATEX and
ignore any Sage stuff. You can use the \sagetexpause and \sagetexunpause
macros to do that.

A calculation: (SageTEX is paused) and a code environment that simulates
a time-consuming calculation. While paused, this will get skipped over.

import time
time.sleep(15)

Graphics are also skipped: SageTEX is paused; no graphic

4 Make Sage write your LATEX for you

With SageTEX, you can not only have Sage do your math for you, it can write
parts of your LATEX document for you! For example, I hate writing tabular envi-
ronments; there’s too many fiddly little bits of punctuation and whatnot. . . and

10

what if you want to add a column? It’s a pain—or rather, it was a pain. Here’s
how to make Pascal’s triangle. It requires the amsmath package because of what
Sage does when producing a LATEX representation of a string. (It puts it inside
a \text macro.)

def pascals_triangle(n):
start of the table
s = r"\begin{tabular}{cc|" + "r" * (n+1) + "}"
s += r" & & k: & \\"
second row, with k values:
s += r" & "
for k in [0..n]:

s += "& %d " % k
s += r"\\"
the n = 0 row:
s += r"\hline" + "\n" + r"n: & 0 & 1 & \\"
now the rest of the rows
for r in [1..n]:

s += " & %d " % r
for k in [0..r]:

s += "& %d " % binomial(r, k)
s += r"\\"

add the last line and return
s += r"\end{tabular}"
return s

how big should the table be?
n = 8

Okay, now here’s the table. To change the size, edit n above. If you have
several tables, you can use this to get them all the same size, while changing
only one thing.

k:
0 1 2 3 4 5 6 7 8

n: 0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1

11

	Inline Sage, code blocks
	Plotting
	Plotting (combinatorial) graphs with TikZ
	3D plotting

	Pausing SageTeX
	Make Sage write your LaTeX for you

