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Introduction

This is a short introduction to the notion of using polynomials to approximate more complicated
functions. It is entirely informal, with the intent of motivating a careful study of infinite series prior
to learning about Taylor polynomials and Taylor series.

1 A Very Basic Approximating Polynomial

Consider the following algebra centering on polynomial multiplication,

(1− x)(1 + x+ x2 + x3 + · · ·+ xn) = 1 + x+ x2 + x3 + · · ·+ xn

− (x+ x2 + x3 + · · ·+ xn + xn+1)

= 1 + (x− x) + (x2 − x2) + · · ·+ (xn − xn)− xn+1

= 1− xn+1

≈ 1

The approximation in the last step is valid if xn+1 is small, which will be the case if −1 < x < 1
and n is large. Keep those conditions in mind as we continue.

If we assume x 6= 1 and divide both sides of the above by 1− x we obtain

1

1− x
≈ 1 + x+ x2 + x3 + · · ·+ xn (1)

This will be the basis of all but one of our approximations. In the demonstration below notice the
following:

• The approximation gets better as the degree, n, increases.

• No matter how large the degree is, the approximation appears limited to −1 < x < 1.

• For even versus odd degrees, the left end of the approximating polynomial approaches ±∞.

• The degree 1 approximation is just the tangent line at the point (0, 1).
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%hide

%auto

a=-1.25

b= 0.95

original_color=’blue’

approx_color=’red’

@interact

def _( n = slider(0, 20, 1, 2 , label = "Degree") ):

var(’x’)

f(x)=1/(1-x)

approx(x)=0

for i in srange(n+1):

approx(x)=approx(x)+x^i

original_plot = plot( f(x), a, b ,color=original_color)

approx_plot = plot( approx(x), a, b, color=approx_color)

html("Function: <font color=’%s’>$%s$</font>$" % (original_color, latex(f(x))) )

html("Approximation: <font color=’%s’>$%s$</font>$" % (approx_color, latex(approx(x))) )

show(original_plot+approx_plot, xmin=a, xmax=b, ymin=0, ymax=10)

2 Approximating a Rational Function

We can use the approximation above to create an approximation of a rational function (a fraction
of two polynomials). With a systematic use of partial fractions, this method can be extended to
more complicated examples. Consider the following:

1 + x2

1− x2
=

1− x2

1− x2
+

2x2

1− x2

= 1 + 2x2 1

1− x2

Employ equation (1) where we replace x by x2,

≈ 1 + 2x2
(
1 + x2 + (x2)2 + (x2)3 + · · ·+ (x2)n

)
= 1 + 2x2

(
1 + x2 + x4 + x6 + · · ·+ x2n

)
= 1 + 2x2 + 2x4 + 2x6 + 2x8 + · · ·+ 2x2n+2

Notice that our approximation should again be best when n is large and now we would require
−1 < x2 < 1 which simply translates back to −1 < x < 1. In the demonstration below we only
plot the function for −1 < x < 1. The full graph would have vertical asymptotes at x = −1 and
x = 1 and has two branches below the x-axis — one for x < −1 and another for x > 1.

%hide

%auto

a=-0.9999
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b= 0.9999

original_color=’blue’

approx_color=’red’

@interact

def _( n = slider(0, 20, 2, 2 , label = "Degree") ):

var(’x’)

f(x)=(1+x^2)/(1-x^2)

approx(x)=1

for i in srange(2,n+1,2):

approx(x)=approx(x)+2*x^i

original_plot = plot( f(x), a, b ,color=original_color)

approx_plot = plot( approx(x), a, b, color=approx_color)

html("Function: <font color=’%s’>$%s$</font>$" % (original_color, latex(f(x))) )

html("Approximation: <font color=’%s’>$%s$</font>$" % (approx_color, latex(approx(x))) )

show(original_plot+approx_plot, xmin=a, xmax=b, ymin=0, ymax=10)

3 Approximating a Transcendental Function

We begin with equation (1), replacing x by −t2, then form a definite integral that equals the
inverse tangent. Again, we would expect larger values of n, with −1 < x < 1, to yield better
approximations. First,

1

1 + t2
=

1

1− (−t2)
≈ 1 + (−t2) + (−t2)2 + (−t2)3 + · · ·+ (−t2)n

= 1− t2 + t4 − t6 + · · ·+ (−1)nt2n

We will now use a definite integral and the derivative of the inverse tangent in a novel way,

arctan(x) = arctan(x)− arctan(0)

=

∫ x

0

1

1 + t2
dt

≈
∫ x

0

1− t2 + t4 − t6 + · · ·+ (−1)nt2n dt

= t− t3

3
+
t5

5
− t7

7
+ · · ·+ (−1)nt2n+1

2n+ 1

∣∣∣∣x
0

= x− x3

3
+
x5

5
− x7

7
+ · · ·+ (−1)nx2n+1

2n+ 1

In the demonstration below we have drawn attention to the value of the function and the approxi-
mating polynomial at x = 1. It is of course debatable if the approximation is even valid at x = 1,
but we will examine this question carefully later. We know that in a 45-45-90 right triangle, the two
non-hypotenuse sides are equal. Expressing angles in radians we formulate this fact as tan

(
π
4

)
= 1,

or equivalently, arctan(1) = π
4
. So if we evaluate our approximating polynomial at x = 1 we should
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get a reasonable approximation of π
4
, and by extension, multiplying by 4 we could obtain an estimate

of π. Consider that π is defined as the ratio of a circle’s circumfrence to its diameter. Could we
derive the necessary trigonometric facts, limits, derivatives and integrals used above without ever
computing an actual value for π? I think so. Hmmmmmmmmm. The “real” value of π

4
, and the

approximation, are given below, in addition to being pinpointed by specific points on the plot.

%hide

%auto

a=-1.75

b= 1.75

original_color=’blue’

approx_color=’red’

pi_true = point((1, float(pi/4)), rgbcolor=’black’, pointsize=20)

@interact

def _( n = slider(1, 21, 2, 1 , label = "Degree") ):

var(’x’)

f(x)=arctan(x)

approx(x)=0

sign=1

for i in srange(1,n+1,2):

approx(x)=approx(x)+sign*x^i/i

sign=-1*sign

pi_approx = point( (1, float(approx(1))), rgbcolor=’green’, pointsize=20)

original_plot = plot( f(x), a, b ,color=original_color)

approx_plot = plot( approx(x), a, b, color=approx_color)

html("Function: <font color=’%s’>$%s$</font>$" % (original_color, latex(f(x))) )

html("Approximation: <font color=’%s’>$%s$</font>$" % (approx_color, latex(approx(x))) )

print

html("<font color=’%s’>$\\frac{\\pi}{4}=\\arctan(1)=%s$</font>" % (original_color, latex(float(pi/4))) )

html("<font color=’%s’>$P_{%s}(1)=%s$</font>" % (approx_color, latex(n), latex(float(approx(1)))) )

show(original_plot+approx_plot+pi_true+pi_approx, xmin=a, xmax=b, ymin=-1.5, ymax=1.5)

4 An Approximation Valid Everywhere

Our previous approximating polynomials were each valid, at best, on the interval −1 < x < 1. We
will change our approach for this final example by simply producing a very interesting polynomial
and examining its properties. Recall that “n-factorial” is defined by n! = n(n− 1)(n− 2) · · · 3 · 2 · 1,
and by convention 0! = 1. Consider the polynomials, indexed by their degree n,

Pn(x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+ xn

n!
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Each of these polynomials has a derivative, which we will compute. (Notice how fractions with
factorials simplify nicely.)

P ′n(x) =
d

dx

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·+ xn

n!

)
= 0 + 1 +

2x

2!
+

3x2

3!
+

4x3

4!
+ · · ·+ nxn−1

n!

= 1 +
2x

2(1!)
+

3x2

3(2!)
+

4x3

4(3!)
+ · · ·+ nxn−1

n((n− 1)!)

= 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn−1

(n− 1)!

So Pn(x) and its derivative, P ′n(x), are very similar, differing only in the term
xn

n!
.

Pn(x)− P ′n(x) =
xn

n!

Even for fixed values of x greater than 1, if we let n get large enough, the denominator of this
fraction will overwhelm the numerator, and this difference will be small and tend to zero. So
Pn(x) is very nearly equal to its derivative. Do we know any functions like this? Ah, yes, ex! The
demonstration below examines the possibility that these polynomials might be good approximations
to the exponential function.

%hide

%auto

a=-2

b= 5

original_color=’blue’

approx_color=’red’

@interact

def _( n = slider(0, 10, 1, 2 , label = "Degree") ):

var(’x’)

f(x)=e^x

approx(x)=0

for i in srange(n+1):

approx(x)=approx(x)+x^i/factorial(i)

original_plot = plot( f(x), a, b ,color=original_color)

approx_plot = plot( approx(x), a, b, color=approx_color)

html("Function: <font color=’%s’>$%s$</font>$" % (original_color, latex(f(x))) )

html("Approximation: <font color=’%s’>$%s$</font>$" % (approx_color, latex(approx(x))) )

show(original_plot+approx_plot, xmin=a, xmax=b, ymin=0, ymax=100)
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