Approximating Polynomials

Robert A. Beezer
University of Puget Sound

February 20, 2010

Introduction

This is a short introduction to the notion of using polynomials to approximate more complicated functions. It is entirely informal, with the intent of motivating a careful study of infinite series prior to learning about Taylor polynomials and Taylor series.

1 A Very Basic Approximating Polynomial

Consider the following algebra centering on polynomial multiplication,

$$
\begin{aligned}
(1-x)\left(1+x+x^{2}+x^{3}+\cdots+x^{n}\right)= & 1+x+x^{2}+x^{3}+\cdots+x^{n} \\
& -\left(x+x^{2}+x^{3}+\cdots+x^{n}+x^{n+1}\right) \\
= & 1+(x-x)+\left(x^{2}-x^{2}\right)+\cdots+\left(x^{n}-x^{n}\right)-x^{n+1} \\
= & 1-x^{n+1} \\
\approx & 1
\end{aligned}
$$

The approximation in the last step is valid if x^{n+1} is small, which will be the case if $-1<x<1$ and n is large. Keep those conditions in mind as we continue.

If we assume $x \neq 1$ and divide both sides of the above by $1-x$ we obtain

$$
\begin{equation*}
\frac{1}{1-x} \approx 1+x+x^{2}+x^{3}+\cdots+x^{n} \tag{1}
\end{equation*}
$$

This will be the basis of all but one of our approximations. In the demonstration below notice the following:

- The approximation gets better as the degree, n, increases.
- No matter how large the degree is, the approximation appears limited to $-1<x<1$.
- For even versus odd degrees, the left end of the approximating polynomial approaches $\pm \infty$.
- The degree 1 approximation is just the tangent line at the point $(0,1)$.

```
%hide
%auto
a=-1.25
b= 0.95
original_color='blue'
approx_color='red'
@interact
def _( n = slider(0, 20, 1, 2 , label = "Degree") ):
    var('x')
    f(x)=1/(1-x)
    approx(x)=0
    for i in srange(n+1):
            approx(x)=approx(x)+x^i
    original_plot = plot( f(x), a, b ,color=original_color)
    approx_plot = plot( approx(x), a, b, color=approx_color)
    html("Function: <font color='%s'>$%s$</font>$" % (original_color, latex(f(x))) )
    html("Approximation: <font color='%s'>$%s$</font>$" % (approx_color, latex(approx(s
    show(original_plot+approx_plot, xmin=a, xmax=b, ymin=0, ymax=10)
```


2 Approximating a Rational Function

We can use the approximation above to create an approximation of a rational function (a fraction of two polynomials). With a systematic use of partial fractions, this method can be extended to more complicated examples. Consider the following:

$$
\begin{aligned}
\frac{1+x^{2}}{1-x^{2}} & =\frac{1-x^{2}}{1-x^{2}}+\frac{2 x^{2}}{1-x^{2}} \\
& =1+2 x^{2} \frac{1}{1-x^{2}}
\end{aligned}
$$

Employ equation (11) where we replace x by x^{2},

$$
\begin{aligned}
& \approx 1+2 x^{2}\left(1+x^{2}+\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}+\cdots+\left(x^{2}\right)^{n}\right) \\
& =1+2 x^{2}\left(1+x^{2}+x^{4}+x^{6}+\cdots+x^{2 n}\right) \\
& =1+2 x^{2}+2 x^{4}+2 x^{6}+2 x^{8}+\cdots+2 x^{2 n+2}
\end{aligned}
$$

Notice that our approximation should again be best when n is large and now we would require $-1<x^{2}<1$ which simply translates back to $-1<x<1$. In the demonstration below we only plot the function for $-1<x<1$. The full graph would have vertical asymptotes at $x=-1$ and $x=1$ and has two branches below the x-axis - one for $x<-1$ and another for $x>1$.

\%hide

\%auto
$a=-0.9999$

```
b= 0.9999
original_color='blue'
approx_color='red'
@interact
def _( n = slider(0, 20, 2, 2 , label = "Degree") ):
    var('x')
    f(x)=(1+x^2)/(1-x^2)
    approx(x)=1
    for i in srange(2,n+1,2):
        approx(x)=approx (x)+2*x^i
    original_plot = plot( f(x), a, b ,color=original_color)
    approx_plot = plot( approx(x), a, b, color=approx_color)
    html("Function: <font color='%s'>$%s$</font>$" % (original_color, latex(f(x))) )
    html("Approximation: <font color='%s'>$%s$</font>$" % (approx_color, latex(approx(s
    show(original_plot+approx_plot, xmin=a, xmax=b, ymin=0, ymax=10)
```


3 Approximating a Transcendental Function

We begin with equation (1), replacing x by $-t^{2}$, then form a definite integral that equals the inverse tangent. Again, we would expect larger values of n, with $-1<x<1$, to yield better approximations. First,

$$
\begin{aligned}
\frac{1}{1+t^{2}} & =\frac{1}{1-\left(-t^{2}\right)} \\
& \approx 1+\left(-t^{2}\right)+\left(-t^{2}\right)^{2}+\left(-t^{2}\right)^{3}+\cdots+\left(-t^{2}\right)^{n} \\
& =1-t^{2}+t^{4}-t^{6}+\cdots+(-1)^{n} t^{2 n}
\end{aligned}
$$

We will now use a definite integral and the derivative of the inverse tangent in a novel way,

$$
\begin{aligned}
\arctan (x) & =\arctan (x)-\arctan (0) \\
& =\int_{0}^{x} \frac{1}{1+t^{2}} d t \\
& \approx \int_{0}^{x} 1-t^{2}+t^{4}-t^{6}+\cdots+(-1)^{n} t^{2 n} d t \\
& =t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\cdots+\left.\frac{(-1)^{n} t^{2 n+1}}{2 n+1}\right|_{0} ^{x} \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots+\frac{(-1)^{n} x^{2 n+1}}{2 n+1}
\end{aligned}
$$

In the demonstration below we have drawn attention to the value of the function and the approximating polynomial at $x=1$. It is of course debatable if the approximation is even valid at $x=1$, but we will examine this question carefully later. We know that in a 45-45-90 right triangle, the two non-hypotenuse sides are equal. Expressing angles in radians we formulate this fact as $\tan \left(\frac{\pi}{4}\right)=1$, or equivalently, $\arctan (1)=\frac{\pi}{4}$. So if we evaluate our approximating polynomial at $x=1$ we should
get a reasonable approximation of $\frac{\pi}{4}$, and by extension, multiplying by 4 we could obtain an estimate of π. Consider that π is defined as the ratio of a circle's circumfrence to its diameter. Could we derive the necessary trigonometric facts, limits, derivatives and integrals used above without ever computing an actual value for π ? I think so. Hmmmmmmmmm. The "real" value of $\frac{\pi}{4}$, and the approximation, are given below, in addition to being pinpointed by specific points on the plot.

```
%hide
%auto
a=-1.75
b= 1.75
original_color='blue'
approx_color='red'
pi_true = point((1, float(pi/4)), rgbcolor='black', pointsize=20)
@interact
def _( n = slider(1, 21, 2, 1 , label = "Degree") ):
    var('x')
    f(x)=arctan(x)
    approx (x)=0
    sign=1
    for i in srange(1,n+1,2):
        approx(x)=approx(x)+sign*x^i/i
        sign=-1*sign
    pi_approx = point( (1, float(approx(1))), rgbcolor='green', pointsize=20)
    original_plot = plot( f(x), a, b ,color=original_color)
    approx_plot = plot( approx(x), a, b, color=approx_color)
    html("Function: <font color='%s'>$%s$</font>$" % (original_color, latex(f(x))) )
    html("Approximation: <font color='%s'>$%s$</font>$" % (approx_color, latex(approx(s
    print
    html("<font color='%s'>$\\frac{\\\pi}{4}=\\arctan(1)=%%s</font>" % (original_color,
    html("<font color='%s'>$P_{%s}(1)=%s$</font>" % (approx_color, latex(n), latex(floa
    show(original_plot+approx_plot+pi_true+pi_approx, xmin=a, xmax=b, ymin=-1.5, ymax=1
```


4 An Approximation Valid Everywhere

Our previous approximating polynomials were each valid, at best, on the interval $-1<x<1$. We will change our approach for this final example by simply producing a very interesting polynomial and examining its properties. Recall that " n-factorial" is defined by $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$, and by convention $0!=1$. Consider the polynomials, indexed by their degree n,

$$
P_{n}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}
$$

Each of these polynomials has a derivative, which we will compute. (Notice how fractions with factorials simplify nicely.)

$$
\begin{aligned}
P_{n}^{\prime}(x) & =\frac{d}{d x}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}\right) \\
& =0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\cdots+\frac{n x^{n-1}}{n!} \\
& =1+\frac{2 x}{2(1!)}+\frac{3 x^{2}}{3(2!)}+\frac{4 x^{3}}{4(3!)}+\cdots+\frac{n x^{n-1}}{n((n-1)!)} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n-1}}{(n-1)!}
\end{aligned}
$$

So $P_{n}(x)$ and its derivative, $P_{n}^{\prime}(x)$, are very similar, differing only in the term $\frac{x^{n}}{n!}$.

$$
P_{n}(x)-P_{n}^{\prime}(x)=\frac{x^{n}}{n!}
$$

Even for fixed values of x greater than 1, if we let n get large enough, the denominator of this fraction will overwhelm the numerator, and this difference will be small and tend to zero. So $P_{n}(x)$ is very nearly equal to its derivative. Do we know any functions like this? Ah, yes, e^{x} ! The demonstration below examines the possibility that these polynomials might be good approximations to the exponential function.

```
%hide
%auto
a=-2
b=5
original_color='blue'
approx_color='red'
@interact
def _( n = slider(0, 10, 1, 2 , label = "Degree") ):
    var('x')
    f(x)=e^x
    approx(x)=0
    for i in srange(n+1):
        approx(x)=approx(x)+x^i/factorial(i)
    original_plot = plot( f(x), a, b ,color=original_color)
    approx_plot = plot( approx(x), a, b, color=approx_color)
    html("Function: <font color='%s'>$%s$</font>$" % (original_color, latex(f(x))) )
    html("Approximation: <font color='%s'>$%s$</font>$" % (approx_color, latex(approx(s
    show(original_plot+approx_plot, xmin=a, xmax=b, ymin=0, ymax=100)
```

