A First Course in Linear Algebra An Open-Source Textbook

Rob Beezer
beezer@ups.edu
Department of Mathematics and Computer Science University of Puget Sound

Sage Developer Days 1
University of Washington
June 16, 2008

Overview

- A free (no cost) introductory textbook
- A free (GFDL'ed) introductory textbook
- Designed to encourage modification
- Designed to encourage content contributions
- A social experiment
- A disruption to traditional publishing

Overview

- A free (no cost) introductory textbook
- A free (GFDL'ed) introductory textbook
- Designed to encourage modification
- Designed to encourage content contributions
- A social experiment
- A disruption to traditional publishing

Today's Talk

- Open source
- Linear algebra
- SAGE enhanced version
- Parallels to SAGE development
- A wee bit of Python

Table of Contents

- Core
- Systems of Linear Equations
- Vectors
- Matrices
- Vector Spaces
- Determinants
- Eigenvalues
- Linear Transformations
- Representations
- Topics
- Positive Semi-Definite Matrices
- Singular Value Decomposition
- And more...
- Applications
- Curve Fitting
- Secret Sharing
- 〈Your Contribution Here〉
a first course in

Linear Algebra

Robert A. Beezer
Sucia Edition (v1.0)

By The Numbers

- 7 Chapters (Core)
- 43 Sections (Core)
- 10 Topics
- 2 Applications
- 133 Definitions
- 257 Theorems
- 382 Exercises
- 254 Solutions
- 24 Archetypes
a first course in
Linear Algebra

Robert A. Beezer
Sucia Edition (v1.0)

Why?

- Classic yellowed notes with many additions in the margins
- Moved to TEX version for convenience (and legibility)
- Began passing out to students, quality improved

Why?

- Classic yellowed notes with many additions in the margins
- Moved to $T_{E X}$ version for convenience (and legibility)
- Began passing out to students, quality improved
- Abstract Algebra textbook went to a new edition
- Linear Algebra textbook in a new edition soon
- Combinatorics textbook out-of-print
- Unnecessary revisions drive up costs

Why?

- Classic yellowed notes with many additions in the margins
- Moved to $T_{E} X$ version for convenience (and legibility)
- Began passing out to students, quality improved
- Abstract Algebra textbook went to a new edition
- Linear Algebra textbook in a new edition soon
- Combinatorics textbook out-of-print
- Unnecessary revisions drive up costs
- Would open-source software model carry over?
- Scratching an itch
- "The world does not need another linear algebra text, the world does needs a free linear algebra text."
- Lead by example

Short History

- September 2002: moved from paper to electronic notes
- January 2004: in earnest, with a complete restart
- December 2004: rough draft complete

Short History

- September 2002: moved from paper to electronic notes
- January 2004: in earnest, with a complete restart
- December 2004: rough draft complete
- December 2006: Version 1.0
- January 2008: Used at Miramar College, St. Cloud State U
- Summer 2008: Version 2.0

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ..
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format (4:3, 16:9)

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ..
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format $(4: 3,16: 9)$
- Print-on-demand, Lulu.com, \$24.95

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ..
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format $(4: 3,16: 9)$
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ..
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format $(4: 3,16: 9)$
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ..
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)
- SAGE worksheets (planned)

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ..
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)
- SAGE worksheets (planned)
- Theorem and Definition flashcards

Targets

- Not an online course, or online textbook
- Internet for distribution: nearly zero cost
- Internet for marketing: Google "linear algebra," Page 1
- Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
- US Letter, A4
- One-sided, two-sided
- Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)
- SAGE worksheets (planned)
- Theorem and Definition flashcards
- Tarballs for LATEX source, XML (jsMath, SAGE worksheets)

Under the Hood

- Primary Tool: ${ }^{\text {AT }}$ TEX + pdflatex
- Packages: AMS, hyperref, tocloft
- Translator: tex4ht to build MathML and jsMath
- Graphics: PyX + Python to build PDF
- Sectioning: Custom macros override/extend LATEX
- References: Custom macros override/extend $\operatorname{AT} T_{E} X$, hyperref

Acronyms

Every definition, theorem, chapter, section, figure, exercise is labeled with a mnemonic acronym (five letter maximum).

- Promotes customization (e.g. deleting sections)
- "Theorem SMZD" preferable to "Theorem 8.3.2"
- Macro: \acronymref\{theorem\}\{SMZD\} for easy referencing
- Unexpected benefits for text processing

Typical PDF

Theorem MMDAA

Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Proof We'll do (1), you do (2). Entry-by-entry, for $1 \leq i \leq m, 1 \leq j \leq p$,

$$
\begin{aligned}
{[A(B+C)]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B+C]_{k j} & & \text { Theorem EMP [209] } \\
& =\sum_{k=1}^{n}[A]_{i k}\left([B]_{k j}+[C]_{k j}\right) & & \text { Definition MA [192] } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+[A]_{i k}[C]_{k j} & & \text { Property DCN [713] } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+\sum_{k=1}^{n}[A]_{i k}[C]_{k j} & & \text { Property CACN [712] } \\
& =[A B]_{i j}+[A C]_{i j} & & \text { Theorem EMP [209] }
\end{aligned}
$$

$$
=[A B+A C]_{i j}
$$

Definition MA [192]
So the matrices $A(B+C)$ and $A B+A C$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME [191]) we can say they are equal matrices.

Typical Front Matter

Section MO
VSPM Vector Space Properties of Matrices 193
SMS Symmetric Matrices are Square 195
TMA Transpose and Matrix Addition 195
TMSM Transpose and Matrix Scalar Multiplication 196
TT Transpose of a Transpose 196
CRMA Conjugation Respects Matrix Addition 197
CRMSM Conjugation Respects Matrix Scalar Multiplication 197
CCM Conjugate of the Conjugate of a Matrix 197
MCT Matrix Conjugation and Transposes 198
AMA Adjoint and Matrix Addition 198
AMSM Adjoint and Matrix Scalar Multiplication 199
AA Adjoint of an Adjoint 199
Section MM
SLEMM Systems of Linear Equations as Matrix Multiplication 205
EMMVP Equal Matrices and Matrix-Vector Products 207
EMP Entries of Matrix Products 209
MMZM Matrix Multiplication and the Zero Matrix 210
MMIM Matrix Multiplication and Identity Matrix 211
MMDAA Matrix Multiplication Distributes Across Addition 211
MMSMM Matrix Multiplication and Scalar Matrix Multiplication 212
MMA Matrix Multiplication is Associative 212
MMIP Matrix Multiplication and Inner Products 213
MMCC Matrix Multiplication and Complex Conjugation 213

Typical XML/MathML

Theorem MMDAA

Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Proof We'll do (1), you do (2). Entry-by-entry, for $1 \leq i \leq m, 1 \leq j \leq p$,

$$
\begin{aligned}
{[A(B+C)]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B+C]_{k j} & & \text { Theorem EMP } \\
& =\sum_{k=1}^{n}[A]_{i k}\left[[B]_{k j}+[C]_{k j}\right) & & \text { Definition MA } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+[A]_{i k}[C]_{k j} & & \text { Property DCN } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+\sum_{k=1}^{n}[A]_{i k}[C]_{k j} & & \text { Property CACN } \\
& =[A B]_{i j}+[A C]_{i j} & & \text { Theorem EMP } \\
& =[A B+A C]_{i j} & & \text { Definition MA }
\end{aligned}
$$

So the matrices $A(B+C)$ and $A B+A C$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME) we can say they are equal matrices.

Typical jsMath

Proof We'll do (1), you do (2). Entry-by-entry, for $1 \leq i \leq m, 1 \leq j \leq p$,

$$
\begin{aligned}
{[A(B+C)]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B+C]_{k j} & & \text { Theorem EMP } \\
& \left.=\sum_{k-1}^{n}[A]_{i k}[B]_{k j}+[C]_{k j}\right) & & \text { Definition MA } \\
& =\sum_{k-1}^{n}[A]_{i k}[B]_{k j}+[A]_{i k}[C]_{k j} & & \text { Property DCN } \\
& =\sum_{k-1}^{n}[A]_{i k}[B]_{k j}+\sum_{k-1}^{n}[A]_{i k}[C]_{k j} & & \text { Property CACN } \\
& =[A B]_{i j}+[A C]_{i j} & & \text { Theorem EMP } \\
& =[A B+A C]_{i j} & & \text { Definition MA }
\end{aligned}
$$

So the matrices $A(B+C)$ and $A B+A C$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME) we can say they are equal matrices.

Theorem MMSMM

Matrix Multiplication and Scalar Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let a be a scalar. Then $\alpha(A B)=(\alpha A) B=A(\alpha B)$. \square
Proof These are equalities of matrices. We'll do the first one, the second is similar and will be good practice for you. For $1 \leq i \leq m, 1 \leq j \leq p$,

Prototypical SAGE Worksheet

```
Location Edit View Bookmarks Iools Settings Help
```


SD클 Notebook

Section MM

last edited onjune 12. 2008 OB:23 PM by adrrin

| File... | Action.. | Data... | sage $\mid \bullet \square$ Typeset |
| :--- | :--- | :--- | :--- | :--- |

admin |Toggle |Home | Published |Log | Help | Sian out
Save Save \& quit Discard \& quit

It is this theorem that gives the identity matrix its name. It is a matrix that behaves with matrix multiplication like the scalar 1 does with scalar multiplication. To multiply by the identity matrix is to have no effect on the other matrix.

Theorem MMDAA

Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $\imath \times p$ matrices and D is a $p \times s$ matrix. Then

1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Proof We'll do (1), you do (2). Entry-by-entry, for $1 \leq i \leq m, 1 \leq j \leq p$

$$
\begin{aligned}
{[A(B+C)]_{i j} } & =\sum_{k=1}^{n}[A]_{i k}[B+C]_{k j} & & \text { Theorem EMP } \\
& =\sum_{k=1}^{n}[A]_{i k}\left[[B]_{k j}+[C]_{k j}\right) & & \text { Definition MA } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+[A]_{i k}[C]_{k j} & & \text { Property DCN } \\
& =\sum_{k=1}^{n}[A]_{i k}[B]_{k j}+\sum_{k=1}^{n}[A]_{i k}[C]_{k j} & & \text { Property CACN } \\
& =[A B]_{i j}+[A C]_{i j} & & \text { Theorem EMP } \\
& =[A B+A C]_{i j} & & \text { Definition MA }
\end{aligned}
$$

So the matrices $A(B+C)$ and $A B+A C$ are equal, entry-by-entry, and by the definition of matrix equality (Definition ME) we can say they are equal matrices.

Theorem MMSMM

Matrix Multiplication and Scalar Matrix Multiplication

Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(A B)=(\alpha A) B=A(\alpha B)$.
syath bof These are eauaities of matrices. We'll do the first one. the second is similar and will be aood practice for vou. For $1 \leq i \leq m .1 \leq i \leq p$.

Typical Figure

Figure Source, Python + PyX

```
def FTMRA():
    f Guides - vertical and horizontal markers,
    vl=0.0
    v2-v1+0.8
    h1=0.0
    h2-h1+2.25
    c=canvas.canvas ()
    A Textual 日reas (box names recycled from additive diagram, so not as meaningful here)
    vector = c.text(h1, v2, "$\\vect(u}$", centerboxstyle)
    represent = c.text(h1, v1, "$\\vectrep{B}{\\vect{u}}$", centerboxstyle)
    ltaction = c.text(h2, v2, "$\\It {T}{\\vect {u}}=\\vectrepinv{C}{\\matrixrep{T}{B}{C}\\vectrep{B}{\\vect {u}}}$", centerboxstyle }
    theorem = c.text (h2, v1, "$\\matrixIep{T}{B}{C}\\vectrep{B}{\\vect{u}}$", centerboxstyle )
|
    # Adorned arrows
    toparrow = path.line( h1+0.5*vector.widthtepsilon, v2, h2 - 0.5*ltaction.width-epsilon, v2 )
    c.stroke(toparrow, arrowheadstyle)
    c.text( 0.5*(h1+0.5*vector.width + h2 - 0.5*ltaction.width), v2+epsilon, "$T$", [text.halign.center, text.valign.baseline] )
    bottomarrow = path.line( h1+0.5*represent.width+epsilon, v1, h2 - 0.5*theorem.width-epsilon, v1 )
    c.stroke (bottomarrow, arrowheadstyle)
```



```
    leftarrow = path.line (hl, v2 - 0.5*vector.height - epsilon, hl, vl + 0.5*represent.height+epsilon )
    c.stroke( leftarrow, arrowheadstyle )
```



```
    # Reversed the ends, and inverted label
    rightarrow = path.line( h2, v1 + 0.5*theorem.height+epsilon, h2, v2 - 0.5*ltaction.height - epsilon )
    c.stroke( rightarrow, arrowheadstyle)
```



```
    c.writePDFfile( finalpdfdir + "FTMRA.pdf" )
```


Flash Cards

Simple sed script extracts every definition and theorem

Reformat as two $4^{\prime \prime} \times 6^{\prime \prime}$ cards per page

Theorem MMDAA Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1. $A(B+C)=A B+A C$
2. $(B+C) D=B D+C D$

Theorem and Definition Dependencies

- Python script to parse ${ }^{\Delta T} T_{E X}$ source
- Record each definition and theorem acronym as a node

Theorem and Definition Dependencies

- Python script to parse ATEX source
- Record each definition and theorem acronym as a node
- For each theorem, note acronyms used in proof
- Build directed edges from theorems to their prerequisites

Theorem and Definition Dependencies

- Python script to parse ${ }^{L} T_{E} \mathrm{EX}$ source
- Record each definition and theorem acronym as a node
- For each theorem, note acronyms used in proof
- Build directed edges from theorems to their prerequisites
- Draw graph with GraphViz
- Analyze resultant graph: high degree?, root?, longest path?

Customizable

- Designed to be customized
- Extensive use of macros
- Notation: \newcommand[1]\{\transpose\}\{\#1^ t \}
- \backslash transpose $\{(\mathrm{AB})\}=\backslash$ transpose $\{\mathrm{B}\} \backslash$ transpose $\{\mathrm{A}\}$
- Even diagrams/figures have editable source code
- Switches control format, organization, inclusion (keyval package)
- Granular, 1250 files
- Benefits for adapting to translators
- Benefits for text processing

Extensible

- Exercises and Solutions
- Drop-in (almost)
- Suggested by Debian configurations

Extensible

- Exercises and Solutions
- Drop-in (almost)
- Suggested by Debian configurations
- Topics and Applications
- Trace, by Andy Zimmer
- Hadamard Product, by Elizabeth Million

Extensible

- Exercises and Solutions
- Drop-in (almost)
- Suggested by Debian configurations
- Topics and Applications
- Trace, by Andy Zimmer
- Hadamard Product, by Elizabeth Million
- Computation Notes
- TI-86 calculator
- Mathematica
- SAGE

Extensible

- Exercises and Solutions
- Drop-in (almost)
- Suggested by Debian configurations
- Topics and Applications
- Trace, by Andy Zimmer
- Hadamard Product, by Elizabeth Million
- Computation Notes
- TI-86 calculator
- Mathematica
- SAGE
- Still, as Benevolent Dictator, strict control on Core

Some Linear Algebra

Problem: Column space of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]$?
Answer: All multiples of the first column, a dimension 1 subspace

Some Linear Algebra

Problem: Column space of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]$?
Answer: All multiples of the first column, a dimension 1 subspace

A common textbook approach:

- Column space is vectors \mathbf{b} such that $A \mathbf{x}=\mathbf{b}$ is consistent
- So row-reduce augmented matrix $[A \mid \mathbf{b}]$ to study solutions
- $\left[\begin{array}{llll}1 & 2 & 3 & b_{1} \\ 2 & 4 & 6 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 2 & 3 & b_{1} \\ 0 & 0 & 0 & -2 b_{1}+b_{2}\end{array}\right]$
- \mathbf{b} in column space \Longleftrightarrow system consistent $\Longleftrightarrow-2 b_{1}+b_{2}=0$
- Column space vectors are solutions to a homogeneous system

CAS Assistance

Row-reduce: $\left[\begin{array}{llll}1 & 2 & 3 & b_{1} \\ 2 & 4 & 6 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

CAS Assistance

Row-reduce: $\left[\begin{array}{llll}1 & 2 & 3 & b_{1} \\ 2 & 4 & 6 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Work-around: $:\left[\begin{array}{ccccc}1 & 2 & 3 & b_{1} & 0 \\ 2 & 4 & 6 & 0 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 2 & 3 & 0 & \frac{b_{2}}{2} \\ 0 & 0 & 0 & 1 & -\frac{b_{2}}{2 b_{1}}\end{array}\right]$
Scale row 2:

$$
\rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & \frac{b_{2}}{2} \\
0 & 0 & 0 & -2 b_{1} & b_{2}
\end{array}\right]
$$

Add last two columns:

- Second row: $-2 b_{1}+b_{2}$; equals zero $\Longleftrightarrow \mathbf{b}$ in column space
- First row: $\frac{b_{2}}{2}=b_{1}$ when \mathbf{b} is in column space

CAS Assistance

Row-reduce: $\left[\begin{array}{llll}1 & 2 & 3 & b_{1} \\ 2 & 4 & 6 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
Work-around: $\left.: \begin{array}{lllll}1 & 2 & 3 & b_{1} & 0 \\ 2 & 4 & 6 & 0 & b_{2}\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 2 & 3 & 0 & \frac{b_{2}}{2} \\ 0 & 0 & 0 & 1 & -\frac{b_{2}}{2 b_{1}}\end{array}\right]$
Scale row 2:

$$
\rightarrow\left[\begin{array}{ccccc}
1 & 2 & 3 & 0 & \frac{b_{2}}{2} \\
0 & 0 & 0 & -2 b_{1} & b_{2}
\end{array}\right]
$$

Add last two columns:

- Second row: $-2 b_{1}+b_{2}$; equals zero $\Longleftrightarrow \mathbf{b}$ in column space
- First row: $\frac{b_{2}}{2}=b_{1}$ when \mathbf{b} is in column space

Better: $\left[\begin{array}{lllll}1 & 2 & 3 & 1 & 0 \\ 2 & 4 & 6 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 2 & 3 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & -\frac{1}{2}\end{array}\right]$
Column space of A is null space of $\left[\begin{array}{ll}1 & -\frac{1}{2}\end{array}\right]$

Extended Echelon Form

A $\quad m \times n$ matrix
$\left[A \mid I_{m}\right]$ augment with $m \times m$ identity matrix

Row-reduce to echelon form: $\left[A \mid I_{m}\right] \rightarrow[B \mid J]$ "extended echelon form"

Extended Echelon Form

A $\quad m \times n$ matrix
$\left[A \mid I_{m}\right] \quad$ augment with $m \times m$ identity matrix

Row-reduce to echelon form: $\left[A \mid I_{m}\right] \rightarrow[B \mid J] \quad$ "extended echelon form"

Then

- B is echelon form of A
- J is nonsingular
- J is product of elementary matrices for row operations
- $B=J A$
- $A \mathbf{x}=\mathbf{y} \Longleftrightarrow B \mathbf{x}=J \mathbf{y}$
- A nonsingular $\Rightarrow J=A^{-1}$

Four Subspaces

$$
\left[A \mid I_{m}\right] \rightarrow[B \mid J]=\left[\begin{array}{c|c}
\mathrm{C} & \mathrm{~K} \\
\hline 0 & \mathrm{~L}
\end{array}\right]
$$

Let r be the rank of A. L is an $(m-r) \times m$ matrix in echelon form and

Four Subspaces

$\left[A \mid I_{m}\right] \rightarrow[B \mid J]=\left[\begin{array}{c|c}C & \mathrm{~K} \\ \hline 0 & \mathrm{~L}\end{array}\right]$
Let r be the rank of A. L is an $(m-r) \times m$ matrix in echelon form and

- Row space of A is row space of C
- Null space of A is null space of C

Four Subspaces

$\left[A \mid I_{m}\right] \rightarrow[B \mid J]=\left[\begin{array}{c|c}C & \mathrm{~K} \\ \hline 0 & \mathrm{~L}\end{array}\right]$
Let r be the rank of A. L is an $(m-r) \times m$ matrix in echelon form and

- Row space of A is row space of C
- Null space of A is null space of C
- Column space of A is null space of L
- Left null space of A is row space of L

Four Subspaces

$\left[A \mid I_{m}\right] \rightarrow[B \mid J]=\left[\begin{array}{c|c}C & \mathrm{~K} \\ \hline 0 & \mathrm{~L}\end{array}\right]$
Let r be the rank of A. L is an $(m-r) \times m$ matrix in echelon form and

- Row space of A is row space of C
- Null space of A is null space of C
- Column space of A is null space of L
- Left null space of A is row space of L

Proof:

- $B=J A$ is key tool
- No dimension arguments
- No vector space properties of subspaces
- Corollary: Subspace dimensions in terms of n, m and r

Open-Source Benefits

- No deadlines!
- Rapid correction of typos and frequent releases
- Unparalled navigation in electronic editions (no DRM!)
- Text processing of source for derivative supplements
- Classroom-inspired exercises
- Student contributions
- tex4ht: $\operatorname{AT} T_{E X} \rightarrow X M L \rightarrow$ Braille
- Introduced to SAGE (contributed Computation Notes)
- Interesting contributors
- Frenchman correcting my discourse on "liberte" versus "gratis"
- Retired South African mining engineer coding echelon_form() routine
- Indonesian lecturer commenting on finer points of a proof

Projects

- Version control repository
- Forum for student discussions

Projects

- Version control repository
- Forum for student discussions
- E-Book formats (Kindle, Sony), re-flowable?
- Conversion to speech? (tex4ht)

Projects

- Version control repository
- Forum for student discussions
- E-Book formats (Kindle, Sony), re-flowable?
- Conversion to speech? (tex4ht)
- Automate: jsMath pages to SAGE worksheets
- Linking across worksheets
- SAGE code: LATEX source \rightarrow jsMath \rightarrow Worksheet

Projects

- Version control repository
- Forum for student discussions
- E-Book formats (Kindle, Sony), re-flowable?
- Conversion to speech? (tex4ht)
- Automate: jsMath pages to SAGE worksheets
- Linking across worksheets
- SAGE code: LATEX source \rightarrow jsMath \rightarrow Worksheet
- Automate: creating "textbook" exercises
- SAGE code
- Web form interface
- Request rows, columns, rank, specific pivot columns
- Output matrices with "nice" bases for all 4 subspaces
- Or, request Jordan canonical form

