A First Course in Linear Algebra An Open-Source Textbook

> Rob Beezer beezer@ups.edu

Department of Mathematics and Computer Science University of Puget Sound

> Sage Developer Days 1 University of Washington June 16, 2008

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Overview

- A free (no cost) introductory textbook
- A free (GFDL'ed) introductory textbook
- Designed to encourage modification
- Designed to encourage content contributions
- A social experiment
- A disruption to traditional publishing

Overview

- A free (no cost) introductory textbook
- A free (GFDL'ed) introductory textbook
- Designed to encourage modification
- Designed to encourage content contributions
- A social experiment
- A disruption to traditional publishing

Today's Talk

- Open source
- Linear algebra
- SAGE enhanced version
- Parallels to SAGE development
- A wee bit of Python

- ×

Table of Contents

- Core
 - Systems of Linear Equations
 - Vectors
 - Matrices
 - Vector Spaces
 - Determinants
 - Eigenvalues
 - Linear Transformations
 - Representations
- Topics
 - Positive Semi-Definite Matrices
 - Singular Value Decomposition
 - And more . . .
- Applications
 - Curve Fitting
 - Secret Sharing
 - (Your Contribution Here)

a first course in Linear Algebra

Robert A. Beezer Sucia Edition (v1.0)

A First Course in Linear Algebra

Sage Dev1 June 16, 2008

By The Numbers

- 7 Chapters (Core)
- 43 Sections (Core)
- 10 Topics
- 2 Applications
- 133 Definitions
- 257 Theorems
- 382 Exercises
- 254 Solutions
- 24 Archetypes

a first course in Linear Algebra

Robert A. Beezer Sucia Edition (v1.0)

< 67 ▶

A B F A B F

Why?

- Classic yellowed notes with many additions in the margins
- Moved to TFX version for convenience (and legibility)
- Began passing out to students, quality improved

< A >

Why?

- Classic yellowed notes with many additions in the margins
- Moved to TEX version for convenience (and legibility)
- Began passing out to students, quality improved
- Abstract Algebra textbook went to a new edition
- Linear Algebra textbook in a new edition soon
- Combinatorics textbook out-of-print
- Unnecessary revisions drive up costs

Why?

- Classic yellowed notes with many additions in the margins
- Moved to TEX version for convenience (and legibility)
- Began passing out to students, quality improved
- Abstract Algebra textbook went to a new edition
- Linear Algebra textbook in a new edition soon
- Combinatorics textbook out-of-print
- Unnecessary revisions drive up costs
- Would open-source software model carry over?
- Scratching an itch
- "The world does not need another linear algebra text, the world does needs a free linear algebra text."
- Lead by example

A B M A B M

Short History

- September 2002: moved from paper to electronic notes
- January 2004: in earnest, with a complete restart
- December 2004: rough draft complete

Short History

- September 2002: moved from paper to electronic notes
- January 2004: in earnest, with a complete restart
- December 2004: rough draft complete
- December 2006: Version 1.0
- January 2008: Used at Miramar College, St. Cloud State U
- Summer 2008: Version 2.0

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)
- SAGE worksheets (planned)

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)
- SAGE worksheets (planned)
- Theorem and Definition flashcards

- Not an online course, or online textbook
 - Internet for distribution: nearly zero cost
 - Internet for marketing: Google "linear algebra," Page 1
 - Web site: Approx 6,000 monthly visitors
- Production script in Python creates ...
- Downloadable PDF in a variety of formats
 - US Letter, A4
 - One-sided, two-sided
 - Screen format (4:3, 16:9)
- Print-on-demand, Lulu.com, \$24.95
- XML/MathML
- jsMath (next week?)
- SAGE worksheets (planned)
- Theorem and Definition flashcards
- Tarballs for LATEX source, XML (jsMath, SAGE worksheets)

Under the Hood

- Primary Tool: LATEX + pdflatex
- Packages: AMS, hyperref, tocloft
- Translator: tex4ht to build MathML and jsMath
- Graphics: PyX + Python to build PDF
- Sectioning: Custom macros override/extend LATEX
- References: Custom macros override/extend LATEX, hyperref

3

Acronyms

Every definition, theorem, chapter, section, figure, exercise is labeled with a mnemonic acronym (five letter maximum).

- Promotes customization (e.g. deleting sections)
- "Theorem SMZD" preferable to "Theorem 8.3.2"
- Macro: \acronymref{theorem}{SMZD} for easy referencing
- Unexpected benefits for text processing

Typical PDF

Theorem MMDAA Matrix Multiplication Distributes Across Addition

Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then

1.
$$A(B + C) = AB + AC$$

2.
$$(B+C)D = BD + CD$$

Proof We'll do (1), you do (2). Entry-by-entry, for $1 \le i \le m, 1 \le j \le p$,

$$\begin{aligned} A(B+C)]_{ij} &= \sum_{k=1}^{n} [A]_{ik} [B+C]_{kj} & \text{Theorem EMP [209]} \\ &= \sum_{k=1}^{n} [A]_{ik} ([B]_{kj} + [C]_{kj}) & \text{Definition MA [192]} \\ &= \sum_{k=1}^{n} [A]_{ik} [B]_{kj} + [A]_{ik} [C]_{kj} & \text{Property DCN [713]} \\ &= \sum_{k=1}^{n} [A]_{ik} [B]_{kj} + \sum_{k=1}^{n} [A]_{ik} [C]_{kj} & \text{Property CACN [712]} \\ &= [AB]_{ij} + [AC]_{ij} & \text{Theorem EMP [209]} \end{aligned}$$

Version 1.35

Subsection MM.PMM Properties of Matrix Multiplication 212

$$= [AB + AC]_{ij}$$

Definition MA [192]

So the matrices A(B + C) and AB + AC are equal, entry-by-entry, and by the definition of matrix equality (Definition ME [191]) we can say they are equal matrices.

Rob Beezer (U Puget Sound)

3

Typical Front Matter

Section M	0	
VSPM	Vector Space Properties of Matrices	193
SMS	Symmetric Matrices are Square	195
TMA	Transpose and Matrix Addition	195
TMSM	Transpose and Matrix Scalar Multiplication	196
TT	Transpose of a Transpose	196
CRMA	Conjugation Respects Matrix Addition	197
CRMSM	Conjugation Respects Matrix Scalar Multiplication	197
CCM	Conjugate of the Conjugate of a Matrix	197
MCT	Matrix Conjugation and Transposes	198
AMA	Adjoint and Matrix Addition	198
AMSM	Adjoint and Matrix Scalar Multiplication	199
AA	Adjoint of an Adjoint	199
Section M	M	
Section M.	M Systems of Lincor Equations as Matrix Multiplication	205
FMMVD	Faual Matrices and Matrix Vector Products	205
EMP	Entries of Matrix Products	201
MMZM	Matrix Multiplication and the Zero Matrix	210
MMIM	Matrix Multiplication and Identity Matrix	210
MMDAA	Matrix Multiplication Distributes Across Addition	211
MMSMM	Matrix Multiplication and Scalar Matrix Multiplication	212
MMA	Matrix Multiplication is Associative	212
MMID	Matrix Multiplication and Inner Products	212
MMCC	Matrix Multiplication and Complex Conjugation	213
mmoo	Matrix Multiplication and Complex Conjugation	±10

Version 1.35

Typical XML/MathML

Theorem MMDAA Matrix Multiplication Distributes Across Addition

Suppose A is an m×n matrix and B and C are n×p matrices and D is a p×s matrix. Then 1. A(B+C) = AB + AC2. $(B+C) = BD + CD \square$

Proof We'll do (1), you do (2). Entry-by-entry, for $1 \le i \le m$, $1 \le j \le p$,

$$\begin{split} [A(B+C)]_{ij} &= \sum_{k=1}^{n} [A]_{ik} [B+C]_{kj} & \text{Theorem EMP} \\ &= \sum_{k=1}^{n} [A]_{ik} ([B]_{kj} + [C]_{kj}) & \text{Definition MA} \\ &= \sum_{k=1}^{n} [A]_{ik} [B]_{kj} + [A]_{ik} [C]_{kj} & \text{Property DCN} \\ &= \sum_{k=1}^{n} [A]_{ik} [B]_{kj} + \sum_{k=1}^{n} [A]_{ik} [C]_{kj} & \text{Property CACN} \\ &= [AB]_{ij} + [AC]_{ij} & \text{Theorem EMP} \\ &= [AB + AC]_{ij} & \text{Definition MA} \end{split}$$

So the matrices A(B+C) and AB + AC are equal, entry-by-entry, and by the definition of matrix equality (<u>Definition ME</u>) we can say they are equal matrices.

Typical jsMath

🕘 Section MM Matrix Multiplication - Mozilla Firefox 3 Beta 5 🛛 🖃 💷 👞					
<u>File Edit View History Bookmarks Tools Help</u>	0				
🖕 📫 👻 🕝 🔞 🛧 🖳 🐻 http://buzzard.ups.edu/private/jstest/fclali31.html#x32-113000 🛛 🕞 💽 sage dev1 wiki 🔍					
ESmart Bookmarks •					
🔹 🗑 Algebra 📄 GovCo 📄 GovCo 📄 BERGE 🗟 Section 🙀 Park & 📚 7-Day F 🐰 NE 68th 🕃 dev1 🗊 Sec 🤅 💌					
It is this theorem that gives the identity matrix its name. It is a matrix that behaves with matrix multiplication like the scalar 1 does with scalar multiplication. To multiply by the identity matrix is to have no effect on the other matrix.					
Theorem MMDAA					
Matrix Multiplication Distributes Across Addition Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then 1.A(B + C) = AB + AC $2.(B + C)D = BD + CD \square$					
Proof We'll do (1), you do (2). Entry-by-entry, for $1 \le i \le m, 1 \le j \le p$,					
$[A(B + C)]_{ii} = \sum_{k=1}^{n} [A]_{ik} [B + C]_{ki}$	Theorem EMP				
$=\sum_{k=1}^{n} [A]_{ik} ([B]_{ki} + [C]_{ki})$	Definition MA				
$=\sum_{k=1}^{n} [A]_{ik} [B]_{ki} + [A]_{ik} [C]_{ki}$	Property DCN				
$=\sum_{k=1}^{n} [A]_{ik} [B]_{ki} + \sum_{k=1}^{n} [A]_{ik} [C]_{ki}$	Property CACN				
$= [AB]_{ii} + [AC]_{ii}$	Theorem EMP				
$= \begin{bmatrix} AB + AC \end{bmatrix}_{ij}$	Definition MA				
So the matrices $A(B + C)$ and $AB + AC$ are equal, entry-by-entry, and by the definition of matrix equality (<u>Definition ME</u>) we can say they are equal matrices.					
Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication Suppose A is an $m \times n$ matrix and B is an $n \times p$ matrix. Let α be a scalar. Then $\alpha(AB) = (\alpha A)B = A(\alpha B)$.					
Proof These are equalities of matrices. We'll do the first one, the second is similar and will be good practice for you. For $1 \le i \le m$, $1 \le j \le p$,					
f frankling fan in trail	jsMath +				
G Find: MMDAA					
Done					
	西 2 4 西 2 4 臣 2 4 日 2				

Prototypical SAGE Worksheet

Section MM (Sage) - Konqu	ieror 2C.×				
ocation Edit View Bookmarks Tools Settings Help					
C C C C C A http://localhost:8000/home/admin/34/	V 🗐 💭 Google Search V				
Section MM (Sage)	<u>م</u>				
SDGR Notebook	admin <u>Toggle</u> <u>Home</u> <u>Published</u> <u>Log</u> <u>Help</u> <u>Sign out</u>				
Section MM	Save Save & quit Discard & quit				
File Action Data Sage Typeset	Print Use Edit Text Revisions Share Publish				
It is this theorem that gives the identity matrix its name. It is a matrix that be nultiplication. To multiply by the identity matrix is to have no effect on the other	haves with matrix multiplication like the scalar 1 does with scalar matrix.				
Theorem MMDAA Matrix Multiplication Distributes Across Addition Suppose A is an $m \times n$ matrix and B and C are $n \times p$ matrices and D is a $p \times s$ matrix. Then 1. A(B + C) = AB + AC 2. (B + C) = B + AC					
Proof We'll do (1), you do (2). Entry-by-entry, for $1 \le i \le m, 1 \le j \le p$,					
$[A(B + C)]_{ij} = \sum_{k=1}^{n} [A]_{ik}[B + C]_{kj}$	Theorem EMP				
$=\sum_{k=1}^{n} [A]_{ik} ([B]_{kj} + [C]_{kj})$	Definition MA				
$=\sum_{k=1}^{n} [A]_{ik} [B]_{kj} + [A]_{ik} [C]_{kj}$	Property DCN				
$= \sum_{k=1}^{n} [A]_{ik} [B]_{kj} + \sum_{k=1}^{n} [A]_{ik} [C]_{kj}$	Property CACN				
$= [AB]_{ij} + [AC]_{ij}$	Theorem EMP				
$= [AB + AC]_{ij}$	Definition MA				
So the matrices $A(B+C)$ and $AB+AC$ are equal, entry-by-entry, and by the amatrices. \blacksquare	definition of matrix equality (<u>Definition ME</u>) we can say they are equal				
Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication Suppose A is an m×n matrix and B is an n×p matrix. Let a be a scalar. Then a	$(AB) = (\alpha A)B = A(\alpha B).$				
m_{max} of These are equalities of matrices. We'll do the first one, the second is similar and will be good bractice for vou. For $1 \le i \le m$, $1 \le i \le a$.					

Typical Figure

- ∢ ≣ →

Figure Source, Python + PyX

def FIMRA():

v2=v1+0.8 h1=0.0 h2=h1+2.25 c=canvas.canvas() # Textual areas (box names recycled from additive diagram, so not as meaningful here) vector = c.text(h1, v2, "\$\\vect{u}\$", centerboxstyle) represent = c.text(h1, v1, "\$\\vectrep{B}(\\vect{u})\$", centerboxstyle) $ltaction = c.text(h2, v2, "\${\tT}{\vect{u}}=\vectrepinv{C}{\wect{matrixrep{T}{B}(C}\vectrep{B}{\vect{u}}}, enterboxstyle)$ theorem = c.text(h2, v1, "\$\\matrixrep(T)(B)(C)\\vectrep(B){\\vect(u)}\$", centerboxstyle toparrow = path.line(h1+0.5*vector.width+epsilon, v2, h2 - 0.5*ltaction.width-epsilon, v2) c.stroke(toparrow, arrowheadstyle) c.text(0.5*(h1+0.5*vector.width + h2 - 0.5*ltaction.width), v2+epsilon, "\$T\$", [text.halign.center, text.valign.baseline]) bottomarrow = path.line(hl+0.5*represent.width+epsilon, v1, h2 - 0.5*theorem.width-epsilon, v1) c.stroke(bottomarrow, arrowheadstyle) c.text(0.5*(h1+0.5*represent.width + h2 - 0.5*theorem.width), v1+epsilon, "\$\\matrixrep(T){B}{C}\$", [text.halign.center, text.valign.baseline] leftarrow = path.line(h1, v2 - 0.5*vector.height - epsilon, h1, v1 + 0.5*represent.height+epsilon) c.stroke(leftarrow, arrowheadstvle) c.text(h1 - epsilon, 0.5*(v2 - 0.5*vector.height + v1 + 0.5*represent.height), "\$\\vectrepname{B}\$", [text.halign.right, text.valign.middle]] rightarrow = path.line(h2, v1 + 0.5*theorem.height+epsilon, h2, v2 - 0.5*ltaction.height - epsilon) c.stroke(rightarrow, arrowheadstyle) c.text(h2 + epsilon, 0.5*(v2 - 0.5*ltaction,height + v1 + 0.5*theorem,height), "\$\\vectrepinyname{C}\$", [text,halign,left, text,valign,middle]

c.writePDFfile(finalpdfdir + "FTMRA.pdf")

イロト 不得下 イヨト イヨト 二日

Flash Cards

Simple sed script extracts every definition and theorem

Reformat as two $4'' \times 6''$ cards per page

Theorem and Definition Dependencies

- Python script to parse LATEX source
- Record each definition and theorem acronym as a node

Theorem and Definition Dependencies

- Python script to parse LATEX source
- Record each definition and theorem acronym as a node
- For each theorem, note acronyms used in proof
- Build directed edges from theorems to their prerequisites

Theorem and Definition Dependencies

- Python script to parse LATEX source
- Record each definition and theorem acronym as a node
- For each theorem, note acronyms used in proof
- Build directed edges from theorems to their prerequisites
- Draw graph with GraphViz
- Analyze resultant graph: high degree?, root?, longest path?

A B M A B M

Customizable

- Designed to be customized
- Extensive use of macros
 - Notation: \newcommand[1]{\transpose}{#1^t}
 - $\transpose{(AB)}=\transpose{B}\transpose{A}$
- Even diagrams/figures have editable source code
- Switches control format, organization, inclusion (keyval package)
- Granular, 1250 files
- Benefits for adapting to translators
- Benefits for text processing

- Exercises and Solutions
 - Drop-in (almost)
 - Suggested by Debian configurations

ም.

- Exercises and Solutions
 - Drop-in (almost)
 - Suggested by Debian configurations
- Topics and Applications
 - Trace, by Andy Zimmer
 - Hadamard Product, by Elizabeth Million

- Exercises and Solutions
 - Drop-in (almost)
 - Suggested by Debian configurations
- Topics and Applications
 - Trace, by Andy Zimmer
 - Hadamard Product, by Elizabeth Million
- Computation Notes
 - TI-86 calculator
 - Mathematica
 - SAGE

★ 3 > < 3 >

- Exercises and Solutions
 - Drop-in (almost)
 - Suggested by Debian configurations
- Topics and Applications
 - Trace, by Andy Zimmer
 - Hadamard Product, by Elizabeth Million
- Computation Notes
 - TI-86 calculator
 - Mathematica
 - SAGE
- Still, as Benevolent Dictator, strict control on Core

Some Linear Algebra

Problem: Column space of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$?

Answer: All multiples of the first column, a dimension 1 subspace

Some Linear Algebra

Problem: Column space of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$?

Answer: All multiples of the first column, a dimension 1 subspace

A common textbook approach:

- Column space is vectors \mathbf{b} such that $A\mathbf{x} = \mathbf{b}$ is consistent
- So row-reduce augmented matrix [A|b] to study solutions

•
$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 4 & 6 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & b_1 \\ 0 & 0 & 0 & -2b_1 + b_2 \end{bmatrix}$$

• **b** in column space \iff system consistent $\iff -2b_1 + b_2 = 0$

• Column space vectors are solutions to a homogeneous system

向下 イヨト イヨト 二日

CAS Assistance

Row-reduce:
$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 4 & 6 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

2

<ロ> (日) (日) (日) (日) (日)

CAS Assistance

Row-reduce:

$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 4 & 6 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Work-around:
 $\begin{bmatrix} 1 & 2 & 3 & b_1 & 0 \\ 2 & 4 & 6 & 0 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & \frac{b_2}{2} \\ 0 & 0 & 0 & 1 & -\frac{b_2}{2b_1} \end{bmatrix}$

 Scale row 2:
 $\rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & \frac{b_2}{2} \\ 0 & 0 & 0 & -2b_1 & b_2 \end{bmatrix}$

Add last two columns:

- Second row: $-2b_1 + b_2$; equals zero \iff **b** in column space
- First row: $\frac{b_2}{2} = b_1$ when **b** is in column space

A B M A B M

CAS Assistance

Row-reduce:

$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 2 & 4 & 6 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Work-around:
 $\begin{bmatrix} 1 & 2 & 3 & b_1 & 0 \\ 2 & 4 & 6 & 0 & b_2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & \frac{b_2}{2} \\ 0 & 0 & 0 & 1 & -\frac{b_2}{2b_1} \end{bmatrix}$

 Scale row 2:
 $\rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & \frac{b_2}{2} \\ 0 & 0 & 0 & -2b_1 & b_2 \end{bmatrix}$

Add last two columns:

- Second row: $-2b_1 + b_2$; equals zero \iff **b** in column space
- First row: $\frac{b_2}{2} = b_1$ when **b** is in column space

Better: $\begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 2 & 4 & 6 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & -\frac{1}{2} \end{bmatrix}$ Column space of *A* is null space of $\begin{bmatrix} 1 & -\frac{1}{2} \end{bmatrix}$

Extended Echelon Form

Α $m \times n$ matrix

 $[A|I_m]$ augment with $m \times m$ identity matrix

Row-reduce to echelon form: $[A|I_m] \rightarrow [B|J]$ "extended echelon form"

Extended Echelon Form

A $m \times n$ matrix

 $[A|I_m]$ augment with $m \times m$ identity matrix

Row-reduce to echelon form: $[A|I_m] \rightarrow [B|J]$ "extended echelon form"

Then

- B is echelon form of A
- J is nonsingular
- J is product of elementary matrices for row operations
- B = JA
- $A\mathbf{x} = \mathbf{y} \iff B\mathbf{x} = J\mathbf{y}$
- A nonsingular $\Rightarrow J = A^{-1}$

$$[A|I_m] \to [B|J] = \begin{bmatrix} \mathsf{C} & \mathsf{K} \\ \hline \mathsf{0} & \mathsf{L} \end{bmatrix}$$

Let r be the rank of A. L is an $(m - r) \times m$ matrix in echelon form and

$$[A|I_m] \to [B|J] = \begin{bmatrix} \mathsf{C} & \mathsf{K} \\ \hline \mathsf{0} & \mathsf{L} \end{bmatrix}$$

Let r be the rank of A. L is an $(m - r) \times m$ matrix in echelon form and

- Row space of A is row space of C
- Null space of A is null space of C

4 3 5 4 3 5 5

$$[A|I_m] \to [B|J] = \begin{bmatrix} \mathsf{C} & \mathsf{K} \\ \hline \mathsf{0} & \mathsf{L} \end{bmatrix}$$

Let r be the rank of A. L is an $(m - r) \times m$ matrix in echelon form and

- Row space of A is row space of C
- Null space of A is null space of C
- Column space of A is null space of L
- Left null space of A is row space of L

$$[A|I_m] \to [B|J] = \begin{bmatrix} \mathsf{C} & \mathsf{K} \\ \hline \mathsf{0} & \mathsf{L} \end{bmatrix}$$

Let r be the rank of A. L is an $(m - r) \times m$ matrix in echelon form and

- Row space of A is row space of C
- Null space of A is null space of C
- Column space of A is null space of L
- Left null space of A is row space of L

Proof:

- B = JA is key tool
- No dimension arguments
- No vector space properties of subspaces
- Corollary: Subspace dimensions in terms of n, m and r

Open-Source Benefits

- No deadlines!
- Rapid correction of typos and frequent releases
- Unparalled navigation in electronic editions (no DRM!)
- Text processing of source for derivative supplements
- Classroom-inspired exercises
- Student contributions
- tex4ht: $\[AT_EX \rightarrow XML \rightarrow Braille\]$
- Introduced to SAGE (contributed Computation Notes)
- Interesting contributors
 - Frenchman correcting my discourse on "liberte" versus "gratis"
 - Retired South African mining engineer coding echelon_form() routine
 - Indonesian lecturer commenting on finer points of a proof

- 3

- Version control repository
- Forum for student discussions

< A

- Version control repository
- Forum for student discussions
- E-Book formats (Kindle, Sony), re-flowable?
- Conversion to speech? (tex4ht)

- Version control repository
- Forum for student discussions
- E-Book formats (Kindle, Sony), re-flowable?
- Conversion to speech? (tex4ht)
- Automate: jsMath pages to SAGE worksheets
 - Linking across worksheets

()

- Version control repository
- Forum for student discussions
- E-Book formats (Kindle, Sony), re-flowable?
- Conversion to speech? (tex4ht)
- Automate: jsMath pages to SAGE worksheets
 - Linking across worksheets
 - ► SAGE code: LATEX source→jsMath→Worksheet
- Automate: creating "textbook" exercises
 - SAGE code
 - Web form interface
 - Request rows, columns, rank, specific pivot columns
 - Output matrices with "nice" bases for all 4 subspaces
 - Or, request Jordan canonical form