Introduction to Sage:
History, Goals, and a Demo

William Stein

www.sagemath.org

August 2010

William Stein

History and
Goals

Sage: History and Goals

The Sage Project

Mission Statement

W Create a viable free open source alternative to
- Magma, Maple, Mathematica, and Matlab

Goals

A ‘viable alternative” will have...
@ The mathematical features of Magma, Maple,
Mathematica, and Matlab with comparable speed.
@ Beautiful interactive 2d and 3d graphics.
@ A notebook interface and an IDE.
e Many books (full undergraduate curriculum)
e Commercial support (e.g., customized notebook servers)

Sage ain't Octave (=open source MATLAB clone)

Sage need not run programs written in the custom math-only
languages of Magma, Mathematica, etc.

2005: | started Sage @ python

(IENEEPN Software for Arithmetic Geometry Experimentation

History and . .
Goals @ | needed an open source alternative to Magma. David

Joyner (coding theorist) had similar concerns.
@ SAGE in 2005 — number theory (PARI) and coding theory
(GAP) — no symbolic calculus or numerical computation.

Number theory & Coding theory: SAGE started very technical

sage: E = EllipticCurve(’389a’); E

Elliptic Curve defined by y™2 + y = x73 + x72 - 2xx

sage: E.gens ()

[(-1 : 1 : 1), (O : -1 : 1)]

sage: = matrix(GF(5), 4, 7, [1,1,1,0,0,0,0,1,0,0,1,1,...
sage: = LinearCode(G); C

Linear code of length 7, dimension 4 over Finite Field
sage: C.minimum_distance ()

3

G
C

Why not Magma?

Commercial: Expensive for my collaborators and students
(“third world discount” = 3 months salary)

William Stein

History and
Goals

Closed: Implementation of algorithms often secret
Frustrating: Too tight control of development
Static: Users can't define their own classes (data types)

Copy protection: A pain in the arse

©0 000

Language: No eval, no exception handling, no
namespaces, little development of math-only language

Developer community: too small, no public mailing list
Graphics: No graphics, symbolic calculus, or GUI
Bugs: No public bug tracker or list of reported bugs

6000

Compiler: No compiler (nothing like Cython)

What is Sage?

William Stein
P O A self-contained distribution of over 90 open source
Cerl packages that is easy to build from source.

@ Interfaces that smoothly tie together all these libraries
and packages.

© A new library that implements novel algorithms. About a
half million lines of code written by a worldwide
community of about 200 people over the last 5 years.

MOTIVATION: Create a viable free open source alternative
to Magma, Maple, Mathematica, and Matlab.

William Stein

Example: The Development of
Symbolic Calculus in Sage

Symbolic
Calculus

To give a sense of how Sage is developed, I'll give a very brief
glimpse into the development of Symbolic Calculus in Sage.

2006: Maxima/Sage interface

vl o | taught Calculus (in San Diego) in 2006, and used
Maxima + GNUplot for demos and plots.

— o | integrated Maxima into Sage.

Calculus

o David Joyner wrote Sage Constructions — included
examples of Calculus using the Sage/Maxima interface.

Using the Maxima Interface

sage: f = maxima(’1/sqrt(x"2+2%xx-1)’)

sage: f.integrate (x)

log (2*%sqrt (x"2+2*xx-1)+2%x+2)

sage: maxima.plot2d(’cos(2*x) + 2*exp(-x)’,’[x,0,1]°,
’[plot_format ,openmath]’)

[[a plot should appear (just crashes for me!)]]

2007: Bobby Moretti

William Stein

@ 2007: Bobby Moretti (UW undergraduate): wrote a pure
Python 4+ Maxima symbolic Calculus package.

Symbolic @ Idea and implementation was Bobby's from start to finish

Calculus

@ Made Sage an option for Calculus classes, but too slow
compared to Ma* and not flexible enough.

First steps toward symbolic calculus in Sage:

sage: x = var(’x’)

sage: f = 1/sqrt(x"2 + 2xx - 1); f
1/sqrt(x"2 + 2*%x - 1)

sage: f.integrate (x)

log(2*%x + 2*sqrt(x”2 + 2*x - 1) + 2)

Picture: Students working on Sage in 2007

William Stein

Symbolic
Calculus

B. Moretti, R. Miller, W. Stein, P. Clark, T. Boothby, J. Kantor, Y. Qiang, R. Bradshaw

[S—

iInac

is not a CAS

2008-2009: Development snapshot o —

@ July 2008: ISSAC — Burcin suggested investigating

William Stein integrating the C++ library GINAC into Sage.

@ Big problem: GINAC depends on the huge C++ CLN

—— library (field arithmetic), which takes a long time to build,

Coiuls and provides nothing that isn't already in Sage.

@ Aug 2008: | wrote the first version of Pynac during an
intense two week coding sprint in San Diego.

Key ldea

Rip out the CLN dependence of GiINAC and replace it by
Sage/Python. Amazingly, this worked.

@ Pynac is a low level C4+4- library that depends on
Sage/Python and provides fast symbolic arithmetic. No
integration or other high level algorithms.

Aug 2008 — May 2009: Build complete new

symbolic system in Sage on Pynac

@ Finish Pynac and build a new fast symbolic system on top:
William Stein Burcin (mostly) + Mike Hansen + Carl Witty + Robert
Bradshaw + Nick Alexander + me + ---

@ Main new feature of Sage-4.0 (Summer 2009).
Symbolic

Caleulus @ Maxima is still used: symbolic integration, some
comparisons, system solving, etc.

Example: Pynac-based Symbolics

sage: f = 1/sqrt(x"2 + 2*x - 1); 1/(f*f)

X72 + 2*%x - 1

sage: timeit (’1/(fxf)’)

625 loops, best of 3: 146 microseconds per loop
sage: g = maxima(f)

sage: timeit (’gxg’)

125 loops, best of 3: 4.29 milliseconds per loop
sage: 4.29/.146

29.3835616438356

May 2009 - today: Further development

Wil Sl e May 2009 - today: Burcin (mostly) has further developed
symbolics in Sage
@ Pynac has been very stable (hardly any changes needed).

@ Nils Bruin (and Robert Bradshaw): A new C library
interface to Maxima.

Symbolic
Calculus

Burcin Erocal

William Stein

Future

Direciors Sage: Future Directions

A Typical Sage Release

S @ "“Sage 4.5.2 was released on August 7, 2010. The following
il s 83 people contributed to this release (of those, 15 made

their first contribution to Sage):

Adam Webb, Alex Ghitza, Alexandre Blondin Massé, Alyson Deines, ...
Willem Jan Palenstijn, William Stein, Yann Laigle-Chapuy

Future @ Release managers: Dan Drake, Mitesh Patel
e Statistics: We closed 159 tickets (coverage score: 83.8%)
o Tickets:

Closed tickets
#8489: Nicolas M. Thiéry: New ‘sageexample‘ environment for sagetex
#8667: Simon King: New version of modular group cohomology spkg

. 156 other tickets omited ...
#9665: Rishikesh: Make lcalc accessible as a library on 0S X

See http://trac.sagemath.org/sage_trac/milestone/sage-4.5.2

http://trac.sagemath.org/sage_trac/milestone/sage-4.5.2

Future Roadmap for the Sage project

@ Sage-5.0 (2010)
o Sage-6.0 (2011)
@ Sage-7.0 (2012)

Future
Directions

Roadmap of Sage project

@ Sage-5.0 (2010)
Microsoft Windows port (via Cygwin)

Upgrade PARI to the latest SVN version

Upgrade MPIR to version 2.x

Get doctest coverage to 90% (currently at 84.6%)

Future @ Sage-5.x (rest of this year...)

Directions

William Stein

o Function fields (Hess's algorithms, 2-descent, L-functions)
o Symbolic summation, integration, and special functions:

o arbitrary precision numerical evaluation (mpmath)
@ series expansion

o differentiation

o shifts (difference analogue of differentiation)

o And much more!
@ Sage-6.0 (2011)
@ Sage-7.0 (2012)

Roadmap of Sage project

William Stein

@ Sage-5.0 (2010)
@ Sage-6.0 (2011):

o Noncommutative symbolic computation (Plural, Weyl
Algebras, Graded algebras, Lie algebras).
Much improved Sage notebook (scalability, customizability)
Textbooks, interacts: included with Sage.
Commercial support (custom notebook servers)
Switch to using C library interfaces for GAP and Maxima.
Get doctest coverage to 100%
And much more!

@ Sage-7.0 (2012)

Future
Directions

Roadmap of Sage project

William Stein

@ Sage-5.0 (2010)

@ Sage-6.0 (2011)

@ Sage-7.0 (2012):

Future o Faster Groebner basis computation

DUsctions e Vast improvements in Sage for Science and Engineering
(documentation, diff'eq, data workflows, reproducible
research, instrument support, data formats like HD5)

o Statistics: something Pythonic/Cythonic and built on top
of R + scipy.stats + GSL, which competes with SAS, etc.

e Switch to Python 3.x

o Randomized testing that goes beyond doctesting
e And much more!

William Stein

Use Sage From the Command Line

Command Line Sage

\' enn Terminal — ssh — 72x18 |

| sage Version 4.5.1, Release Date: 2010-07-19 |
| Type notebook() for the GUI, and license() for information. |

sage: factor(2010)

2 * 3 %5 * 67

sage: £ = 1/sqrt(x"2 + 2*x - 1); £
1/sgrt(x™2 + 2*x - 1)

sage: £°2

1/(x"2 + 2*x = 1)

sage: f.integrate(x)

log(2*x + 2*sqgrt(x"2 + 2*x - 1) + 2)
sage: I

Use Sage Via the Notebook

Web Browser Based Interface to Sage

lliam S B—

8¢ grre—— A\
€ 5 C e jsmsenbare) Br B2 Y Ba® R &0 £
Hodo Ltome NFomal Feal [face sage A4S ©News fof (D schedule) springer » 2 Other Bookmarks
SDE The Sage Notebook
Welcome! Sign into the Sage Notebook v4.5
Sage s a different approach to mathematics software. Usemame
The Sage Notebook

‘With the Sage Notcbook any
worksheets. In @ worksheet, one can write code using Sage, Python, and other software
included in Sage.

. . S
General and Advanced Pure and Applied Snunt
Sign up for "
Use Sage forstudying caleulus, elementary to very advanced number theory,
tograph; theory, graph th Yand exact et

linear algebra, and more.

Use an Open Source Alternative
By using Sage you help to support a viable open source altemative to Magma, Maple,

Mathematica, and MATLAB. Sage includes many high-quality open source math
packages.

Use Most Mathematics Software from Within Sage

Sage makes it casy for you to use most mathematics software together. Sage includes
‘GAP, GP/PAR], M: d Singul 9

Use a Mainstream Programming Language

You work with Sage using the highly regarded scripting language Python. You can
write programs that combine serious mathematics with anything else.

Demo: Factoring

Factoring an integer:

William Stein

factor(2012)

22.503
Factoring a symbolic expression:
Xx,y=var('x,yv'); factor(x"3 - sin(y)"3)
(z — sin (y))(2? + zsin (y) + sin (y)?)
Factoring a polynomial over a nontrivial finite field:

F.<alpha> = GF(49); x = polygen(F)
factor(x™4 + x"3 - 2)

(x+a+1) (z+6a+2)- (z+6)*

Demo: Solving Equations

Solve a quadratic equation:

William Stein
x = var('x'); solve(x"2 + 7*x == 5, x)[0]

1 T
z=—-5v69—3
Solve a system of two linear equations with one unknown coefficient c:

var('alpha, y')
solve([3*x + 7*y == 2, alpha*x + 3*y == 8],

X,Y)
_ 50 . _ 2(c-12)
Hw—m-g’y_ Ta—9]]

Demo: Computing Symbolic Integrals

WWilliam Stein f = 1/sqrt(x"2 + 2*x - 1); f.integrate(x)

log(2:c+2\/a:2+2a:—1+2)

g = integrate(sin(x)*tan(x), x); g
—1 log (sin (z) — 1) + 3 log (sin (z) + 1) — sin (z)
h = g.diff(x); h

— cos(z) cos(z)

2(inlz)-1) T 2(sin(z)+1) COS (z)

(h - sin(x)*tan(x)).simplify full()

0

Demo: Plotting a 2D Function

William Stein

plot(1l/sqgrt(x"2 + 2*x - 1), (x,.4,2), thickness=3,
color='purple', fill=True, gridlines=True)

Demo: Plotting a 3D Function

var('x,y');plot3d(sin(x-y)*y*cos(x),(x,-3,3),(y,-3,3))

(z,y)

mo: Interactive image compression

import pylab; import numpy

A_image = numpy.mean(pylab.imread(DATA + 'mumbai.png'}), 2)

u,s,v = numpy.linalg.svd(A_image)

S = numpy.zeros(A_image.shape)

S[:len(s),:len(s)] = numpy.diag(s)

n = A image.shape[0]

@interact

def svd image(i = ("Eigenvalues (quality)",(20,(1l..A image.shape[0])))):
A_approx = numpy.dot(numpy.dot(uf:,:i], S[:i,:1i]), v[:i,:])
g = graphics_array([matrix plot(A approx), matrix plot(A image)])
show(g, axes=False, figsize=(8,3))
html("Compressed to %.1f%% of size using %s eigenvalues."%(

100%(2.0*i*n+i)/(n*n), i))

Eigenvalues (quality) 20

Compressed to 12.5% of size using 20 eigenvalues.

	History and Goals
	Symbolic Calculus
	Future Directions
	A Demo

