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Notation

.
Notation
..

.

. ..

.

.

Fq with q = pr finite field with q elements

A := Fq[T ]

K := Quot(A)

v∞ valuation of K at the place ∞, i.e.
v∞( f

g ) = deg(g) − deg(f ), v∞(0) = ∞
K∞ the completition of K at v∞, i.e. K∞ = Fq((π∞)) the Laurent
series field where π∞ is the uniformizer T−1.

O∞ := {x ∈ K∞ | v∞(x) ≥ 0}
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The Bruhat-Tits tree T

.
Definition of T
..

.

. ..

.

.

Let Vert(T ) be the equivalence classes of O∞-lattices in K 2
∞. Each

such equivalence class defines a vertex of T .

Let Λ, Λ′ ∈ Vert(T ) and choose a lattice L ∈ Λ. Λ and Λ′ are
connected in T iff there exists a L′ ∈ Λ′ such that L′ ⊆ L and
L/L′ ' O∞/π∞O∞. The set of directed edges of T is called
Edge(T ).

Let |T | be the geometric realization of T .

.
Theorem about the structure of T
..

.

. ..

.

.

T is a q + 1-regular tree, i.e. T is a connected, cycle-free tree, where
every vertex has q + 1 neighbours.
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Example for q = 3

Figure: The Bruhat-Tits tree for F3
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Operation of GL2(A) on T

There is a bijection

Vert(T ) −→ GL2(K∞)/ GL2(O∞)K ⋆
∞

There is a bijection

Edge(T ) −→ GL2(K∞)/Γ∞K ⋆
∞

with Γ∞ := {
(

a b
c d

)
∈ GL2(O∞) | v∞(c) > 0}

GL2(A)\T is just a half-line.

Reason: GL2(A)\GL2(K∞)/GL2(O∞)K ⋆
∞

∼= {
(

1 0
0 πn

)
| n ∈ N}

We write Λn for the class of the lattice O∞ ⊕ πn
∞O∞.
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Congruence subgroups

Let N ∈ A be normalized.

Γ(N) := {γ ∈ GL2(A) | γ ≡
(

1 0
0 1

)
mod N}

A subgroup of GL2(A) containig Γ(N) for any N ∈ A is called a
congruence subgroup.

Γ0(N) := {γ ∈ GL2(A) | γ ≡
(

a b
0 d

)
mod N}

Γ1(N) := {γ ∈ GL2(A) | γ ≡
(

1 b
0 1

)
mod N}

Congruence subgroups are of finite index in GL2(A), since

Γ(N)\GL2(A) ∼=
(

F⋆
q 0
0 1

)
SL2(A/N).
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Calculation of Γ\T with Γ a congruence subgroup, Idea

GL2(A)\T is a simple half line.

GL2(A)\T : Λ0 → Λ1 → Λ2 → . . .

Γ\T is a covering of GL2(A)\T
Elements of Γ\T are Γ-orbits of T . Every GL2(A)-orbit of T
decomposes into finitly many Γ-orbits, since Γ\GL2(A) is finite.

We need to know StabGL2(A)(Λi ) to see how an GL2(A)-orbit
decomposes.
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Algorithm for the calculation of Γ\T

Let Gi := StabGL2(A)(Λi ). A simple calculation shows, that
G0 = GL2(Fq) and

Gi = {
(

a b
0 d

)
| a, d ∈ F⋆

q, b ∈ Fq[T ], deg(b) ≤ i}.

Let S = {s1, . . . , sn} be a set of representativs of Γ\GL2(A).

Let Υ be the standard half line Λ0 → Λ1 → Λ2 → . . . and si (Υ) the
halfline si (Λ0) → si (Λ1) → si (Λ2) → . . .

Then Γ\T can be obtained by taking the halflines s1(Υ), . . . , sm(Υ)
and identify vertices and edges using the following rules:

...1 Only identify vertices and edges of the same level.

...2 si (Λn) ∼ sj(Λn) iff there exists a g ∈ Gn such that sigs−1
j ∈ Γ.

...3 si ((Λ0, Λ1)) ∼ sj((Λ0, Λ1)) iff there exists a g ∈ G0 ∩ G1 such that
sigs−1

j ∈ Γ.
...4 si ((Λn,Λn+1)) ∼ sj((Λn, Λn+1)) iff there exists a g ∈ Gn such that

sigs−1
j ∈ Γ for n ≥ 1.

...5 Once n ≥ deg(N) we stop; the remaining half-lines represent cusps.
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Algorithm for the calculation of Γ\T II

...1 Compute a canonical representative system S = Γ\GL2(A).

...2 First compute the edges over (Λ0, Λ1): Let B(Fq) := G0 ∩ G1. For
each si ∈ S loop over γ ∈ B(Fq) and compute the canonical
representative sj of siγ. Remove sj from S and add (sj , γ) to an label
of the edge si (Λ0,Λ1).

...3 Next compute the vertices over Λ0: Let S ′ be the remaining
representatives from step 2, so S ′ = Γ\GL2(A)/B(Fq). Now for each
si ∈ S ′ loop over all γ′ ∈ P1(Fq) = GL2(Fq)/B(Fq), compute the
representative sj of siγ

′. Remove sj from S ′ and add (sj , γγ′) to an
label of the vertex siΛ0.

...4 Next compute the vertices over Λi , i = 1, . . . , deg(N) − 1: For the
fiber over Λ1 start again with S ′ = Γ\GL2(A)/B(Fq) and loop over
G1/B(Fq). For the fiber over Λi , i ≥ 2 start with the remaining
representatives from step i − 1 and loop over Gi/Gi−1. Change the
vertex labels as in step 3.
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Example: q = 2, Γ1(T
2)\T

Figure: The quotient Γ1(T
2)\T for F2
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Example: q = 3, Γ1(T
2)\T

Figure: The quotient Γ1(T
2)\T for F3
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The Drinfeld upper half plane

.
The Drinfeld upper half plane
..

.

. ..

.

.

Let C∞ := K̂ alg
∞ .

Ω := P1(C∞)\P1(K∞) is called the Drinfeld upper half plane.

GL2(K∞) acts on Ω by fractional linear transformations.
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Drinfeld modular forms

There are natural inclusions

GL2(A) ↩→ GL2(K ) ↩→ GL2(K∞).

Let Γ ⊂ GL2(A) be a congruence subgroup.
.
Definition: Drinfeld modular form (Goss)
..

.

. ..

.

.

A Drinfeld modular form of weight k (and trivial type) for Γ is a rigid
analytic function

f : Ω → C∞

such that

...1 f (γz) = (cz + d)k f (z) for all γ =

(
a b
c d

)
∈ Γ.

...2 f has a Laurent series expansion at all cusps of Γ with vanishing
principal part.
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Definition of harmonic cocycles

For an edge e ∈ Edge(T ) let e⋆ denote the same edge with
orientation reversed.

For an vertex v ∈ Vert(T ) we write e 7→ v if v is the target of e

Let M be any vector space with a GL2(A)-operation and Γ ⊆ GL2(A)
a congruence subgroup.

...1 A function c : Edge(T ) −→ M is called an M-valued harmonic cocycle,
if

...1 for all vertices v ∈ Vert(T ) we have
P

e 7→v

c(e) = 0.

...2 c(e⋆) = −c(e) for all edges e ∈ Edge(T ).
...2 A function c : Edge(T ) −→ M is called Γ-equivariant, if for all γ ∈ Γ

we have c(γe) = γc(e).
...3 Let Char(Γ,M) be the vector space of M-valued Γ-equivariant harmonic

cocycles with values in M.
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Automatic cuspidality

A Γ-equivariant harmonic cocycle c is called cuspidal if there exist a finite
subgraph Z ⊂ Γ\T with c(e) = 0 for all e 6∈ Y (π−1(Z )).
.
Theorem: Automatic cuspidality (Teitelbaum)
..

.

. ..

.

.

Let M be a finite-dimensional vector-space over a field of characteristic p
with a GL2(A)-operation. Then every M-valued Γ-equivariant harmonic
cocycle is cuspidal.

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Seattle 2010 16 / 25



Connection with Drinfeld cusp forms

Recall:

Drinfeld modular forms are rigid analytic functions on Ω.

Ω is a tubular neigborhood of |T | via ρ.

ρ−1 of the inner part of an edge e is an annulus A(e).

For f of weight 2 define the map

Res2(f ) : Edge(T ) → C∞ : e 7→ ResA(e)(fdz).

.
Theorem (Teitelbaum)
..

.

. ..

.

.

Res2 defines an isomorphism from the C∞-vector space of Drinfeld cusp
forms of weight 2 and level Γ to Char(Γ,K )⊗K C∞. An analog result holds
for weight k with M = (Symk−2((K 2)⋆))⋆ ⊗K C∞.
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Stable Edges

From now on let Γ be one of Γ1(N), Γ(N) or Γ0(N) ∩ Γ1(P), i.e. Γ is
p′-torsion-free.

An edge e ∈ Edge(T ) (or a vertex v ∈ Vert(T )) is called Γ-stable, if
StabΓ(e) = {1} (or StabΓ(v) = {1}). (So, i.e. there are no
GL2(A)-stable edges!)

Fact: The stable part of the tree is connected in Γ\T .

Fact: A vertex v ∈ Vert(T ) is stable if and only if its image in Γ\T
has exactly q + 1 neighbours. An edge v ∈ Edge(T ) is stable, if and
only if one of the adjacent vertices is stable (except for the case
Γ1(T )).

Fact: For every unstable edge e ∈ Edge(T ) there is a finite and easy
to compute set Source(e) of stable edges of T such that

c(e) =
∑

e′∈Source(e)

c(e ′).
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Stable Edges, cont.

So a harmonic cocycle c is determined by the values of c on the
stable part of Γ\T .

Let n = deg(N). Then an edge in the covering over (Λi ,Λi+1) with
i ≥ n is unstable.

In fact a harmonic cocycle is determined by the values of c on the
stable edges over the edge (Λ0, Λ1), and for every stable vertex over
Λ0 we get one relation between these edges.

Ralf Butenuth (Uni Essen) Hecke Operators On Drinfeld Cusp Forms Seattle 2010 19 / 25



Example: q = 2, Γ1(T
2)\T

Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that
determine a harmonic cocycle.
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Example: q = 3, Γ0(T
2(T + 1)) ∩ Γ1(T )\T

Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that
determine a harmonic cocycle.
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Construction of an explicit basis of Char(Γ, M)

Let B := {w1, . . . ,wm} be a basis of M.

Let S := {e1, . . . , er} ⊂ Edge(Γ\T ) be the set of stable edges over
(Λ0, Λ1) and let {v1, . . . , vs} ⊂ Vert(Γ\T ) be the set of stable
vertices over Λ0.

For each vi choose one edge evi in S having vi as its origin. Let BS
be the set of edges obtained by removing all evi from S . We call
these edges stable basis edges.

For each e ∈ BS choose one fixed lift ẽ ∈ Edge(T ).

For each tupel (e, w) ∈ BS × B let ce,w be the harmonic cocycle
defined by ce,w (ẽ) := w and ce,w (ẽ ′) = 0 for all other e ′ ∈ BS .

Note that ce,v extends uniquely to all e ∈ Edge(T ).

.
Proposition
..
.
. ..

.

.

The cocycles {ce,v | e ∈ BS , v ∈ B} form a basis of Char(Γ, M).
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Hecke operators on Char(Γ, M)

Let p ∈ A be a prime ideal. Translating the Hecke action to the tree
gives:

Tp(c)(e) =
∑

δ∈(Γ∩Γ0(p))\Γ

δ−1

(
p 0
0 1

)−1

c(

(
p 0
0 1

)
δe)

Let e = (γΛ0, γΛ1) be given. To evaluate c(

(
p 0
0 1

)
δe) we consider

the matrices

(
p 0
0 1

)
δγ and

(
p 0
0 1

)
δγ

(
1 0
0 π

)
.

Writing these two matrices in the form γ′
(

1 0
0 πki

)
α (i ∈ {1, 2})

with α ∈ K ⋆
∞ GL2(O∞) and γ′ ∈ GL2(A) we find the image edge(

p 0
0 1

)
δe = γ′(Λk1 , Λk2). Note that |k1 − k2| = 1.

Write γ′ = γ0sj with γ0 ∈ Γ and sj ∈ S and use the Γ-equivariance of
c to obtain an edge in the pre-stored quotient graph Γ\T .
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Computing the matrix of Tp w.r.t. our basis

To compute a matrix for Tp we need to loop over all ce,v with e ∈ BS
and v ∈ B.

Let ce,v be given. Let e ′ ∈ BS be another stable basis edge. We need
to compute the value Tp(ce,v )(e ′).

As described in the last slide we are reduced to summing over values
of the form γc(e ′′) where e ′′ is some other edge in the quotient graph.

Note that ce,v is zero everywhere outside of the preimage of two
half-lines in Γ\T .

If e ′′ is contained in the preimage of one of these half-lines, then if e ′′

is stable, we know the value ce,v (e ′′). If e ′′ is unstable, we have to
sum over the source of e ′′. All the edges in the source are still in the
preimage of the same half-line.
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