Computing Hecke Operators On Drinfeld Cusp Forms

Ralf Butenuth

Universität Duisburg-Essen, Essen

Seattle, 2010-05-24

2 The Drinfeld upper half plane and Drinfeld modular forms

3 Drinfeld modular forms and harmonic cocycles on $\mathcal T$

Omputing Hecke operators on harmonic cocycles

Notation

- \mathbb{F}_q with $q = p^r$ finite field with q elements
- $A := \mathbb{F}_q[T]$
- *K* := Quot(*A*)
- v_{∞} valuation of K at the place ∞ , i.e. $v_{\infty}(\frac{f}{g}) = \deg(g) - \deg(f), v_{\infty}(0) = \infty$
- K_{∞} the completition of K at v_{∞} , i.e. $K_{\infty} = \mathbb{F}_q((\pi_{\infty}))$ the Laurent series field where π_{∞} is the uniformizer T^{-1} .

•
$$\mathcal{O}_{\infty} := \{x \in K_{\infty} \mid v_{\infty}(x) \ge 0\}$$

Definition of ${\mathcal T}$

- Let $Vert(\mathcal{T})$ be the equivalence classes of \mathcal{O}_{∞} -lattices in K^2_{∞} . Each such equivalence class defines a vertex of \mathcal{T} .
- Let Λ, Λ' ∈ Vert(T) and choose a lattice L ∈ Λ. Λ and Λ' are connected in T iff there exists a L' ∈ Λ' such that L' ⊆ L and L/L' ≃ O_∞/π_∞O_∞. The set of directed edges of T is called Edge(T).
- Let $|\mathcal{T}|$ be the geometric realization of \mathcal{T} .

Theorem about the structure of ${\mathcal T}$

T is a q + 1-regular tree, i.e. T is a connected, cycle-free tree, where every vertex has q + 1 neighbours.

Example for q = 3

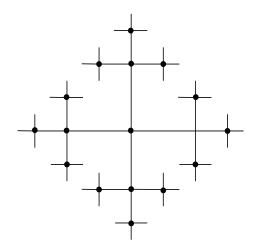


Figure: The Bruhat-Tits tree for \mathbb{F}_3

Operation of $GL_2(A)$ on \mathcal{T}

• There is a bijection

$$\operatorname{\mathsf{Vert}}(\mathcal{T}) \longrightarrow \operatorname{\mathsf{GL}}_2({\mathcal{K}_\infty})/\operatorname{\mathsf{GL}}_2(\mathcal{O}_\infty){\mathcal{K}_\infty^\star}$$

• There is a bijection

$$\begin{split} \mathsf{Edge}(\mathcal{T}) &\longrightarrow \mathsf{GL}_2(\mathcal{K}_\infty)/\mathsf{\Gamma}_\infty \mathcal{K}_\infty^* \\ \text{with } \mathsf{\Gamma}_\infty := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{GL}_2(\mathcal{O}_\infty) \mid v_\infty(c) > 0 \} \\ \bullet \ \mathsf{GL}_2(\mathcal{A}) \backslash \mathcal{T} \text{ is just a half-line.} \\ \text{Reason: } \mathsf{GL}_2(\mathcal{A}) \backslash \operatorname{GL}_2(\mathcal{K}_\infty) / \operatorname{GL}_2(\mathcal{O}_\infty) \mathcal{K}_\infty^* \cong \{ \begin{pmatrix} 1 & 0 \\ 0 & \pi^n \end{pmatrix} \mid n \in \mathbb{N} \} \\ \bullet \text{ We write } \Lambda_n \text{ for the class of the lattice } \mathcal{O}_\infty \oplus \pi_\infty^n \mathcal{O}_\infty. \end{split}$$

Let $N \in A$ be normalized.

•
$$\Gamma(N) := \{ \gamma \in \operatorname{GL}_2(A) \mid \gamma \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \}$$

A subgroup of GL₂(A) containig Γ(N) for any N ∈ A is called a congruence subgroup.

•
$$\Gamma_0(N) := \{ \gamma \in \operatorname{GL}_2(A) \mid \gamma \equiv \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mod N \}$$

•
$$\Gamma_1(N) := \{ \gamma \in \operatorname{GL}_2(A) \mid \gamma \equiv \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mod N \}$$

• Congruence subgroups are of finite index in $GL_2(A)$, since $\Gamma(N) \setminus GL_2(A) \cong \begin{pmatrix} \mathbb{F}_q^* & 0 \\ 0 & 1 \end{pmatrix} SL_2(A/N).$

- $GL_2(A) \setminus T$ is a simple half line.
- $GL_2(A) \setminus T : \Lambda_0 \to \Lambda_1 \to \Lambda_2 \to \dots$
- $\Gamma \setminus T$ is a covering of $GL_2(A) \setminus T$
- Elements of Γ\T are Γ-orbits of T. Every GL₂(A)-orbit of T decomposes into finitly many Γ-orbits, since Γ\GL₂(A) is finite.
- We need to know Stab_{GL2(A)}(Λ_i) to see how an GL₂(A)-orbit decomposes.

Algorithm for the calculation of $\Gamma \setminus \mathcal{T}$

- Let $G_i := \operatorname{Stab}_{\operatorname{GL}_2(\mathcal{A})}(\Lambda_i)$. A simple calculation shows, that $G_0 = \operatorname{GL}_2(\mathbb{F}_q)$ and $G_i = \{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, d \in \mathbb{F}_q^{\star}, b \in \mathbb{F}_q[T], \operatorname{deg}(b) \leq i \}.$
- Let $S = \{s_1, \ldots, s_n\}$ be a set of representatives of $\Gamma \setminus GL_2(A)$.
- Let Υ be the standard half line $\Lambda_0 \to \Lambda_1 \to \Lambda_2 \to \ldots$ and $s_i(\Upsilon)$ the halfline $s_i(\Lambda_0) \to s_i(\Lambda_1) \to s_i(\Lambda_2) \to \ldots$
- Then $\Gamma \setminus \mathcal{T}$ can be obtained by taking the halflines $s_1(\Upsilon), \ldots, s_m(\Upsilon)$ and identify vertices and edges using the following rules:
 - Only identify vertices and edges of the same level.
 - **2** $s_i(\Lambda_n) \sim s_j(\Lambda_n)$ iff there exists a $g \in G_n$ such that $s_i g s_j^{-1} \in \Gamma$.
 - S_i((Λ₀, Λ₁)) ~ s_j((Λ₀, Λ₁)) iff there exists a g ∈ G₀ ∩ G₁ such that s_igs_i⁻¹ ∈ Γ.
 - $s_i((\Lambda_n, \Lambda_{n+1})) \sim s_j((\Lambda_n, \Lambda_{n+1}))$ iff there exists a $g \in G_n$ such that $s_i g s_i^{-1} \in \Gamma$ for $n \ge 1$.
 - **Once** $n \ge \deg(N)$ we stop; the remaining half-lines represent cusps.

Algorithm for the calculation of $\Gamma \setminus T$ II

- Compute a canonical representative system $S = \Gamma \setminus GL_2(A)$.
- Pirst compute the edges over (Λ₀, Λ₁): Let B(𝔽_q) := G₀ ∩ G₁. For each s_i ∈ S loop over γ ∈ B(𝔽_q) and compute the canonical representative s_j of s_iγ. Remove s_j from S and add (s_j, γ) to an label of the edge s_i(Λ₀, Λ₁).
- Next compute the vertices over Λ_0 : Let S' be the remaining representatives from step 2, so $S' = \Gamma \setminus GL_2(A)/B(\mathbb{F}_q)$. Now for each $s_i \in S'$ loop over all $\gamma' \in \mathbb{P}^1(\mathbb{F}_q) = GL_2(\mathbb{F}_q)/B(\mathbb{F}_q)$, compute the representative s_j of $s_i\gamma'$. Remove s_j from S' and add $(s_j, \gamma\gamma')$ to an label of the vertex $s_i\Lambda_0$.
- Next compute the vertices over Λ_i, i = 1,..., deg(N) − 1: For the fiber over Λ₁ start again with S' = Γ\GL₂(A)/B(𝔽_q) and loop over G₁/B(𝔽_q). For the fiber over Λ_i, i ≥ 2 start with the remaining representatives from step i − 1 and loop over G_i/G_{i−1}. Change the vertex labels as in step 3.

Example: q = 2, $\Gamma_1(T^2) \setminus T$

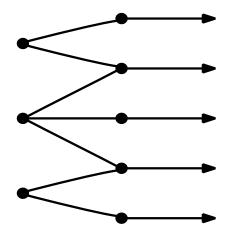


Figure: The quotient $\Gamma_1(T^2) \setminus \mathcal{T}$ for \mathbb{F}_2

Example: q = 3, $\Gamma_1(T^2) \setminus T$

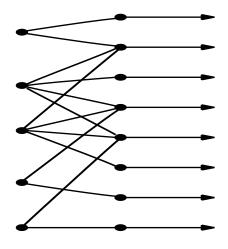


Figure: The quotient $\Gamma_1(T^2) \setminus \mathcal{T}$ for \mathbb{F}_3

The Drinfeld upper half plane

• Let
$$\mathbb{C}_{\infty} := \mathcal{K}^{\mathsf{alg}}_{\infty}$$
.

- $\Omega := \mathbb{P}^1(\mathbb{C}_\infty) \setminus \mathbb{P}^1(\mathbb{K}_\infty)$ is called the Drinfeld upper half plane.
- $GL_2(K_{\infty})$ acts on Ω by fractional linear transformations.

Drinfeld modular forms

There are natural inclusions

$$\operatorname{GL}_2(A) \hookrightarrow \operatorname{GL}_2(K) \hookrightarrow \operatorname{GL}_2(K_\infty).$$

Let $\Gamma \subset GL_2(A)$ be a congruence subgroup.

Definition: Drinfeld modular form (Goss)

A Drinfeld modular form of weight k (and trivial type) for Γ is a rigid analytic function

$$f:\Omega
ightarrow\mathbb{C}_\infty$$

such that

•
$$f(\gamma z) = (cz + d)^k f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$.

 f has a Laurent series expansion at all cusps of Γ with vanishing principal part.

- For an edge e ∈ Edge(T) let e^{*} denote the same edge with orientation reversed.
- For an vertex $v \in Vert(\mathcal{T})$ we write $e \mapsto v$ if v is the target of e
- Let *M* be any vector space with a GL₂(*A*)-operation and Γ ⊆ GL₂(*A*) a congruence subgroup.
 - A function $c : Edge(\mathcal{T}) \longrightarrow M$ is called an *M*-valued harmonic cocycle, if

• for all vertices $v \in Vert(\mathcal{T})$ we have $\sum c(e) = 0$.

2 $c(e^*) = -c(e)$ for all edges $e \in Edge(\mathcal{T})$.

- ② A function c : Edge(T) → M is called Γ-equivariant, if for all γ ∈ Γ we have c(γe) = γc(e).
- Set C_{har}(Γ, M) be the vector space of M-valued Γ-equivariant harmonic cocycles with values in M.

A Γ -equivariant harmonic cocycle c is called cuspidal if there exist a finite subgraph $Z \subset \Gamma \setminus \mathcal{T}$ with c(e) = 0 for all $e \notin Y(\pi^{-1}(Z))$.

Theorem: Automatic cuspidality (Teitelbaum)

Let M be a finite-dimensional vector-space over a field of characteristic p with a $GL_2(A)$ -operation. Then every M-valued Γ -equivariant harmonic cocycle is cuspidal.

Recall:

- Drinfeld modular forms are rigid analytic functions on Ω.
- Ω is a tubular neigborhood of $|\mathcal{T}|$ via ρ .
- ρ^{-1} of the inner part of an edge *e* is an annulus A(e).

For f of weight 2 define the map

$$\operatorname{\mathsf{Res}}_2(f):\operatorname{\mathsf{Edge}}(\mathcal{T})\to \mathbb{C}_\infty:e\mapsto\operatorname{\mathsf{Res}}_{\mathcal{A}(e)}(\mathit{fdz}).$$

Theorem (Teitelbaum)

Res₂ defines an isomorphism from the \mathbb{C}_{∞} -vector space of Drinfeld cusp forms of weight 2 and level Γ to $C_{har}(\Gamma, K) \otimes_{K} \mathbb{C}_{\infty}$. An analog result holds for weight k with $M = (\text{Sym}^{k-2}((K^2)^*))^* \otimes_{K} \mathbb{C}_{\infty}$.

Stable Edges

- From now on let Γ be one of $\Gamma_1(N)$, $\Gamma(N)$ or $\Gamma_0(N) \cap \Gamma_1(P)$, i.e. Γ is p'-torsion-free.
- An edge e ∈ Edge(T) (or a vertex v ∈ Vert(T)) is called Γ-stable, if Stab_Γ(e) = {1} (or Stab_Γ(v) = {1}). (So, i.e. there are no GL₂(A)-stable edges!)
- Fact: The stable part of the tree is connected in $\Gamma \setminus \mathcal{T}$.
- Fact: A vertex v ∈ Vert(T) is stable if and only if its image in Γ\T has exactly q + 1 neighbours. An edge v ∈ Edge(T) is stable, if and only if one of the adjacent vertices is stable (except for the case Γ₁(T)).
- Fact: For every unstable edge e ∈ Edge(T) there is a finite and easy to compute set Source(e) of stable edges of T such that

$$c(e) = \sum_{e' \in \text{Source}(e)} c(e').$$

- So a harmonic cocycle c is determined by the values of c on the stable part of Γ\T.
- Let $n = \deg(N)$. Then an edge in the covering over $(\Lambda_i, \Lambda_{i+1})$ with $i \ge n$ is unstable.
- In fact a harmonic cocycle is determined by the values of *c* on the stable edges over the edge (Λ₀, Λ₁), and for every stable vertex over Λ₀ we get one relation between these edges.

Example: q = 2, $\Gamma_1(T^2) \setminus T$

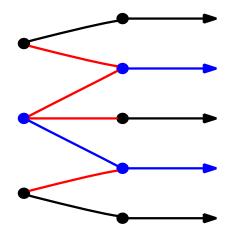


Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that determine a harmonic cocycle.

Example: q = 3, $\Gamma_0(T^2(T+1)) \cap \Gamma_1(T) \setminus T$

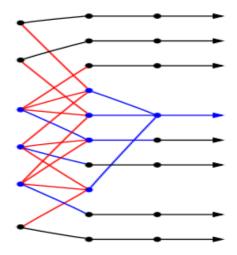


Figure: Colored: Stable edges and vertices. Red: Minimal set of edges, that determine a harmonic cocycle.

Ralf Butenuth (Uni Essen)

Construction of an explicit basis of $C_{har}(\Gamma, M)$

- Let $\mathcal{B} := \{w_1, \dots, w_m\}$ be a basis of M.
- Let $S := \{e_1, \ldots, e_r\} \subset \mathsf{Edge}(\Gamma \setminus \mathcal{T})$ be the set of stable edges over (Λ_0, Λ_1) and let $\{v_1, \ldots, v_s\} \subset \mathsf{Vert}(\Gamma \setminus \mathcal{T})$ be the set of stable vertices over Λ_0 .
- For each v_i choose one edge e_{v_i} in S having v_i as its origin. Let BS be the set of edges obtained by removing all e_{v_i} from S. We call these edges stable basis edges.
- For each $e \in BS$ choose one fixed lift $\tilde{e} \in \mathsf{Edge}(\mathcal{T})$.
- For each tupel $(e, w) \in BS \times B$ let $c_{e,w}$ be the harmonic cocycle defined by $c_{e,w}(\tilde{e}) := w$ and $c_{e,w}(\tilde{e}') = 0$ for all other $e' \in BS$.
- Note that $c_{e,v}$ extends uniquely to all $e \in Edge(\mathcal{T})$.

Proposition

The cocycles $\{c_{e,v} \mid e \in BS, v \in B\}$ form a basis of $C_{har}(\Gamma, M)$.

Hecke operators on $C_{har}(\Gamma, M)$

 Let p ∈ A be a prime ideal. Translating the Hecke action to the tree gives:

$$\mathcal{T}_{\mathfrak{p}}(c)(e) = \sum_{\delta \in (\Gamma \cap \Gamma_{0}(\mathfrak{p})) \setminus \Gamma} \delta^{-1} \begin{pmatrix} \mathfrak{p} & 0 \\ 0 & 1 \end{pmatrix}^{-1} c(\begin{pmatrix} \mathfrak{p} & 0 \\ 0 & 1 \end{pmatrix} \delta e)$$

- Let e = (γΛ₀, γΛ₁) be given. To evaluate c(\$\begin{pmatrix} 0 & 0 \\ 0 & 1 \$\begin{pmatrix} \delta e\$ \$\) we consider the matrices \$\begin{pmatrix} 0 & 0 \\ 0 & 1 \$\)\$ δγ and \$\begin{pmatrix} p & 0 \\ 0 & 1 \$\)\$ δγ \$\begin{pmatrix} 1 & 0 \\ 0 & π \$\)\$.
 Writing these two matrices in the form \$\gamma'\$ \$\begin{pmatrix} 1 & 0 \\ 0 & π^{k_i} \$\)\$ α \$\$ (i \in \{1, 2\}\$) with \$\alpha \in K^*_{\infty} \operatorname{GL}_2(\mathcal{O}_{\infty})\$ and \$\gamma' \in \operatorname{GL}_2(A)\$ we find the image edge \$\$ \$\begin{pmatrix} p & 0 \\ 0 & 1 \$\)\$ δe = \$\gamma'(\Lambda_{k_1}, \Lambda_{k_2}\$)\$. Note that \$|k_1 k_2| = 1\$.
- Write $\gamma' = \gamma_0 s_j$ with $\gamma_0 \in \Gamma$ and $s_j \in S$ and use the Γ -equivariance of c to obtain an edge in the pre-stored quotient graph $\Gamma \setminus \mathcal{T}$.

Computing the matrix of $T_{\mathfrak{p}}$ w.r.t. our basis

- To compute a matrix for T_p we need to loop over all c_{e,v} with e ∈ BS and v ∈ B.
- Let c_{e,v} be given. Let e' ∈ BS be another stable basis edge. We need to compute the value T_p(c_{e,v})(e').
- As described in the last slide we are reduced to summing over values of the form γc(e") where e" is some other edge in the quotient graph.
- Note that $c_{e,v}$ is zero everywhere outside of the preimage of two half-lines in $\Gamma \setminus T$.
- If e" is contained in the preimage of one of these half-lines, then if e" is stable, we know the value c_{e,v}(e"). If e" is unstable, we have to sum over the source of e". All the edges in the source are still in the preimage of the same half-line.

- **U. Nonnengardt:** Arithmetisch definierte Graphen über rationalen Funktionenkörpern, *Diplomarbeit im Fachbereich Mathematik*, *Universität des Saarlands, Saarbrücken* (1994)
- **J.P. Serre:** Trees, *Springer Verlag* (1980)
- **J.T. Teitelbaum:** The Poisson Kernel For Drinfeld Modular Curves, Journal Of The American Mathematical Society **4**, (1991), **491-511**
- **J.T. Teitelbaum:** Rigid Analytic Modular Forms: An Integral Transform Approach, In: *The Arithmetic of Function Fields, edited by D. Goss, D. R. Hayes, and M. I. Rosen, deGruyter Press* (1992)
- my master's thesis (Diplomarbeit)