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Basic notation

Fq the field of q = pn elements
K∞ a local field with residue field Fq

O∞ the ring of integers of K∞
π∞ a uniformizer of K∞
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The Bruhat-Tits tree

K∞, O∞, π∞, Fq

Definition (Bruhat-Tits tree)

T := the simplicial complex of dimension 1 with

set of vertices Vert(T ) :=
homothety classes [L] of rank 2 O∞-lattices L ⊂ K2

∞

set of edges Edge(T ) :=
pairs ([L], [L′]) such that π∞L ( L′ ( L.

|T | the geometric realization of T

Lemma
T is a q + 1-regular tree.

Definition
Particular vertices Λi := [O∞ ⊕ πi∞O∞], i ∈ Z.
standard vertex Λ0, standard edge e0 := (Λ0,Λ1)
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Group action on T

K∞, O∞, π∞, Fq

Consider elements of K 2
∞ as column vectors

 have natural left action of GL2(K∞) on K 2
∞.

Definition (GL2(K∞)-action on T )

GL2(K∞)× T → T : (γ, [L]) 7→ [γL]

Set Γ∞ :=
{(

a b
c d

)
∈ GL2(O∞) | c ∈ π∞O∞

}
.

Lemma
GL2(K∞) acts transitively on Vert(T ) and Edge(T ).

Vert(T ) = GL2(K∞)/GL2(O∞)K ∗∞,
Edge(T ) = GL2(K∞)/Γ∞K ∗∞.
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Drinfeld’s upper half plane Ω

C∞ := K̂ alg
∞

Definition (Drinfeld’s upper half plane)

Ω := P1(C∞) r P1(K∞)

Definition (GL2(K∞)-action on Ω)

GL2(K∞)× Ω→ Ω : (γ =
(

a b
c d

)
, z) 7→ γz = az+b

cz+d
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(rigid) analysis on Ω

K∞, O∞, π∞, Fq, C∞, Ω

Proposition (reduction map)

∃ a (natural) GL2(K∞)-equivariant map

ρ : Ω→ |T | such that

ρ−1(|e0|r {Λ0,Λ1}) = {z ∈ C∞ | 1 < |z | < q}

ρ−1(Λ0) = {z ∈ C∞ | |z | = 1}r(q-1 open discs of radius 1)!

Remarks: Ω is like a tubular neighborhood of T .

GL2(K∞)-translates of ρ−1(|e0|) provide an atlas for Ω.

On these charts use Laurent series type expansions to define
(rigid) analytic functions on Ω.
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Drinfeld modular forms

From now on (for simplicity):

A = Fq[T ] ⊂ K = Fq(T ) ⊂ K∞ = Fq((
1

T
)), π∞ :=

1

T

Fix Γ ⊂ GL2(A) a congruence subgroup:

Definition (Goss)

A Drinfeld modular form of weight k, type ` for Γ is a
rigid analytic function f : Ω→ C∞ such that

(a) f (γz) = det γ−`(cz + d)k f (z) for all γ =
(

a b
c d

)
∈ Γ.

(b) Laurent series expansion of f at all cusps has vanishing
principal part.

Examples: The maps
(rank 2 Drinfeld module ϕ) 7→ the i-th coefficient of ϕa.
(rank 2 Drinfeld module ϕ) 7→ its discriminant.
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Results

Define cusp forms (as usual).
Define Hecke operators for primes 0 6= p ⊂ Fq[T ]
Have no Petersson inner product for char. p forms.

Let f be a Hecke eigenform with eigenvalues ap(f ).

Theorem (Goss)

The ap(f ) are integral

Kf := K ({ap(f )}p) is finite over K .

Theorem (B.)

(1) There is a strictly compatible system(
ρf ,λ : Gal(K/K )→ GL1(K̂f

λ
)
)
λ finite

such that ρf ,λ(Frobp) = ap(f ) for almost all p.

(2) The sequence (ap(f ))p is given by a Hecke character!
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Questions

General multiplicity one is wrong!

Does it hold in weight 2 and for Γ0(p) with p prime?

 Possible implications for uniform boundedness of torsion
points of Drinfeld modules of rank 2 over K . (C. Armana)

There is no Ramanujan-Petersson conjecture

For forms of automorphic weight k , in (the few) known
cases, the motivic weight seem span [0, k/2] ∩ Z.

Hecke characters and Galois reps. for DMF’s:

Can have ρf ,λ(Frobp) 6= ap(f ) for p6 |Npλ because of possible
non-ordinary reduction of X0(Npλ) at p

Determine such p for X0(N); do they obey some patterns??

Compute ∞-types of the associated Hecke characters.

Recover eigenforms from eigenvalues when possible?
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Harmonic cocycles

T , Edge(T ), Γ

”Drinfeld modular forms via local systems on trees”:

Let M be a K [GL2(A)]-module with dimK (M) finite.

Definition
Char (Γ,M):= the K -vector space of M-valued Γ-invariant
harmonic cocycles := the set of maps

c : Edge(T )→ M : e 7→ c(e),

such that:

1. For all edges e one has c(−e) = −c(e).

2. For all vertices v one has
∑

e→v c(e) = 0,

where the sum is over all edges e ending at v .

3. For all γ ∈ Γ and e ∈ Edge(T ) one has c(γe) = γc(e).
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Remarks

T , Edge(T ), Γ

(1)

Proposition (automatic cuspidality; Teitelbaum)

If M is p-power torsion then:
∃Z ⊂ Γ\T finite, s.t. all c ∈ Char (Γ,M) vanish outside Z.

 space of harmonic cocycles is computable!

(2) Char (Γ,Z) ∼= automorphic forms for Γ.

Proposition (Gekeler)

Char !(Γ,Z)⊗Z Fp ⊂ Char (Γ,Fp) describes double cusp forms
inside weight 2 cusp forms.
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Proposition (automatic cuspidality; Teitelbaum)

If M is p-power torsion then:
∃Z ⊂ Γ\T finite, s.t. all c ∈ Char (Γ,M) vanish outside Z.

 space of harmonic cocycles is computable!

(2) Char (Γ,Z) ∼= automorphic forms for Γ.

Proposition (Gekeler)

Char !(Γ,Z)⊗Z Fp ⊂ Char (Γ,Fp) describes double cusp forms
inside weight 2 cusp forms.
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The residue map

T , Edge(T ), Γ, Char (Γ,M)

Recall:
A Drinfeld modular form f is a rigid analytic function on Ω.

Ω is a tubular neighborhood of T via ρ.

ρ−1 of the inner part of an edge e is an annulus A(e).

Define: For f of weight 2

Res2 : Edge(T )→ C∞ : e 7→ ResA(e)(fdz).

Theorem (Teitelbaum)

Res2 : SDr
2 (Γ,C∞) −→ Char (Γ,K )⊗K C∞

is an isomorphism of C∞-vector space

An analogous theorem holds in weight k with M ≈ Symk−2.
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On the proof: Suffices for Γ = Γ(N) for N ∈ A r Fq.

Construct µ2 : Char (Γ,C∞)→ Meas(P1(K∞),C∞)Γ.

Use P1(K∞) = boundary(T ) with
Edge(T )→ basis of open sets of P1(K∞) : e 7→ U(e).

Define c 7→ µ2,c with µ2,c (U(e)) := c(e) ∀e.

Integrate against ”Poisson-kernel”:

Meas(P1(K∞),C∞)Γ → SDr
2 (Γ,C∞)

µ 7→ fµ(z) =

∫
P1

1

z − ζ
dµ(ζ)

Theorem: The following composite is the identity:

(µ 7→ Poiss.Int.) ◦ (c 7→ µ2,c ) ◦ (f 7→ Res2(f ))

Corollary Res2 is injective.
Surjectivity: Compute dim SDr

2 (Γ,C∞) via Riemann-Roch;
Compute dim Char (Γ,C∞) combinatorially. Get equality.



G. Böckle

Drinfeld modular
forms

The Bruhat-Tits tree

The Drinfeld upper
half plane

Drinfeld modular
forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Towards an
algorithm

”Effective version of
automatic cuspidality”

Γ\T as a covering of
a half line

References

On the proof: Suffices for Γ = Γ(N) for N ∈ A r Fq.

Construct µ2 : Char (Γ,C∞)→ Meas(P1(K∞),C∞)Γ.

Use P1(K∞) = boundary(T ) with
Edge(T )→ basis of open sets of P1(K∞) : e 7→ U(e).

Define c 7→ µ2,c with µ2,c (U(e)) := c(e) ∀e.

Integrate against ”Poisson-kernel”:

Meas(P1(K∞),C∞)Γ → SDr
2 (Γ,C∞)

µ 7→ fµ(z) =

∫
P1

1

z − ζ
dµ(ζ)

Theorem: The following composite is the identity:

(µ 7→ Poiss.Int.) ◦ (c 7→ µ2,c ) ◦ (f 7→ Res2(f ))

Corollary Res2 is injective.
Surjectivity: Compute dim SDr

2 (Γ,C∞) via Riemann-Roch;
Compute dim Char (Γ,C∞) combinatorially. Get equality.



G. Böckle
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On Fourier coefficients

e = Carlitz exponential, π̃ = Carlitz period, t(x) := e−1(πx)
uniformizer near cusp ∞, f =

∑
i≥1 ai t

i a form for SL2(A)

Corollary

ai = π̃

∫
π∞O∞

t1−i (x)dµf (x)

 Can (in principle) recover the Fourier coefficients of a
Drinfeld modular form f from its associated measure µf (in
any weight)



G. Böckle

Drinfeld modular
forms

The Bruhat-Tits tree

The Drinfeld upper
half plane

Drinfeld modular
forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Towards an
algorithm

”Effective version of
automatic cuspidality”

Γ\T as a covering of
a half line

References

On Fourier coefficients

e = Carlitz exponential, π̃ = Carlitz period, t(x) := e−1(πx)
uniformizer near cusp ∞, f =

∑
i≥1 ai t

i a form for SL2(A)

Corollary

ai = π̃

∫
π∞O∞

t1−i (x)dµf (x)

 Can (in principle) recover the Fourier coefficients of a
Drinfeld modular form f from its associated measure µf (in
any weight)



G. Böckle
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”Effective version of automatic cuspidality”

What is really needed to completely describe a
harmonic cocycle?

Definition (Serre?)

A simplex t ∈ Vert(T ) ∪ Edge(T ) is Γ-stable iff

StabΓ(t) = {1}.

Proposition (Serre?)

There are only finitely many Γ-stable orbits of simplices.

These orbits are effectively computable! (see Ralf’s talk)

Theorem (Teitelbaum)

Suppose Γ is p′-torsion free. Then:

I Any Γ-invariant harmonic cocycle is determined by its
values on the Γ-stable orbits of edges.

I Relations: Only those from Γ-stable vertices.
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G. Böckle

Drinfeld modular
forms

The Bruhat-Tits tree

The Drinfeld upper
half plane

Drinfeld modular
forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Towards an
algorithm

”Effective version of
automatic cuspidality”

Γ\T as a covering of
a half line

References

Γ\T as a covering of a half line

How to understand the quotient Γ\T and the Γ-stable
simplices?

Proposition

The half line on {Λi}i≥0 represents GL2(Fq[T ])\T .

There are no GL2(Fq[T ])-stable simplices of T .
The stabilizers of Λi , i ≥ 1, are strictly increasing in i .

For general Γ:

Γ\T → GL2(Fq[T ])\T

is a finite, highly ramified ‘covering’ of the above half line.

”Monotonicity of the stabilizers” is inherited by Γ\T
 stable simplices only above Λi for i small (depends on Γ).

For details on algorithms and some repetition: See Ralf’s
talk.



G. Böckle
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G. Böckle

Drinfeld modular
forms

The Bruhat-Tits tree

The Drinfeld upper
half plane

Drinfeld modular
forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Towards an
algorithm

”Effective version of
automatic cuspidality”

Γ\T as a covering of
a half line

References

References
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