Progress Report: Statistics over function fields

S. Baig, R. Bradshaw, C. Hall, S. J. Miller

Sage Days 21: Function Fields Seattle, May 26, 2010

Summary

Goal: Use ellff library to investigate statistics of zeros of elliptic curve L-functions in function field.

Successfully installed library on Miller's laptop.
Gathered data on ranks and first zero above the central point.

Plan: add additional functions to ellff library.

Sage Code using ellff (which is not yet finalized)

```
import sage.libs.ellff as ellff
R=ZZ['T']
R.inject_variables ()
def test (p=5):F=GF(p)
R.<t>= F['t']
K = Frac (R)
return ellff.ellff_EllipticCurve (K, [0, -1-t, 0, t, 0])
def twist (E, f, tables = False, force = False, verbose = False) : E_twist =
E.quadratic_twist (f, tables = tables, force = force, verbose = verbose)
if verbose : print "finite bad reduction:"
print " M_sp : ", E_twist.__finite _M_sp
print " M_ns : ", E_twist.__finite _M_ns
print " A : ", E_twist.__finite _A
print
print "refined finite additive reduction:"
print " I^* : ", E_twist.__finite _I_star
print" II,II^* : ", E_twist.__finite_II, E_twist.__finite_II _star
print " III,III^* : ", E_twist.__finite_III, E_twist.__finite_III _star
print" IV,IV^* : ", E_twist.__finite _IV, E_twist.__finite_IV _star
return E_twist
def pullback (E, f, tables = False, force = False, verbose = False) : E_pullback=
E.pullback (f, tables = tables, force = force, verbose = verbose)
if verbose : print "finite bad reduction:"
print " M_sp : ", E_pullback.__finite _M _sp
print " M_ns : ", E_pullback.__finite _M _ns
print " A : ", E_pullback.__finite _A
print
print "refined finite additive reduction:"
print" IN* : ", E_pullback._finite _I _star
print" II,II^* : ", E_pullback.__finite _II, E_pullback.__finite_II_star
print" III,III^* : ", E_pullback.__finite_III, E_pullback.__finite_III_star
print " IV,IV^* : ", E_pullback.__finite _IV, E_pullback.__finite _IV _star
return E_pullback
```


Sage Code using ellff (which is not yet finalized)

```
p=5
R. <t > = GF (p) ['t']
R.inject_variables ()
print
E = test (p)
print "finite bad reduction:"
print " M_sp : ", E.__finite _M_sp
print " M_ns : ", E.__finite _M_ns
print " A : ", E.__finite _A
print
print "L-fcn = ", E.L_function ()
```


Sage Code using ellff (which is not yet finalized)

```
# CREATE DATA
```

```
data_list = [[p, E.a4, E.a6]]
```

data_list = [[p, E.a4, E.a6]]
data_vec = [[P, E.a4, E.a6]]
data_vec = [[P, E.a4, E.a6]]
print "Printing information on our initial elliptic curve"
print "Printing information on our initial elliptic curve"
print E
print E
print "Prime is ", p
print "Prime is ", p
Edisc = 4* (E.a4)^3 + 27* (E.a6)^2
Edisc = 4* (E.a4)^3 + 27* (E.a6)^2
print "a4 = ", E.a4, " a6 = ", E.a6, " and disc = ", Edisc
print "a4 = ", E.a4, " a6 = ", E.a6, " and disc = ", Edisc
for a in range (p) : for b in range (p) : for c in range (p) : ford in range (p): fore in range (p):f =
for a in range (p) : for b in range (p) : for c in range (p) : ford in range (p): fore in range (p):f =
a+b*t+c*t^2+d*t^3+e*t^4+t^5
a+b*t+c*t^2+d*t^3+e*t^4+t^5
rk = 0
rk = 0
args = []
args = []
args_list = []
args_list = []
\#print (f, Edisc, gcd (f, Edisc))
\#print (f, Edisc, gcd (f, Edisc))
if gcd (f, diff (f)).degree () == 0 and gcd (f, Edisc).degree () == 0: E_twist =
if gcd (f, diff (f)).degree () == 0 and gcd (f, Edisc).degree () == 0: E_twist =
twist (E, f, tables = True, force = True)
twist (E, f, tables = True, force = True)
L = E_twist.L_function ()
L = E_twist.L_function ()
\#print "f = ", f, " : ", L, ", ", factor (L), ", ", "HERE"
\#print "f = ", f, " : ", L, ", ", factor (L), ", ", "HERE"
forpi, ex in list (L.factor ()) : v = []
forpi, ex in list (L.factor ()) : v = []
\#print "ex = ", ex, ", pi = ", pi, ", pi.roots() = ", pi.roots (CDF),
\#print "ex = ", ex, ", pi = ", pi, ", pi.roots() = ", pi.roots (CDF),
for r,m in pi.roots (CDF) : \#print "r = ", r, ", m = ", m

```
for r,m in pi.roots (CDF) : #print "r = ", r, ", m = ", m
```


Sage Code using ellff (which is not yet finalized)

```
assert m == 1
v.append (r.arg ())
for i in range (ex): if r.arg () == 0:rk = rk + 1
args_list.append (r.arg ())
args.append ([ex, v])
#print "v = ", v
# build the data file consisting of the twist,
    L - function, #sign of the f.e., the rank, and the zeroes
# data_vec stores a zero with its multiplicities as a vector
# data_list stores a zero as many times as its multiplicity
data_vec.append ([f, L, E_twist.sign, rk, args])
data_list.append ([f, L, E_twist.sign, rk, args_list])
    for i in range (len (data_list) - 1) :
    if data_list[i + 1][1].degree () \not= data_list [2][1].degree () :
        raise ValueError ("Degree of L-function at %s is %s"%(i+1, data_list[i + 1][1]))
if data_list [i + 1][1].degree () f len (data_list[i + 1][4]) :
    raise ValueError ("Not enough zeros found at %s"% (i + 1))
    data_str = str (data_list).replace ('[', ' {').replace (']', '}')
fname = str (E.a4) + "-" + str (E.a6) + ".dat"
file = open (fname, "w")
file.write (data_str)
file.close ()
```


Rank of degree 4 twists

$$
E: y^{2}=x^{3}+\left(3+2 t+3 t^{2}\right) x+\left(4+4 t+4 t^{2}+4 t^{3}\right)
$$

Twisting by square-free $a+b t+c t^{2}+d t^{3}+t^{4}$ relatively prime to discriminant.

Data incomplete for $p=11$

	$p=5(345)$	$p=7(1573)$	$p=11(5000)$
Rank 0	39.13	41.96	42.53
Rank 1	51.01	50.16	49.86
Rank 2	9.86	7.69	7.33
Rank 3	0.00	0.19	0.27
Rank 4	0.00	0.00	0.02

First normalized zero above central point

$$
E: y^{2}=x^{3}+\left(3+2 t+3 t^{2}\right) x+\left(4+4 t+4 t^{2}+4 t^{3}\right)
$$

Twisting by square-free $a+b t+c t^{2}+d t^{3}+t^{4}$ relatively prime to discriminant.

Data incomplete for $p=11$

	$p=5(345)$	$p=7(1573)$	$p=11(5000)$
mean Rank 0	.458	.437	.432
mean all even	.367	.369	.368

First normalized eigenangle above 0: $23,040 \mathrm{SO}(4)$ matrices: Mean $=.357 ; 23,040$ SO(6) matrices: Mean = $.325, N \rightarrow \infty$ scaling limit: Mean $=.321$.

First normalized zero above central point

Figure: First zero for $N \rightarrow \infty$ limit of $\mathrm{SO}(2 N)$.

Histograms for first zero (same curve and degree twists as above)

Figure: First zero for $p=5$ rank 0 curves: Mean $=.458$

Histograms for first zero (same curve and degree twists as above)

Figure: First zero for $p=5$ rank even curves: Mean $=.367$

Histograms for first zero (same curve and degree twists as above)

Figure: First zero for $p=7$ rank 0 curves: Mean $=.437$

Histograms for first zero (same curve and degree twists as above)

Figure: First zero for $p=7$ rank even curves: Mean $=.369$

Histograms for first zero (same curve and degree twists as above)

Figure: First zero for $p=11$ rank 0 curves: Mean $=.432$

Histograms for first zero (same curve and degree twists as above)

Figure: First zero for $p=11$ rank even curves: Mean $=.368$

