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LINEAR CODES AND MODULAR CURVES

S. G. Vleduts and Yu. I. Manin GDC 519.725+512.624

Results of recent investigations at the juncture of coding theory, the theory of
computability, and algebraic geometry over finite fields are presented. The
basic problems of the asymptotic theory of codes and Goppa's construction of
codes on the basis of algebraic curves are presented, and a detailed algorithmic
analysis is given of the codes arising on the modular curves of elliptic modules
of V. G. Drinfel'd.

INTRODUCTION

In the present work we present results of recent investigations at the juncture of
coding theory, the theory of computability, and algebraic geometry over finite fields. These
investigations were initiated by the remarkable idea of V. D. Goppa [7, 8] who suggested
considering linear systems on algebraic curves as codes and discovered that among them there
are very good codes which are called isolated codes in Sec. 1 below. Tsfasman [28, 16] then
showed that the asymptotic parameters of Goppa's codes also improve the long unsurpassed
Varshamov—Gilbert bound if there exist curves having a number of points which is sufficiently
large as compared with the genus. Indeed, Thara [24, 23] earlier discovered that modular

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie
Dostizheniya, Vol. 25, pp. 209-257, 1984.
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curves and the classical and Shimura curves are just such curves; this was discovered inde-
pendently by Vlieduts and Zink [28]. An estimate of the maximal number of points over the
fields Fq was then obtained by Drinfel'd and Vleduts [5] (Theorem 3.8); it is sharp for q =
p?%. Algorithms constructing codes near the Varshamov—Gilbert bound are exhaustive; there
thus arises the natural problem of generating good codes by means of algorithms which work
sufficiently rapidly. It turns out that Goppa codes corresponding to modular curves can be
constructed in polynomial time. For classical modular curves this was demonstrated in the
work of S. G. Vleduts [4]. 1In this survey the modular curves of Drinfel'd [10] are cbtained
in a more convenient form from a computational aspect. Codes obtained from modular curves
have good asymptotic parameters only for sufficiently large q. In particular, binary codes
(@ = 2) cannot be obtained in this manner. G. L. Katsman had the idea of using cascade codes
with a fixed internal binary isolated code and external codes obtained from modular curves.
This leads to the best known binary codes with polynomial complexity of construction (see

parts 1.2.13, 1.3.7, and [6]).

Part of the works mentioned were carried out within the framework of seminars on Dio-
phantine geometry and applied algebra which Yu. I. Manin held in the Mechanics and Mathematics
Faculty of Moscow State University in 1981 and 1982. Chapter I of the paper was written by
Yu. I. Manin using the notes of these seminars and of a course of lectures. The main problems
of asymptotic coding theory and Goppa's construction are presented there. Chapter II, written
by S. G. Vleduts, contains the detailed algorithmic analysis he made of modular—code construc-

tions.

The authors convey their sincere thanks to V. G. Drinfel'd for very useful conversations
regarding elliptic modules, to S. I. Gel'fand and M. A. Tsfasman for their attention to the
work and valuable remarks, and to D. Yu. Grigor'ev for communicating the algorithm of decom
position of polynomials into factors used in part 2.6.5.

CHAPTER 1

ASYMPTOTIC PROBLEMS OF THE THEORY OF CODES

1. Codes and Their Asymptotic Properties

1. Notation. Let S be a finite set; |S| denotes the number of its elements; S® = S x
x § (n factors). We fix a set F, IF] = q, called an alphabet; F will frequently be a
finite field of q elements; it is then written Fq. The Hemming distance between a, b ¢ FD is
the number of positions i€ (1, ..., n) for which aj s=bj. It is denoted by d(a, b). The set

FU' with the Hemming distance is a finite metric space.

2. Codes. A q-ic block code of length n = n(C) is a subset C = F®, Its code distance
is the number d=d(C)=miu{d (a, b)|a, b6C. asb}. Its (logarithmic) power is the number k=£k(C)=
logs|C| (it is not necessarily an integer). Below the following relative characteristics are
important: R(C) = k(C)/n(C) and &§(C) = d(C)/n(C). A code with parameters [n, k, d] is some-
times called an [n, k, d]-code.

] 3. The Code Region. In the (R, §)-plane we consider points corresponding to all pos-
sible g codes (a point is counted with a multiplicity equal to the number of codes corre-
sponding to it up to isomorphism).* We set

\ the family of code points {R(C), §(C)},

q
Uy = the set of limit points of the family Vq.

Obviously, U,=V,=[0,1]2. 1t will be proved below that Uq is the set of points lying below the
graph of a certain continuous function R = aq(8). Codes corresponding to points of Vq Ug
are called isolated.

4. Coding and Decoding. Let M be a set (the space of communications), and let C < FR
be a code. A coding is a mapping (usually an imbedding) E:M > C. Decoding is a mapping D:
FO ~ C with the property D(a) = a if a €C.

We call a decoding D standard ('relative to maximum plausability") if for any word b€ FO
D(b) is the code word closest to it (the latter is, of course, not necessarily unique). If

*In the present work we use a nonstandard notation for the coordinates of a point in the (R,
§)-plane. Namely, in the notation (R, §) R denotes the ordinate of a point and$ itsabscissa.
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=d(€), t = [d—1/2],a £C and d(a', a) < t, then D(a') = a for a standard decoding. It
is usually said that a [n, k, d]-code corrects [d — 1/2] errors. This statement acquires
meaning in the scheme below.

5. Noise-Immune Coding. Suppose the information to be transmitted over a noisy channel
is produced in the form of a sequence of symbols of the alphabet F of potentially unbournded
length. The standard scheme of noise-immune coding is as follows. We choose a code C C FI!
with parameters R = k/n, 8§ = d/n; for simplicity we assume that k is an integer. We fix a

~

coding mapping E:FK 5 C and a decoding mapping D:FD' - C.

a) Let a  FXN be a communication of length kN. We decompose it into N blocks of length
k and convert it into a code sequence EN(a) of length nN by coding each block by means of E:

Ev@=E(@ ... E)E(@ryr .- Q). ..

It will be transmitted along the communications channel. 1Its length is greater than the
length of the communication by nN/kN = 1/R times. Therefore, the transmission speed R <1
actually measures the degree of increase in the volume of information due to coding.

b) After transmission EjN(a) is converted into a distorted signal En(a). We postulate
simple statistical properties of the noise: it acts independently on successive symbols aj
and distorts each symbol with probability p.

c) Let N be so large that with probability close to one in each block of length n in
EN(a) there are no more than (p + e€)n errors (e is small). Suppose also that pn < (d — 1)/2,
i.e., p < 8/2. Then the standard block decoding corrects all errors at the site of the re-
celver: DNOEN(a) = Ey(a) almost surely.

Thus, having at our disposal a code of large length n with characteristics (R, 8), we
can correct errors occurring with probability <§/2 on a symbol. This explains the role of
the limit code region Uq (especially its boundary) and also the role of isolated codes if
their length is sufficiently large to guarantee smoothing of noise.

We shall explicitly indicate the price paid for this method of protecting information:
— additional computational work in coding and decoding;
— decrease of the transmission speed;

— delay in the start of coding by the time required to process n successive symbols of
information.

6. Codes with Structure; Linear Codes. For small values of q0 it is possible to give
E and D by a table, but even in the realistic case q = 2, n = 100 this is completely unthink-
able. Hence, on FN there must be given a mathematical structure which would allow economic
description of some subclass of mappings E, D and effective computation of.the values of E
and D on words. Usually the choice of such a class leads also to a restriction of the class
of codes C < FM to which these mappings can be applied.

A code C is called linear if on F there is given the structure of a finite field Fgq,
and C C Fgq0 is a linear subspace. In this case k = dim FqC; unfortunately, the function

d(C) has bad linear properties,

A linear code C can be described either as the matrix of a linear mapping C or as the
matrix of a linear mapping Fqk + Fq® with kernel C. The first matrix is called a generating
matrix while the latter is called a control matrix. These matrices consist of kn or n(n —
k) letters of the alphabet Fq while direct enumeration of all elements of C would require nq
letters. Therefore, giving a linear code by a matrix prov1des logarithmic curtailment of
message length. The coding and decoding algorithms are giyen by analogous matrices if it is
required that E:qu + C be a linear mapping and D:Fg? - qu be a linear projection onto the

image of E.

k

Other classes of codes and algorithms D, E are obtained if another structure, for exam-
ple, a tree structure, is given on FR.

7. Formulation of the Problems. The main problems of coding theory are optimization
problems. It is desirable to achieve simultaneously a high transmission speed and a large
fraction of correctable errors whereby the codlng and decoding algorithms should admit simple
machine realization and have a short working time. Of course, all these demands are contra-
dictory. The mathematical theory of asymptotic properties of codes establishes the bounds of

2613



the achievable. We shall mainly concern ourselves with describing the region Ug and the set
of isolated points of Vq\_ Uq and also analogues of these sets ylin ylin (points corresponding
to linear codes) and UP lim, by definition (R, G)EU}’,"", if (R, §) is a limit point of a se-
quence (R{Cn), 6(C,)) where Cp are polynomial codes, i.e., codes whose matrix is computable
in time polynomially bounded by the magnitude of this matrix.

In Sec. 2 the following results are proved.

8. _THEOREM. There exists a continuous function [0, I — 1/q] which is decreasing on
the segment a,(6), 66[0, 1], such that

Ug={(R, O 0< R <atq (B))-

It satisfies the following inequalities:
ay (0)=1, o, (6)<max(1——31—16, O) (the Plotkin upper bound);

ag(8) > max [l — (8logs(g—1)—6logy 6 — (1 —8) log, (1 —8), 0] (the Varshamov—Gilbert lower bound).

More precise upper bounds for og (8) are known (see below). The lower bound remained
unimproved until the discovery of Goppa codes which are connected with modular curves; they
provide the best codes for q = p?@ = 49. So far it is not known if it can be improved for

the most interesting cases q = 2, 3.

9. THEOREM. There exist continuous functions ay"(8) and af"®(8) which are decreasing on

the segment [0, 1 — 1/q], such that Uéln and Ug 10 respectively, are parts of [0, 1]2 lying

below their graphs. The curve aéin(d) lies no lower than the Varshamov—Gilbert curve.
It is obvious that any upper bound for the class of all codes (for example, the Plotkin
ngir;cril) is simultaneously an upper bound for acllin and ozglln. The known lower bounds for
a2 are worse than the Varshamov—Gilbert bound (regarding them, see Sec. 3).
10. Geometry of the Varshamov—Gilbert Curve. We set
Pq(6)=01log, (g —1)—08log, 6 — (1 —d)log, (1 —0O).

In the next section we shall show that this function measures the asymptotic volume of the
Hemming ball. The Varshamow—Gilbert curve is given by the equation R=1—@,(0). It possesses
the following properties:

a) RO=1, R(1=)=0.

1—
b) — @' (8)= —logs (g — 1) —log, 152

As 8 decreases from q — 1/q to O this derivative increases monotonically from 0 to «; in par-
ticular, —9/(q — 1)/(2q — 1) = 1. Therefore, the Varshamov—Gilbert curve is convex downward

and is tangent to the coordinate axes at the end points R=1, § = 0 and R=0, 6§ = (q — 1)/q.

c) ” =L. 1 P e AT q°
®(9) Ing §(6—1)" ¢ ( q )—(q—l)lnq'

. . qg—1 _ q* . 3
As R + 0 this gives l—q)(—q_—y)’_Q—_(q—l)lnq Y2+ O (¥3).

d) For q = 2 the term linear in § vanishes; 9,(8)= —|[6log, &6 +(1—0)log,(1—56)] is the
entropy function. Here is a brief table of the VarshamowGilbert function for q = 2:

] ,0 0.05 0.1 0.15 0.2 0.25 0.3 035 04 045 0.5

1—q: (8) ‘ 1 0.71360.53100.39320.27800.1887 0.1187 0.0659 0.02900.0072 0
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2. Boundaries of the Code Region

1. The purpose of this section is to prove Theorems 1.8 and 1.9; Some further details
regarding codes will be obtained along the way. Let V=V (ao)={a€F"/d(a,a)<t} be the
Hemming ball with arbitrary center go€F™.

2. LEMMA. In the notation of Sec. 1 we have

n_-:Tqmq(n—)<|V:"|=2( )(q—l)‘<q 'l( )_,Fn, q( )

=0

COROLLARY. As n + «, t/n + 6 the ball of relative radius § in FD occupies a fraction
of the "logarithmic volume" of F® equal to
{

n . .
Proof. In the sum for |V /|= Zi(i)(q—l)'~the i-th term consists of the factor ('Z’), cor-
i=0

responding to the ways of choosing precisely i positions of "errors," i < t, and (q — 1)i
corresponds to all possible "errors" in these positions.

For any 0 < z < 1 we have

g(?) g— 1)l<:§o (’Ll )(q— Nztt=2zt(14(g—1) 2)"

It is easy to verify that the function on the right has at the point zg =in/(1—t7) g—1

t
a minimum equal to qmp"(’T), which proves the upper bound (the verificationaccounts withthe fact
that t<‘i‘7——ln —under this condition the extremum lies to the left of 1),

On the other hand,

S (Fa— > (Fa—11 >

1=0

z(l+(g—1)2)"

for some point 20, 1]. Indeed, if we choose z in the interval Hin—t+ ) (g—)<z<(t+)I(n—

t)(q — 1), then the term. (t)(q—])‘z‘ is maximal among all terms of the expansion (1 + (q —

1)5)":2 V2! because of the inequalities V,_1/V1<V,_1/V,<5 for i < t and 2<V V<V 1V,
=0

for i > t. This proves the lower bound for the volume.

3. Proposition. a) The Varshamov—Gilbert curve R=1—9,(5), O <%, lies entirely in

Ug - b) Above the Hemming curve R=1-—-9, (%) there is no point of Uq.

Proof. a) We choose a point (R, 8) on the Varshamov—Gilbert curve (not an end point).
In order to construct a code C C FD with parameters arbitrarily close to (R, §) we choose
large numbers [n, k, d] with R =~k/n, § = d/n and consider the f0110w1ng (sorting) algorithm
for successive choice of code words contained in C The first word is chosen arbitrarily; if

a, ..., q8,6C have already been chosen and if F"aé UVd (a1, then apt: is an arbitrary element of
the complement Fn\ UVd (a). Since V& (a, ),<q q(:f ), the algorlthm does not terminate until
the completion of qk steps under the condition that qk-qnm‘l(ﬂ_)<qn, i.e., (—Z—, %) lies below the
Varshamov—Gilbert curve.

Let C be an [n, k, d]-code, Z= 2—11 " fThen the balls V, a), acC, are pairwise disjoint
P] t

so that the sum of their volumes is not greater than q"; hence, by Lemma 2

d—1
1 k+n
ari? "q [ ])<kuVA|_<q

Therefore, if (%-, iﬂ)—)(ﬁ. R); n, k- o, then R<1—9, (_g-)
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Remark. Near R =1, i.e., 8§ = 0, the Hemming upper bound is better than the Plotkin
bound; they intersect at the point @,(60/2) = (q/(q — 1))8o. Near R = 1 the Hemming curve
deviates from the vertical axis approximately twice as much as the Varshamov—Gilbert curve.
Therefore, the true boundary of Uq, the curve aq, being contained between them, has a ver-
}lln ‘aq by the following result.

4. Proposition. a) The Varshamov—Gilbert curve lies entirely in Ucllln. b) For any
linear [n, k, d]-code k + d < n + 1 (in particular, Ucllln lies below the diagonal R + § = 1).

tical tangent at the left end point. The same goes for «

Proof. Suppose the linear code C is the kernel of a mapping Fgq" Fqn_k given by a

matrix H. Each code word is a linear relation between the columns of H; hence, d(C) = d if
any d — | columns of H are independent. Thus, d—I1l<rkH<Cn—*k, whence b) follows.

We shall construct codes close to the Varshamov—Gilbert curve by successively choosing
the columns of H. We denote them by a@,, dz, ... . A successive vector a,,h6F; *is to be
chosen so that it cannot be linearly expressed in terms of any d — 2 preceding vectors.

Those vectors which do not satisfy this condition are linear combinations with all nonzero
d—2

coefficients of some i of the vectors chosen earlier. There are no more than 2(;”’)@_1)1
i=2

of them. If

gk — i( ) —1)> — n+l g q’q(d%?),

then it is possible to choose the succeeding vector. This proves assertion a).

5. Examples. a) Reed—Solomon Codes. These are isolated codes over Fq with parameters
[n, k, d] where n is any divisor of q — I, I<Ck<tn is any integer, and k + d = n + |. They
are constructed as follows: since the group Fq is cyclic of order q — 1, there exist ¢ ()
elements x € Fq* of order equal to n. We set H = (hl_]), hjj = xl(J'l), i=1, ..., n—k, j =
1, ..., n. Any n — k columns of this matrix are linearly independent, since the correspon-
ding minor can be computed by means of Vandermode's formula. The code with control matrix H
has the required parameters.

b) Goppa Codes of Genus Zero. These are isolated codes over Fq with any parameters of
the form [n, k, d] where n<{q and k +d = n + 1.

Namely, we set C={f6F,[t]/degt<k—I1}, where t is an independent variable; we choose n dis-
tinct elements x;, ..., Xp € Fq where £<n<Cqg. We define the mapping C ~ Fq™ by setting f —
(f(x,), +--5 £(xp)). It is an imbedding, since a nonzero polynomial of degree <<k — 1 cannot
have n >k zeros. Therefore, the image of C in Fgq" is ‘an [n, k, d]-code.

It will soon be clear that these codes are isolated: the Plotkin upper bound for Uq
lies below the diagonal R + & = 1I. '

. gt g—1

6. LEMMA. If an [n, k, d]-code exists, then d<n =T 7"

COROLLARY. In the region R > 0, § > (q — 1)/q there are no limit points of Uq (and
Uq1lin) - (Indeed, for any sequence [ni, ki, di] with n{ » « either kj are bounded, and thus
k;/ni » 0, or ki are unbounded and then dj/ni < ((@ — 1)/q) (1 + gj), €i » 0 by the lemma.)

Proof. Let C be some [n, k, d]-code. We set X, ;=[{x€C|x,=a}). It is obvious that Xg,i

are nonnegative integers and 2X41=q". The code distance d(C) is no greater than the aver-

BEF

W"_— 2 d(x, y)» and equality is achieved only for so-called
x,y6C

equidistant codes with the property Vx=ty, d(x, y)=d(C). Further,

2 d(x, y)—E > (l—ax,y,)—z D (1= 80) Xa, i Xo <n-max Q,

x, yEC i=1 x, .lle i=1a,bGF

age pairwise distance: d(C)<

where 8gp is the Kronecker symbol, Q is a quadratic form with matrix 1 — 84.p, X = (XU)GEF
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runs through the simplex ZXa=q", X;>0. This maximum is equal to qZk?%l, as can be seen
aGF
by induction on q = |F|: the maximum is achieved at an interior point where all X5 are

. . & .
identical: ){a==%u This proves the lemma.

7. 1EMMA. a) If there exists an [n, k, d]-code, then for any I < k there exists a code
with parameters [n—~ 1, k — 1, d]. b) The same holds for linear codes.

Proof. a) Let C be an [n, k, d]-code. For g&F! we set C,(5)={x€F"!|(x, §)¢C}. Then
:S|C,Qﬁ]==qh and hence |C,(&)|>g*' for some £o. The code C7(£o) obviously has parameters
L6
[n—1, >k—d, >>d]. They can be reduced to [n— 1, k — 1, d] by first discarding superfluous

points and then shifting one of the points so that its distance to its closest neighbor in
the code is d.

b) Suppose now that F = Fq and C is a linear [n, k, d]-code given by a generating matrix
G of size n x k. It has a nonzero minor of rank k; by renumbering the basis of Fqn, it can
be arranged that it occurs at the very bottom of G. Then the projection F% > FX induces a
surjective mapping of C onto FZ, Il <k. In the notation of the previous paragraph C7(§) are
cosets of Cz(0) in Fq“'z; therefore, |CZ(£)| = qk-Z for all &£, and the shortest vector of C

in the Hemming sense lies in C7(0) x (0). Hence, the parameters of Cz(0) are [n— 1, k —~ I,
d].

8. Proposition. The sets U = Uq, U&in and Uglln'possess the following property: if
(Ro, 80)E U, Ro > 0, 8o > 0, then the entire seégment of the line joining (Re, 8o) with (1,
0), which lies to the right of and below (Ro, 8o) in the square [0, 1]*, belongs to U.

. k—I1
4 Proof. According to Lemma 7, if (%—, %-\) eU; or Ugl'ln, then for all 7 < k we have (n—_z;
H_J)Gifq {respectively, Uéln). All these points lie on the line R =1 — §(n — k)/d joining

(S‘ %) with (1, 0) to the right and below. If [nj, kj, dij[ is a sequence of codes with nj -

o, Ei_+1ahfﬂ_+5m then the derived points lie ever more dense on the corresponding segments.
n n;

Finally, if the generating matrices of the [nj, kj, d;]-codes are constructed in a time

bounded by a polynomial in the size of the matrix, then the additional work to seek the max-—

imal nonzero minor (for example, by the Gauss method) and discard parts of the rows in it can

only increase this polynomial -somewhat (q is fixed).

9. Corollary (the Upper Hemming-Plotkin Bound). The set Ug lies entirely below the
curve

R={min(1—-q—i-16, 1—e,(2), 8<iz!

0
( 0, 6> —q—

Proof. If there existed a limit point above the curve R = 1 — (q/(q — 1))8 with 8§< (q —
1)/(q), then the right lower end point of the segment constructed in Proposition 8 would con-—
tain points (Ro, 60) with the property 8o > (g — 1)/(q), Ro which is impossible by the corol-
lary of Lemma 6.

. i lin .
It remains for us to prove the existence of the functions aq, aéln, P . To this end

we first establish an analogue of Lemma 7 which provides derived codes to the left of and
above the original code.

10. LEMMA. a) If there exists an [n, k, d]-code, then for any I < min(d — 1, n — k)
there exists a code with parameters [n — !, k, d — 1]. The same holds for linear codes.

Proof. Let C'c F0 be some [n, k, d]-code. We consider the projection p:F!! » Fl onto
the last n — . coordinates; let C' = p(C). If p(x) = p(y), then d(x, y) =< l; therefore, for
1< d— 1 and for x, y &C necessarily x = y. Hence, C'<c F?®% is a code with parameters [n —
1, k =d — 1]; it is lipear if C is linear. In the general case it is possible to take d(C'")
into d — L by shifting only one point of the code. In the linear case we must first renumber
the basis of FD so that the nondegenerate minor is found at the bottom.
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11. Proposition. The sets U = Ug» U&ln and Uglln possess the following property: if
(Ro, 80) €U, Ro > 0, 6o > 0, then the entire segment of the line joining (Ro, 8o) with (O,

1), which lies to the left of and above (Ro, 8o) in the square [0, 1]?, belongs to U.

This result is derived from Lemma 10 in the same way as Proposition 8 was derived from
kR d—I

Lemma 7: the points(;zf

T ;:7) lie precisely on the line joining (%ﬁ %) with (0, 1).

12, Completion of the Proof of Theorems 1.8 and 1.9. It remains only for us to estab-

lish the existence of functions agq, aéin, aglin'whose graphs bound U from above. We shall

write * in place of the indices J, lin, or plin. We set ag*(x) = sup{Rl(R, x) € Uq*}. For
any point (Ro, 60) lying no higher than the Plotkin line, we denote by I and II the lines
joining it with (0, 1) and (1, 0), respectively. Let I4, II, be the half lines lying to the
right of (Ro, 60), and let I_, II_ be the half lines lying to the left. The angular sectors
formed by (I4+, II4) and (I_, II_) we call the right and left cone of the point (Ro, 6o), re-
spectively. '

From the facts proved above it follows that for 0 < x <y < (q — 1)/q the point (ag*(x),
x) lies in the left cone of the point (ag*(y), y), while (ag(y), y) lies in the right come of
the point {(aq*(x), x). We shall verify, for example, the first assertion. The point
(ag*(x), x) cannot lie above the line IY for the point (aq*(y), y) — otherwise its half line
II,X passes above (aq*(y), y) which contradicts the definition of aq*(y) by Proposition 8.
Similarly, (aq*(x), x) cannot lie below the line IIY for the point (ag*(y), y) by Proposition
11 and the definition of ag*.

From this it follows that the function ag* is continuous; unfortunately, it is not known
whether it is differentiable. The entire region below the graph of ag* (with boundary) be-
longs to Uy, since it is swept out, say, by the segments I4 or II_ for points of the graph.
Finally, it is clear that above ag* there lie only isolated code points.

13. Cascading and Code Boundaries. We consider a code C < FU and code the elements of
F by words in a new alphabet G, i.e., we assume that F < G®. The induced imbedding C = ¢™
is the code obtained by cascading the two original codes. Let qp = |F|, qg = |G|. The code
Cc GM is called a qg-ic code.

14. Proposition. Let (R,, §,) be a code point of C C FR, and let (R,, 6.) be a code
point of FC GM. Then (R;R2, §,8,) is a code point of C C Gun,

Proof. Let [n, k, d] be the parameters of C'C F%; let [m, logqcar d'] be the parameters
of F C GM; then the parameters of C ¢ G™ are [mn, k loquqF, dd'] which proves the result.

15. COROLLARY. Let q, q' be two numbers, and let (R,, 6,)€ Vq; then the curve
(Riag'(t), 8.:(t)) given parametrically (t is the parameter, 0 < t < (q' — 1)/q') lies entirely
in Uq*.

This construction leads to lower bounds which are the best known if we apply it to the
case * = plin, q = 2, (R,, 6,) are isolated binary codes, and in place of aE%ln(t) we substi-

tute the lower bound corresponding to Goppa's modular codes which can be constructed in poly-
nomial time by the results of Chap. II. We shall present further details below.

3. Algebrogeometric Codes

1. Construction. Let W be an algebraic variety over a field Fq, let & be an inver-
tible sheaf on it, and let W(Fq) be the set of points of W which are rational over Fq. The
geometric stalks & (x) of the sheaf & over points x € W(Fq) are one—-dimensional; we choose a
basis in each of them. We consider the mapping

T (W _fpl¥{F)I
o:I' (W, _?)—>xew®("q).?(x)—f“q .
where v(s) = (..., s(x), ...). Its image is a linear subspace of FUVU}”; such subspaces we

shall call algebrogeometric codes. The parameters of algebrogeometric codes are precisely
those characteristics of the pair (W, &) which have been actively studied. Namely, the
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length of the code is n = IW(Fq)I; the dimension is bounded above by the number dim I'(W, &£ ),
and coincides with it in computable examples; finally, n — d is the maximal number of Fq-

points on the variety of zeros of any section of &, i.e., a characteristic of the same nature
as n.

2. Examples. a) W = P¥ (r-dimensional projective space), £=0(l). Here »:I'(W,Z)3C,
since a nonzero linear form cannot vanish at all Fq-points. The parameters of the code are
r+1 - .
equal to (l%%f%L,r4_l,qﬁ. Since the zeros of all sections of % are PY~!, these codes are

quidistant, and the Plotkin upper bound is achieved for them (Lemma 2.6).

b) W=Pr; £=0{#). For m < q the mapping v, as before, is an isomorphism: for r = 1
this can be verified in the obvious way, and we then proceed by induction on r. The number
of Fq—points on a hypersurface of degree m < q does not exceed m(q¥ — 1)/(q — 1): indeed, we
pass a pencil of projective lines through a point lying off the hypersurface. There are

[P (F)|= qn—f, such lines, and each line contains no more than m points of the hypersurface
b , q qr“_] I'+ﬂl qr+l__] qr__l

y Bezout's theorem. The code has parameters [—ZTTT_’( n % > p— m = ]. Many good
isolated codes are thus obtained. For example, for q = 2, r = 3, m = 2 we find a code with
parameters [15, 10, 4], while for q = 2, r = 4, m = 2 we find a code with parameters [3], 15,
8] . Examples a) and b) are Reed—Mahler codes of orders 1 and m, respectively.

3. Goppa Codes. These are algebrogeometric codes for which W is a smooth irreducible
algebraic curve. We denote its genus by g = g(W) and the number of points on it by

n = n(W) = IW(Fq)I. We set Yq==Hn1hﬁ-%%§% over all W. Since by Weil's theorem n g q + 1 +

Zg/g, we have Yq >>(1)/(2/E). It will be proved below that the exact bound is Yq = (/(i’——])'1
for q = p*%.

4. _THEOREM. a) The segment of the line R + § = 1 —yq, 0 <R, § <1 lies entirely in

Uglln. b) For q = p°% it also lies entirely in Uglin'

Proof. The second assertion of the theorem will be proved in Chap. 2 by direct verifi-
cation of the fact that concrete curves with an asymptotically maximal number of points (more
precisely, the codes connected with them) can be constructed in polynomial time.

To prove the first assertion we choose a curve W with g/n close to Yq and any integer a
satisfying the conditions g—1<a<n. On W we construct an invertible sheaf 2 of degree aq,
for example, O(AP), where PEW(Fq). No section of Z can vanish at all points of W(Fq);

therefore, v:I'(W, Z)5 C and by the Riemann—Roch theorem k = dim I'(W, £)> a ~g + 1. On
the other hand, n — d < a. Finally, the parameters of the code are [n, »a—g-+1, >n—a|,
qg—1

while the coordinates of a code point are [;a{%—— , ;zl——{%]. In other words, we consider

Uéin there

a segment r + 8 = 1 — yq — £ where € > 0 is arbitrarily small; then in the region
are infinitely many points lying to the right of and above any point of this segment. Argu-

ing as in the proof of Lemma 2.7, we find that this entire segment lies in‘Uéln.

5. Classical Modular Curves and Improvement of the Varshamow—Gilbert Boundary. For any
prime number p and q = p- there exist sequences of curves with the property g/n > (p—1)"t =
(/E-— 1)~*. These are the classical modular curves. We shall present an analytic description
of them. Let N==0 mod p be a prime number (we impose this condition only to simplify subse-

quent formulationms; if it is dropped the asymptotics of g/n remains the same).

a) We set

3 = .
J (z) =(12-60)3 2 (mz+n)* /[(2n)l2e?ﬂizH(1_e‘.’muz)%]‘
m.nEZ’\{0.0) n=1
This is a classical modular invariant, a mermorphic function defined in the upper half plane.

b) The functions J = J(z), Jy = J(Nz) are related by an integral polynomial relation
#N(J, Jy) = 0. We choose a minimal relation.

c) A smooth projective curve with a special affine model given by the equation &y mod
p = 0 has the following parameters:
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N
genus XO(N)~[—1§-],
IXO(N)(sz)I-——N—(p—_—lll<C where c, does not depend on N.

We shall not prove these assertions here. We note only that sz

correspond to supersingular elliptic curves over sz, i.e., to elliptic curves not having non-

— rational points on Xo(N) —

trivial points of order p. For Drinfel'd's modular curves detailed calculations giving curves

. i R .
with _%,v_______ are carried out in Chapter 2.

Va—1 ]
6. Proposition. TFor q > 49 the segment‘R-}6==1——i7;—T intersects the Varshamov—Gilbert
curve at two points: the part of it between these points lies above the curve.

Proof. In part 1.10 it was verified that the line R + § = | —'(1ogq(2q - 1) -1 is
tangent to the Varshamov—Gllbert curve, since at the point of tangency 8o = (q — 1)/(2q — 1).
The inequality (V' ¢—1)"<logs(2¢g—1)—1 for squares q is satisfied starting at q = 49,

7. Lower Boundary of U,Plin_ By applying the cascade construction of 2.13 with inter-
nal binary isolated codes C and external codes obtained from modular curves, we arrive at
binary codes having polynomial complexity of construction and parameters lying above the
parameters of all known binary codes with polynomial complexity of construction.

Until recently, the best estimate for the function aglin(é), due to E. A. Blokh and V.
V. Zyablov, was the following [3]:

a8 (8)>% (),

where

1-02(8)
BO=1-90-8 | dxni—s),
0

@.(6) is the entropy function, and ¥,(R) is its inverse. Using as internal codes a binary
code with parameters [20, 8, 8], excess—-free codes with parameters [22, 2L, 1], 1= 5, codes
with a single verification for parity and parameters [2] + 1, ,» 2], L = 3, 4, and binary
Reed—Mahler codes of first order with parameters [22m*i, 2(nr+l) 2%ﬂ mz2, we obtain by 2.15
a new estimate for azplln(ﬁ) we denote it by ¢,(8).

It was shown in [6] that ¢,(8) > wz(d) everywhere in the interval (0,1/2).

It is useful to compare the following table of the functions ¥.(8), @2(6) (the table for
Vv2(8) was taken from [6] and that for y,(8) was taken from [3]) with the table of part 1,10:

8 0.05 0.1 0.15 0.2 025 03 0.35 0.4 0.45

P (6) [0.6298 0.4347 0.2847 0.1733 0.12330.07330.0295 0.0107  0.0021

P2 (8) [0.4456 0.2524 0.1450 0.0807 0.04220.01980.0077 0.0021  0.0002

We now proceed to the estimate of Yq- It is more convenient to work with the inverse
quantity

— n(W)
A;=lim sgp Z ()"

8. THEQOREM. Aq< Vg — 1; for q = p@ equality holds.

Proof. We restrict ourselves to establishing the inequality; for the fact that it is
achieved see Chap. 2. By Weil's theorem we have

2g
N, =W )|=g+1- o,

i=1
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where wj are complex numbers entering the sum in pairs (wj, wj'q) with the property |wj| =

q'/?. We set wj = aj/q. We have
N N N
qr/rz =g g=— 2 (@t ar") > qr/lz ’
i—1
whence
£
((11'—*—04"") < __(qu—-r/2_qr/2_q—r/2)_ (l)r
=1
On the other hand, we have the identity for any aj, m:
m 2 m m
0<| D ar| = X ws=mt14+ X (m41—r) (o +a77). (2)
r=0 r,s=0 r=1
Multiplying (1)y by (m + | — 1), summing on r, and applying (2), we obtain

m 2g m
0<2g(m+ 1)+ X, (m+1—r) 3 (@/+07/) <glm+1)+23) (m+1—r)[— Nig=74 g2 4 g=rr2]. (3)
r=1 f=1 r=1i

Dividing (3) by 2g(m + 1) and carrying the terms with N; to the left side, we find

Ny § (ﬂfﬂi] —r/2 1§ mtl—r
ra [ m+1 9 <14ﬂ? m+1

r=1

(@497

r=1

we obtain < l+4¢, 8>0, which completes the proof,

1

If g > » and m + »slower than [logq gl, _——Vq——l

9. How Many Points Can Lie on a Curve Over a Finite Field? This question was posed in
the works of Ihara [22] and Manin [26]. Theorem 8 and calculations for modular curves pro-
vide an answer to it (in the asymptotic formulation) for q = p°%. The case where q is not
a complete square has not been completely investigated. The following results were obtained
by Serre and are cited here with his kind permission (letters to Yu. I. Manin of June 10,
1982 and November 6, 1982 [27]).

10. THEOREM (Serre). Aqg > 0 for all q.

The proof is based on the construction of an infinite "tower of class fields" by the
method of Golod—Shafarevich. In the functional case it consists of unramified coverings of
the original curve in which the Fgq-points completely decompose.

For A, Serre obtains the estimate A2;>§%==Q205..4 the estimate of Theorem 8 is here

A< V2 — 1 =0.414 Serre also established the maximal possible number of points on
curves over F, for genera < 7;

41234567

n|5 6 7 8 91010

CHAPTER 11
A POLYNOMIAL ALGORITHM FOR CONSTRUCTING "MODULAR'" CODES

1. Main Theorem

As shown in Sec. 3 of Chap.

with a "large" number of points
chapter we shall show that such
precisely, suppose that for the
Fq[T]-modules of rank 2 with an

number relatively prime to q — 1.

I, algebrogeometric codes constructed on the basis of curves
possess very good asymptotic parameters. In the present
codes can be constructed with polynomial complexity. More
basic curve we choose a curve Xo(I) classifying elliptic
isogeny of degree q® (see below, Sec. 2) where m is an odd

Then for Np — the number of F_.-rational points of the

82
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curve Xo(I) — there is the relation
Nm
iz 8
where gp = g(Xo(I)) = genus Xo(I). Let C = Cp,p be an algebrogeometric q®-ic code construc-—
ted on the basis of Xo(I) and the sheaf @ —=0@(F), where F = BQ, € Div(Xo(I)) and Q, is some
"cuspidal" Fq-point of Xo(I):

Cop=1m (P )
Pm,s:0(0Q)-> @ (Fples
PIEMm

cpm.b:fﬁ(f(Pl)’ LR f(Pm))i

supersingular" points MucXo(I)(Fg), for which n = nm = |Mm| = (qm +

as My we take the set of "

])/(q + 1),

m—+oo m
Then, as shown in Sec. 3 of the first chapter, the code C possesses the following parameters:
k>b—g,+1, d>n,—b.

THEOREM, There exists an algorithm with time complexity O (n*’log?n) and spatial complex-
ity O (n®log?n), which constructs a generating matrix of the code C.

The theorem is proved in Secs. 2-6. The outline of the proof is as follows. In Sec. 2
we formulate some needed facts concerning manifolds of moduli of the elliptic modules of V.
G. Drinfel'd; in particular, a precise definition of the curve Xo(I) is presented, and equal-
ity (2) is proved, from which (1) follows on consideration of Theorem 8 of the first chapter.
In Sec. 3 we prove a theorem providing a realization of a code C in terms of special values
of some linear functionals on a space of polynomials of bounded degree. In Sec. 4 we collect
formulas giving the objects used in the construction of the code C. In the fifth section we
describe the computational process realizing the algorithm of constructing the code C with
the complexity indicated in the theorem; it is based on standard procedures described in Sec.
6. In the last section we describe the model of the computational process we used and the
standard procedures used in the proof of the main theorem. The material is presented so that
Secs. 4-6 are almost independent of the contents of Secs. 2-3. Those places in Secs. 4-6
where understanding depends on Secs. 2-3 are contained in asterisks: *...%*.

We use the following notation: A denotes the ring of polynomials Fq[T] where q = p° is
a natural power of a prime number p, GL{2, R) is the group of invertible 2 x 2 matrices with
coefficients in some ring R, R¥ is the group of units of the ring R; deg p, where p ek[x, y],
k a field, denotes the degree of p in the joint variables; degyxp denotes the degree of p in
the variable x, and degyp denotes the degree in the variable y; Mat(m x n, R) is the set of
matrices of dimension m X n with coefficients in the ring R.

2. Manifolds of Moduli of Elliptic Modules

1. In this section we present in a necessarily brief manner facts concerning the ellip-
tic modules of V. G. Drinfel'd, their modular manifolds, and the rational points on them
which we require for the construction of codes on the corresponding modular curves. We give
almost no proofs. The major part of the results of this section are proved in [10, 20, 21];
the remaining results are derived by means of arguments completely analogous to the classical
case of modular curves for the group SL(2, Z).

We consider the only case we require of elliptic A-modules of rank 2 where A = Fq[T].
2. Elliptic Modules over a Field. Let k = Fq(T) be the field of fractions of a ring A;

let ke = Fg((T™*)) be the completion of k relative to a norm defined by the point oo €P! such

that A = Fg[P!\\®]. The normalized absolute value of an element a € k corresponding to the
point » is denoted by Ial; if a = (b/c), b, c€A, then |a| = qdegb-degc,

Let K be a field equipped with the structure of an A-algebra, let i:A - K, and let K{t} =
End (G,®K) be the ring of endomorphisms of an additive group scheme over K where t is the
endomorphism of G,®K, given by the formula t:x ~ xP (1 is the Frobenius endomorphism over the

field Fp). The ring K{t} consists of "noncommutative polynomials' in T of the form }E(LTﬂ
=0
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cj € K, whereby tc = cPt for c€ K. We denote by D the homomorphism

D:K {t}—K, D:Z c e,

3. Definition. Ar;! ?lliptic A-module of rank 2 over K is a ring homomorphism ¢:A -+ K{t}
a

such that a) tp(a)_—:i(a)—!—z 9,(a)-F!, where F = 15 is the Frobenius endomorphism over the field
=

Fg; b) 9y, (@)#0 for all aA\{0}.

Below we shall deal only with elliptic A-modules of rank 2 and speak simply of an "ellip-
tic module'" in place of an "elliptic A-module of rank 2."

It is clear that an elliptic module over K is determined by giving the element
QM)=i(T)+c1-F4cy- F?, ¢y 026K, ¢y #0.

4., Definition. A homomorphism of an elliptic module ¢:A—K{t} into an elliptic module
Y:A > K{t} is an element u€&K{t} such that u-@(a)=v(a)-u for all a€A. If uz0, then u is
called an isogeny. The composition of homomorphisms is given, by definition, by the multi-
plication in K{t}. The set of all homomorphisms from ¢ to ¢ forms an A-subalgebra in K{t}
denoted by End (¢). Elliptic modules ¢ and ¢ are isomorphic if and only if there exists AEK®
such that g@(a)=Mmp(a)A! for all ae A. In other words, let

@) =i(M)+c1-F4cr-F?,
9(T)=i () dy-F-+dy- F2;

then ¢ and ¢ are isomorphic if and only if d, = A97'c,, d, = A9~ *c, for some A€K". In par-
ticular, the group of sutomorphisms Aut (9) = End (@)X can be described as follows:

‘ F/* ¢,#0
Al.lt — q s “1 ?
@) =VFLn K, c,=0.

5. '"Characteristic" and Points of Finite Order. Let i:A - K be as above. Then the
kernel Ker i of the homomorphism 1 is a prime ideal P(i) in A; P(i) is called the '"character-
istic" of the A-algebra K and is written ''char" K. If i is injective then we speak of the
general "characteristic'; otherwise, ''char" K is a closed point of Spec A.

The ring A is a principal-ideal ring; therefore, for any nonzero ideal I there is défined
a unitary polynomial pI such that I = prfA. TFor an elliptic module ¢ we define the scheme
G — the analogue of the scheme of '"points of order n on an elliptic curve':

G;= N{Ker@ (a) | acl}=Ker® (p;)=CG,®K,
Gy is a finite, flat group subscheme in G,QK.

6. Proposition. Let ¢:E - K{t} be an elliptic module, and let I be a nonzero ideal in
A. Then

a) The scheme G is etale if and only if _
echary K&V (I)={P€eSpec A|P D I}.
b) The order of Gy is equal to IA/II2 = ¢*™, where m = deg pI.

7. Elliptic Modules over a Scheme; Modular Manifolds. In order to define schemes of
moduli of elliptic modules it is mecessary to consider the relative situation, i.e., elliptic
modules over an A-scheme S. Thus, let S be a scheme over A.

8. Definition. An elliptic module over S is a pair (L, ¢) consisting of a linear
bundle L on S and an Fg-linear homomorphism ¢ :A > Enqu (L) such that

2|a|

2) @(@=i(@)+ 2, % (a) F*,

=1

where i(a) is the image of a € A under the natural action of A on L, FGEnqu(L) is the mor-
ol

phism of raising to the power q, and @, (a)el (S, LB Y,

b) a-section Py (@)ET (S, L®“'"2Ial)) for any @€AN\{0} vanishes nowhere on $. For S = Spec K
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Definition 8 goes over into Definition 3. Analogous to the situation existing in the theory
of elliptic curves, in order that there exist (fine) schemes of modules it is necessary to
fix some additional structure on the elliptic modules called a "level structure" as in the
case of elliptic curves.

9. _Definition. Let E = (L, ¢) be an elliptic module over S, let I = (pI) be a nonzero

ideal in A, and let GI = Kerg(p:)< G, x S be the subscheme of points of order I on E. A
level structure of I on E is an isomorphism of group schemes over S:

A (I7YA)2xS—G,,
consistent with the action of A.
It follows from Proposition 6 that a level structure of I on E exists only if for all

points of S their "characteristics" do not lie in V(I). If this condition is satisfied, then
there exists an etale covering S' + S such that E g S' possesses a level structure of I.

Suppose now that Fy is a functor assigning to each scheme S over A the set of isomor-
phism classes of elliptic modules equipped with a level structure of I.

10. Proposition. The functor Fy can be represented by an affine scheme M of finite
type over A. The morphism Mr - A is smooth; its fibers are one-dimensional over Spec AN\ V(I)

and are empty over V(I).
On the scheme Mj there is a natural action of the group GL(2, A/I). This action arises

from the following action of GL(2, A/I) on the functor FI: if E is an elliptic module over
S, A:(I"*/A)? x S » G is a level structure of I, and he GL(2, A/L), then we set

h:(E, M)~ (E, ),
where X is the level structure of I on E given by the composition
B-1x1d,)

(I11ARXS (1] A) X s5a.

11. Compactification of My. In analogy to the fact that classical modular curves admit
canonical compactification by means of parabolic points, for the scheme My there is also a
canonical compactification. We denote by Bl the integral closure of A in the maximal Abelian
extension of the field k with conductor I which completely splits over the point . Let

Mr' = Spec B7.

12. Proposition. a) There exists exactly one smooth scheme Mp that is proper over Spec
A[I™'], contains M] as an open subscheme, and is such that the morphism M} — My - Spec A

[I=*] = Spec AN\V(I) is finite.

b) The scheme CuspsT = ﬁi — MI as a reduced scheme over Spec A[I™'] is isomorphic to the
disjoint union of a finite number of copies of Mi.

For the scheme My — My there is also an "analytic" description which is altogether ana-

logous to the description of parabolic points for classical modular curves. Let I'(I) =
Ker(GL(2, A) ~ GL(2, A/I)) be the principal congruence-subgroup of the level I in GL(2, A).

13. Proposition. On each connected component of the curve M ® ke the part of the set

(M — M) ® ke lying on this component is in canonical bijection with the set of representers
of I'(/)\P!(k) under the natural action of I'(I) on P*(k).

14. Proposition. The genus of any of the components of the curve M ® ke is equal to

L@ =1y gorgher—g—1. Il (—gew).
riere r is irreducible
and unitary

15. Proposition. There exists a morphism m:Mp - Mi with complete, smooth, geometri-
cally irreducible fibers.

The action of the group GL(2, A/I) on My extends to an action on ﬁI. On the other hand,
on the scheme Mi according to class field theory there acts the group J#?/kxvg, canonically
isomorphic to(A/I)lejﬂ where 54, is the adele ring of the field k without the ~-component;

Vi is the kernel of the natural mapping of the closure 1I A, of the ring A in &, into
vEMax(A)
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(A/I)*. It turns out that the actions of the group GL(2, A/I) on My and the group (A/I)*/
Fq on Mi are consistent with the morphism m:

16. Proposition. There is the relation
Tog = | (g)o%,
where g € GL(2, A/I) and u(g) E(A/I)X/Fqx is the image of det g& (A/I)*.

17. Curves Xo(I), Xi(I), C(I). Let v:A > Fy bethemorphismof factorizationby the ideal
(T). We denote by X(I) the smooth curve M,®,F, where the tensor product is taken relative
to the morphism v. From the smoothness of the scheme My over Spec AN\V(/) it follows that
for the curve X(I) Propositions 13-16 remain in force. We now define the curves Xo(I), X, (L)
and C(I) which we shall need in constructing codes.

Let To(I), I';(I), H(I) be the following subgroups of G = GL(2, A):
ab
ro)={(% J)eG 1 cer);

r.(n={(? 7)ealcer, a—ter);

H(1)={(F 7)€G 16, ¢, a—de1}

and let Ty(/), I'({), H(I) be the images of I'o(I), T,(I), H(I) in GL(2, A/I). We set

Xo()=X ("7,
X, (=X (™,
C)=Xx (D,

We now suppose that the ideal I is prime and is generated by an irreducible polynomial pr(T) €
A of odd degree m.

18. LEMMA. a) The curves Xo(I), X,(I), C(I) are smooth, absolutely irreducible curves
over Fqg.
q

b) The curve C(I) is a form of one of the components of X(I).

Proof. a) By Proposition 15 the fibers of the morphism X (/)—>M|®F, are absolutely irre-
ducible. Hence, considering Proposition 16, we see that the fibers of the morphisms, Xo(I) »
(M',®F4)ﬁ"1 X, (1)—->(M}®Fq)”‘, C ()~ (Mi®F,)", where Ho, H,, F are the images of T,(I), F.(I) and
H(I) in (A/I)*, are absolutely irreducible. It is easy to verify that Ho = H, = F = (A/I)*
whence (M‘,@F,,)H"=(M}®Fq)ﬁ'=(M}®Fq)F=F,,. b) The assertion follows from the fact that under
our assumptions on I the mapping p:H (/)/F;—~(A/[)*/F} is an isomorphism.

We shall now show that on the curves C{I) and Xo(I) the possible maximum of the ratioc
of the number of points to the genus of the curve is achieved.

19. Proposition. Let N(I) be the number of qu—rational points on C(I), let g(I) be
the genus of C(I), and let m(I) be the degree of the irreducible polynomial generating I.
Then

im MO _ .
m(l}ﬁmg(l) 9—1

Proof. It suffices to establish that 1im(N(I)/g(I)) > q — |, since the reverse inequal-
ity was proved in part 3.8 of the first chapter. Since C(I) is a form of an irreducible com—
ponent of X(I), the following formula holds for g(I) (Proposition 14): g(I) =1 + (q*™ —
1Y(@m —q— 1)/(q> — 1), m = m(I), We consider the projection C(I) ~ P' = C(1)PGL(%,A/1),
its degree is equal to [PGL(Z, A)| = qW(q®*™ — |). Points corresponding to the elliptic
module @y, 9,(T)=F? are branch points with indices (q + 1); this follows from the description
of the group Aut (9) given following Definition 4. Hence, the number of such points is equal
to (q + 1)~*|PGL(2, A/1)| = q®(q*™ — 1)/(q®> — 1). It suffices to show that all these points

are qu—rational, so that
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N (D) g7 (g*"—1) /(g +1)
g T T+ (" —~T) (g™ —q—1)/(g*—1)

For this, in turn, it suffices to show that any structure A of the level I on the module @,
under the action of F? gives a structure lying over the same point in C(I) as the original
structure (here the pair (P, A) is considered as a point of X(I)). This fact follows from
the remark that under the representation of (End(CPO)®AA/1)>< in GL(2, A/I) given by the action
of (End (9,)®4A/1)* on the level structure of I the element F?> goes into H(I). The latter
follows from the fact that F® lies in the center of End(@,), since End (9g)=F,: {F}, Cent
(End(%))=Fq]F3]; therefore, the image of F® lies in Cent(GL(2, A/I)) = H(I).

COROLLARY. Let No(I) be the r —her of qu—rational points on Xo(I), go(I) = genus Xo(I).

>g¢—1.

Then

fim el

m(f)—oo Boll) =7—1

Proof. Let d be the degree of the natural projection C{I) » Xo(I). Then it is clear
that No(/)=N({)/d, g¢(/)< g(I)/d whence the corollary follows.

The images of (Mp — Mp) in Xo(I), X,(I), and C(I) we shall call cusps and write
(Cusps)o, (Cusps),, (Cusps)c. Taking into account the description of My — M1 given in Pro-
positions 12 and 13, it is easy to prove the following proposition which is analogous to
those that hold for classical modular curves.

20. Proposition. a) The number of cusps of the curve Xo(I) is equal to 2, (Cusps)o =
{Q., Q2}. Db) The projection p:X;(I) = Xo(I) is a principal bundle with structure group H
(A/I)*/FX; in particular, |(Cusps)1| = 2h, where h = |H| = (@ —1)/(q — 1).

Proof. a) From Proposition 13, which remains in force for X(I), it follows that
(Cusps)o = To(I)\P'(k). Standard arguments showing that the set Ty(p) \P'(Q) consists of
two elements if p is a prime number (see, for example, [19, p. 46]) carry over literally to
the case Ty(/)\P'(k). b) It suffices to show that the action of H on X;(I) is free. This
follows from the description of the groups Aut (@), where ¢ is the elliptic module given after
Definition 4, and the fact that h = (q®@ — 1)/(q — 1) = I(mod q + 1), so that H does not con-
tain Fg/FX.

In exactly the same way as in the classical case of curves X, (p) we obtain the following
result.

COROLLARY. For one of the points Q € (Cusps), all points of p~'(Q) are determined over
Fq.

Below we shall denote by Q, that point of (Cusps), for which the points of p~'(Q.) are
determined over Fq. The next proposition, which is analogous to the classical description
of noncuspidal points of the modular curve X, (n),gives a representation of X;(I)\ (Cusps),
as manifolds of moduli.

Proposition. Let L be an extension of Fq. Then there is the natural bijection
Y(IN(L) == {Isomorphism classes of pairs (¢, c),where ¢ is an elliptic
A-module over L and ¢ =0 is a point of order I on ¢}.

Here Y, (1) = (M;®F)T =X, (I)\ (Cusps).

Proof. It suffices to note that M}“(” is a functor on the category of schemes over A:

{isomorphism classes of pairs (¢, c), where ¢ is an elliptic

G =
) A-module over S and ¢ 0 is a point of order I on (p} .

This follows from the fact that MJ is a scheme of moduli of elliptic modules with a level
structure of I such that the pairs (¢, c) have no nontrivial automorphisms and such that the
set of classes Amodl, (I), where X is a level structure of I on the elliptic module, can be
canonically identified with the set of points ¢~ 0 of order I on9.

3. Realization of '"Modular'" Codes

1. In the present section we shall prove a theorem giving a realization of a code C in
terms of special values of polynomials in two variables of bounded degree which satisfy some
linear conditions. A code C is given, by definition, in terms of a curve Xo{I), but it will
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be more convenient for us to work with X = X, (I), since X,(I) has a flat (special) model X,.
The objects connected with Xo(I) we describe by means of the projection p:X,(I) » Xo(I).
Below we assume that the ideal I = pyA is generated by a unitary polynomial of degree m that
is irreducible over Fgq:

pM=p1(N)= N a.T" agF, a,=1,
k=0

where m >» 3 is an odd natural number relatively prime to q — 1.

We define the polynomials @,(x, y)€F,fx,yl, k = 0, 1, ..., by induction, setting

P (%, y)=1,
Ppy1 (X, Y)=X-Pp (X, Y)" + Y- Pp (X, Y)*

for k> 0.

We note that for the elliptic module

9:A>Fo{F}, ¢(T)=aF?+bF, a, beF,
the action of ¢ (T)¥ on the element lEfq is given as
Q(TH (1)=2,(a, b).
2. LEMMA. Let X,CP? be a curve with the affine equation

F (x, y)=2 ay®s (X, ).

k=0

Then
a) il is an absolutely irreducible curve that is smooth in A®.
b) The curve il has exactly two singular points P, = (0:0:1), P, = (0: —1:1).
¢) X, is birationally isomorphic to X over Fg.

- Proof. a) The irreducibility of il follows from c). We shall prove the smoothness of
X, in A%?. It is easy to verify that '

aq,k (X,', y)

S gy (x, )7, 2D g, (2, )

for all k > 1. Hence,

F.,=0Fi0x= Z @ Pr-1{x, Y)",
2=1

Fy=0F |0y =Z @pPp (X, Y)°.

k=1

We shall show that the system of equations

‘Fx(x' y)=0v
Fy(x, 4)=0,
F(x,y)=0

has no solutions. Indeed,

m

F_(xe+!!Fy)=F—Zak(x?zll—f-!/‘PZ—l) =zakq’lz—'z aQr=ao+0,
k=t 2=0

k=1

by the irreducibility of m
p (T)’-‘—'Z akT".

Py
b) Let (Xo, X:, X2) be homogeneous coordinates on P?, x = Xi/Xo, ¥ = X2/%o-
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It is easy to verify that the homogeneous equation G(Xo, Xi, X2) = 0 of the curve X,

G=X{""D/@-DE(X,/Xo, X2/ Xo)
has the form
G (X Xy Xo)= X ("7 2000 () 4 X)X PH (XKoo X1o Xo),

where H(Xo, X1, Xz2) €Fq[Xo, Xi, X2]. Hence (P’\NA)N X, consists of exactly two points P, and
P>, and it is easy to verify that they are both singular.

¢) As shown in Proposition 2.21, the Fgq- points of X \((Cusps), are in bijection with the
isomorphism classes of pairs (@, c) where @ is an elliptic module over Fq and c* 0 is a
point of order pr on @. Let @(T) = aF? + bF. Then the isomorphism classes of pairs (p, ©)
are in bijection with triples (a, b, ¢), where a0, c¥ 0, a, b, ¢ E'Fq, consideredup to the
equivalence relation (a, b, ¢)~(a’, 8', ¢’), if a’'=A"-'a, b'=A""'b, ¢’=LA"¢c for some MEF/, and
the relation @(p/(7)) {(¢)=0 1is satisfied. It is clear that for each triple {a. b, c) there
exists a unique triple (@', 6’y 1) equivalent to it where a’=¢%"-lg, §’=c%'p. Now, defining
the mapping

vi(a, b, 1)—(a’, b')cA?,

we see that it is a bijection v:(X\ (Cusps))(Fg)=X, NAIN{x=0}).
It is clear that the mapping constructed is equivariant relative to the action of Gal
(Fq/Fq). It is therefore defined over Fq, and, because of the fact that it is bijective on
fq—points, it is the composition of a birational isomorphism and a purely inseparable mapping.
Applying, if necessary, the Frobenius morphism over Fq several times to the curve X, we ob-
tain assertion c).

3. LEMMA. a) The mapping v:X - 5(1 is a normalization of the curve X,. b) Let r(TA=

m—1
F,|7], degr(T)<m—1, and let r(T) = 2 riT* be a polynomial whose image in H = (A/I)X/F;

50 .
is a generator 6 of the group H. Then the action of 6 on X, induced by the action on X is
given as follows:

8:(x, Y)~ (£, ¥"),

where

m—1 gt—-1
xr=x(}: 1% (X, y)) ,

k=0

m-—1 q-1
Y=y (2 ri®e (£, !/)) .
20

c) In the notation of the corollary of Proposition 2.20 we have v''({P,, P)y=p-1(Q,), v''(X,

N{x=0})=p"'(Q.)-
d) Let z = x/y = X,/X2, £t = 1/y = Xo/X2 be coordinates in P?* — {X, = 0}. Then the local

equation of X, in a neighborhood of the points P, and P, is
F* (2, {)=¢@"=0@=-D F (2/¢, 1/¢).
Proof. a) and d) are obvious. b) It suffices to observe that on triples (a, b, 1) the
action cf 8 is given as follows:
0:(a, b, 1)~(a, b, c),

where
m—1

c= D\ ri¥: (@, b),
k=0

since @ (T%)(1)=%.(a, b) for @ (T)=aF?+bF.
c) The set X,N{x=0} is given by the equation

Fy)=F (0, y)= 2, a9 (0, y) =) auys*~1/te=H =0,
k=0

k=0
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It contains h = (q® — 1)/(q — 1) elements, and by the irreducibility of pr(T) no one of them
is defined over Fq. It is clear also that by b) X;N{x=0} is taken into itself by the action
of 8. Therefore, V’lt?lﬂ{x==0» coincides with p~'(Q2), and v=*({P,, P2}) = p ' (Q,).

4. Divisor of Double Points of X;. We recall that in the situation where there is a
singular, absolutely irreducible curve C' over a perfect field 7 and its normalization C
there is defined an effective divisor D& Div(C) called in classical theory the divisor of
double points of the curve C'. In the notation of the fourth chapter of [13] we have D =
%in, so that for the conductor ¢ =¢(C/C’) there is the equality

¢={fel(C) |f=0mod D};

usually the divisor D is identified with the conductor ¢ (see, for example, [13, Chap. 4]).
For a plane curve with equation F(x, y) = 0 there is the following formula which can also be
taken as the definition of D [17, p. 192]:

D=p- (x)+(v—2) - () —B=+(FY),
where u = degxF, v = degyF, (f) denotes the divisor of a rational function f on the curve C,
and By is the branching divisor of the projection C + P' given by a rational function x€7(C).

In the definition of D summation goes over points P& C lying over_singular points of C’'.
We need to consider a divisor of double points D€ Div(X) of the curve X,. For its degree it
is easy to obtain the following estimate.

5. LEMMA. Let d = deg D. Then d < ¢“®°2,

Proof. There is a classical formula for the degree of a divisor of double points of a

plane curve [17, p.193]: d = (0 — 1)(v — 1) — g, where g is the genus of the curve. Noting
that u = degxF(x, y) = (¢*m —1)/(q — 1), v = degyF = q®™?  we obtain the assertion of the
lemma.

6. The Linear System Z (F). To construct the generating matrix of a code we must have
an explicit description of the space & (F) where F=bQ,EDiv(Xo(/)), 1<<b<Cq™, and {Qi, Q2} is
the set of cusps of the curve Xo(I).

To determine & (F) explicitly it is more convenient for us to work with the curve X
rather than Xo(I), since X has a convenient plane model. This can be done because of the
following lemma.

7. LEMMA. Let 6 be a generator of the group H = (A/I)¥*/Fq¥. We denote by o the fol-
lowing element of the group ring Z[H]: o =1+6 + ... + ph=1  where h = |H| = (q® — 1)/
(g — 1). Then p* Z(F)=0(Z (p*F)), where p: Xi(I) + Xo(I).

Proof. It is easy to verify that p*@Z(F)= & (p*F)E. Noting that & (p*F) is a finite-
dimensional vector space over Fp and hence has p? elements and noting the circumstance that
the order h of the group H is relatively prime to p, we obtain the cohomological triviality
of the H-module @ (p*F) and the equality p*& (F)=2 (p*F)E= o(Z (p*F)).

The space Z(p*F) can be realized by means of polynomials of bounded degree:

8. Proposition. Let

V ={p(x, y)EF, [x, y} | deg p (x, y) <e=¢""}
and let W be the image of V in Fq(X). Then
L (p*F)cW.

Proof. Let fEZ (p*F). Because of the fact that the singularities P,, P, of the curve
X, lie at infinity, there exists an h€ Fq[x, y] such that £ = h(x, y) as functions on X (see
for example, [17, p. 198]). Let s = deg h(x, y). We shall show that if s > q“®, then there
exists g(EFq[x, y] such that deg g = s' < s and f = g(x, y) as functions on X. In homogeneous
coordinates (Xo, X1, X2) we have h(x, y) = HXo, X1, X2)/XoS where H(Xo, Xi, X2) is a homo-
geneous form of degree s. We consider the divisor (H) € Div(X) — the preimage of the cycle
(§-%,) under the normalization mapping v:X + X,. Let Q€Supp (Xo)=v"'{P1, P}) Supp(H). Be-
cause of the fact that fE&£ (p*F), there is the inequality vq(f) > —b, which can be rewritten
in the form

— b < v (f)=vo (HIX¢?)=vq ((H))— s-vo (X)),
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whence
vQ (1)) = svo ((Xo)) — b > 5 — b— 14 vo (X))
Thus,

H> X (s—b—1)Q+(X,).
QEV({Pr.Pe)

We now note that for the divisor D of double points of X, we have

D= X Q< 3 (degD)Q.

QE'V_'({P“P:}) QEV~'({P1,P:})
By Lemma 4 deg D < q*®™? < q*®—~gqMm—- 1] <s —b— 1, and hence
(H) > D+ (Xo).
Applying the (AF + BG)-theorem of Noether [9, Vol. II, p. 746], we see that there are forms
A and B of degrees s — | and s — deg G, respectively, such that H = Xo-A + G-B (equality in

the ring of polynomials Fq[Xo, Xi, X2]). Here G, as in part 2, is the homogeneous equation
of X,. It is now possible to set g(x, y) = A(Xo, X1, X2)/X87 %, deg g(x, y) <s — 1.

9. Graph of the Resolution of Singularities of X,. We need to consider the graph I' =
Iy U rp where I'y = Tp , I'y; = Tp, are trees of the resolution of singular points of the curve
X.. Let PE{P,, P,}. We define the tree of the resolution I'p of the point P. For its defi-
nition it is necessary to consider the process of resolving singularities of X, by means of
a sequence of monoidal transformations. We recall some facts we need. Let C be an irre-
ducible curve on a smooth projective surface F defined over an algebraically closed field .
The following classical result holds.

10. Proposition. There exists a finite sequence of monoidal transformations (with
suitable centers)
F,,—?F,,_l—> . —*.Fl——F():F

such that the proper preimage of C, on Fp of the curve C is a nonsingular curve (and hence
coincides with the normalization of the curve C).

For a proof of the proposition see, for example, [15, p. 489].

It is most convenient to define the tree I'p in terms of infinitely close points. We
recall the definition of infinitely close points.

11. Definition. Let f:F' -~ F be a morphism of smooth projective surfaces which is the
composition of a finite number of monoidal transformations. A point Q¢ F' iscalled infinite-
ly close to a point PE&F if Q belongs entirely to the curve E obtained on blowing up P.

Let C be a curve on F; a point Q' is infinitely close for the curve C if Q'€ C' where C' is
the proper preimage of C on F'. Here if f':F" + F' is a further sequence of monoidal trans-
formations and Q" € F" does not lie on the exceptional curve of f, then the infinitely close
points Q" and f(Q") are identified. Thus, if C< F is an irreducible curve on a surface F
and F' = Fp is the surface of Proposition 10, then each point C <'F has its system of infi-
nitely close points, and this system consists of a single point if and only if the point P is
a nonsingular point of C. With each point P€ C there are connected two important invariants:
its multiplicity rp> 1 and the number §p= 0 (for the definition of rp and Sp see, for
example, [15, PP. 379, 487], [13, p. 84]). An assertion holds which can be taken as the defi-

nition of 6p:
12. LEMMA. We have the formula
8p = 1/2(rq(re—1),
Q+P

where P € C is an arbitrary point, rQ is the multiplicity of the point Q on the proper pre-
image of the curve C, and the summation goes over all infinitely close points C lying over P.

For a proof of the lemma see [15, p. 493].
COROLLARY. Let pg(C) be the arithmetic genus of a curve C. Then
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g(CY)=pa(C)— D 112rq (ro—1), (3)
Q

where the summation goes over all points of the curve C including infinitely close points
(the sum is meaningful, since rqQ(rQ — 1) 0 only for a finite number of singular points Q).

Suppose now that P is a singular point of C. We call infinitely close points of first
order those infinitely close points for the point P which lie on the surface F, obtained from
F by blowing up the point P. Infinitely close points of r-th order (r = 2) are defined as

infinitely close points lying on the surface obtained by blowing up one of the singular in-
finitely close points of (r — 1)-st order.

The tree T'p of infinitely close points of a point P is defined as follows: its root
w = wp corresponds to the point P; descendants of first order are in bijection with the in-
finitely close points of first order, ..., descendants of r—-th order are in bijection with
infinitely close points of r—-th order. Hanging vertices of the tree Tp are in bijection with
points on the normalization CV of the curve C which lie over P. The set of vertices (hanging
vertices) of the tree I'p we denote by Vp (respectively, Vp'); its power is vp (respectively,
vp').

Below we shall consider the case of interest to us F=P? C=UX,;, C'3X,V,=Vp,V,=Vbp,
Vi=V,.Vy =V, The field Fq can be taken as the base field, although it is not algebrai-
cally closed; all objects encountered in resolving singular points P,, P, of the curve X, are
defined over Fq; this follows from the fact that all points in v7!({P,, PJ)C(CuspshCX are
defined over Fgq.

13, LEMMA. We have the inequality vi+ vz < (3/2)e = (3/2)q“m, where v; = |vi|, i=1, 2,

Proof. Since d = deg G = (¢*®™ — 1)/(q® — 1), where G is the homogeneous equation of il,
it follows that

P (X)=1/2(d—1)([d—2) < e/2.
By formula (3)

0< g(X)=pa(X.)—6p,— bp,,

whence

'Ul+7)2—’01,—’02’= 2 1< 2 112fQ(rQ_l)=6P,+6P,<e/2‘—
Q-+P, Py QrPy.Py

Noting that

740 < 2 re< 2 ro(re—1)=2(8,+6p,)<e,
Q+Py.Py Q—+Py, Py
I'Q>'2
we obtain the assertion of the lemma.
14, Labeled Trees fl, fz. For our basic purpose we shall need to consider labeled
trees I';, ', which are trees T,, TI'; each vertex of which s€V UV, 1is labeled by the set

(Ps (23, ts)’ ((15, Bs)’ (Zs’ Ts)’ As)v
where zg, tg are local coordinates in a neighborhood of the infinitely close point Qs corre-
sponding to s, Pg(zg, ts) € Fq[zs, tg] 1s the local equation of the proper preimage of X; in
a neighbbrhood of Qg, and f{ag, BS)Einz are the values of the local coordinates of the point
Qs; 2s = Zg(zs, ts) € Fqlzs, tg] is a polynomial giving the expression of the coordinate z on
P? in terms of (zg, tg); Ts = Ts(zg, ts) € Fq[zs, ts] is the same thing for the coordinate t;

Ag € {0, 1} is the smoothness index of the point Qg (or, equivalently, the index of whether
the vertex s is a hanging vertex or not).

The roots wi€ Vi, i = 1, 2 are labeled by the sets
(F* (Z, t)’ (0.1, 51)1 (z_'ah t_Bi)’ 0),

where F*(z, t) € Fq[z, t], as in Lemma 3, is the local equation of X, in a neighborhood of Pj:
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F*(z, t)=tW"-D@-0F (2/¢, 1/¢),
(@ B)=(0, 0), (a2 Bo)=(—1, 0).

15. Operators Ry and Q,. To introduce the functionals needed to construct a generating
matrix of a code Cp,pb we shall find it convenient to use two types of operators acting in
the ring of formal Laurent series. We shall present their definitions and elementary proper-

ties. Suppose K is a field, K((t)) is the field of formal Laurent series over K, and n is an
integer.

16. Definition. Let f = Za,t‘EK((t)). We set, by definition,
i=h

Ri(f)=2 aiteK [t, ¢,
Qs (f)=a.€K.

The operator Rp is a linear mapping of vector spaces over K,
R.:K((#)—>K [t t7].
The operator Qn is a functional on K((t)),
QuiK (8) K.
17. LEMMA. We have the following relations:
a) If Ry, (f) = R—p-,(g) = 0, then for all integers k

Ru(f-8)=Re(Ru,t (f) Rumx (8),
Qe (f-8)=Q% (Rasz (f)* Rt (8))-

b) For all integers k, n

Re(t " f)=¢"Rupn ()
Qe (t" )= Qe (f)-

18. The Functionals Ag j. We now give the definition of the functionals in terms of
which the generating matrix of a code C is realized. These functionals are numbered by
points Q€ v *({P,, P,}) or, equivalently, by hanging vertices s€V' = V,"U V,' of the graph
=T, UT,. Let Q = Qg be the point corresponding to the vertex s€V', and let i be a non-
negative integer. The point Qs is nonsingular; therefore, one of the values aP, @kvﬁs% 055 25 (a,

Bs) is nonzero (notation as in part 14). We suppose to be specific that 0F¥(a51ﬁs L0 (other—

wise the places of zg and tg in all the following arguments must be 1nterchanged) Then ug =
(ts — Bs) is a local parameter on the preimage of X, in a neighborhood of Qg, and there exists

an expansion of zg in a series in powers of ug (here zg and tg are considered as functions on
the preimage of X,):

zs=fs (u:) EFG [[ll‘,]]
By definition we set
ASJ (p)=Qi (p* (Zs (fs (us)’ u:+ﬁs)’ Ts (fs (ll_‘.), us+ﬁs)) €Fq,

where p = p(x, y)6 V, p*(z, t) = t®p(x, y), e = ¢*™, and the coordinates (x, y) are connected
with the coordinates (z, t) as follows: x = z/t, y = 1/t. In other words, As,i(P) is the
i-th coefficient of the expansion of the rational function t®p(x, y) on X in a series in

powers of ug — the local parameter in a neighborhood of the point Qg; Ag,i is an Fq—llnear
functional on V.

It follows directly from the definition of Ag,j that the following assertion holds.
19. LEMMA. The condition

Aso(P)=As1(D)=...=As(p)=0

is equivalent to the condition
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ordg, (7*)> A+ 1,
where p* is the rational function on X defined by the polynomial p*(z, t).
We are now ready to give a realization of the space & (p*F) in terms of the space V.

20. Proposition. Let Vp be the following subspace of V:

(ens—b)
Vb= n n Ker A:,[-
SEV' i=0

Then the image of Vi in W coincides with & (p*F). Here ng denotes the order of the function
t at the point Qg; it follows easily from Bezout's theorem that ng < ¢*™.

Proof. By Proposition 7, & (p*F) C W; it is only necessary to distinghish, among the
elements of V, elements g such that ordQS(g)I> —b for all s, where § is the rational function
on X defined by the polynomial g. Considering the relation g* = t€g, the definition of ng,
and Lemma 19, we obtain the proposition.

21. "Supersingular” Points on X. As was shown in part 2.19, all points of Xo(I) with
the value y = 0 ("supersingular’ points) are Fq.-rational. It is possible to give an
explicit description of the set of these points. For this it suffices to recall that there
is an unramified covering p : X + Xo(I) with structure group H = (A/I)X/Fa, while for X by
Lemma 2 there is a plane model which is smooth at points with y = 0.

22, LEMMA, The coordination of points X, with y = 0 have the form {(e,0)}, where o is
a root of the equation

m
F(x)=F (x, 0)= ] apx(d*-1/e*-n =0,

k=0

The proof follows from Lemma 2,

COROLLARY, The number of "supersingular'" F, -points on X, (/) is equal to n=(q"+4 1)/

(g+1).

Proof., The set of points Xy(/) with y = 0 is in bijection with the set of orbits of the
free action of the group H of order A=—(¢g"—1)/(¢—1) on the set R of roots of F(x) of power
[RI=(¢*"— DI(@—1).

We denote by H,; the subgroup of H generated by the image of an element 7€A, and we set
hy=|H,|, hy=hihy=[H:H].

23. LEMMA. The polynomial F(x) decomposes over Fqz into nh. factors each of which has
degree h,.

Proof. We note first of all that the generator A {(the image of T) of the group H, acts
as follows on points X;:A:(x, y)= (x9"+ x¥ly, x¥'y+y?) for (x, y)€ X;. This follows immediately
from the definition of p and the action of H on points of X. From this it follows that on
points with y = O the action of A coincides with the action of a generator of the group
Gal(fq/qu). Noting now that the action of H, on the set R is free, we obtain the assertion

of the lemma.

COROLLARY. a) Each orbit of H under the action on R is the union of sets of roots of
factors of F{x) irreducible over qu,thenumber of which is equal to ha. b) The set R lies

in the field L = quhx‘

24. Realization of the Code C. All that has been said above makes it possible to give
a convenient realization of codes arising on the curve Xo(I). As noted above, an algebro-
geometric code C over F,, is given by a generating matrix M = (mgp) , where a runs through the

set of indices of Fya-rational "supersingular" points {Py} on Xo(I), and B is the set of in-

dices of a basis {pg} of the space & (F)®F, over qu or, equivalently, of a basis of Z{(F)

over Fq;
ma, B = mﬂ (Pa)qul-
Considering the description of the space Z (F) given in Lemma 7, the realization of the
space & (p*F) given in Proposition 20, and also the description of the set of "supersingular"
qu—rational points on Xo(I) given in parts 21-23, it is now possible to easily prove the main

result of this section.
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We consider the following qu—linear mapping:

1:V,®Fu—>(Fpu), n=(@g"+1)/(g+1),
Lfm 3 F(@0), oS,

aGR g
where S — L is the set of representers of orbits of the action of the group H on the set of
roots R < L of the polynomial F(x); ISI = n, and Ry for 06 S denotes the orbit of the ele-

ment o under the action of H.

28. _THEOREM. The image of . in (qu)n coincides with a qz—ic algebrogeometric code
Cm,b and hence has parameters k>b—g+1, d>n—0>b, where g = g(Xo(I)).

Proof. It is clear that the mapping 7 factors through the mapping V ,®F;— WQ®F,cF.,(X);
by Proposition 20 the image of V,®F, in W®F, is equal to Z (p*F)®F;. Since in the defini-
tion of I summation goes over the orbits of the action of H, the image of 1 coincides with
the image in (Fgq2)" of the space o(Z (p*F))® Fyz, where o=(1408+...4+0"")EZ[H]. But by Lemma
7 this space coincides with the image of & (F)®F; in (qu)“ which was required to prove.

4. Formulas

1. 1In the present section formulas are given which define the objects needed in the
process of constructing the generating matrix of a code C. In order to make the exposition
in this and the following sections independent of the contents of Secs. 2 and 3 we give a
description of these objects without appealing to algebraic geometry.

m
Let p(T)=Eaka€Fq[T] be a unitary polynomial of degree m irreducible over Fq.
k=0

a) L denotes the field Fq2h1a where h; is a divisor of h = (¢q™ + 1)/(q + 1); the number
h, is found in the process of the computations described in Sec. 5.

b) I denotes the graph Fr=r,u f’z, where I'y is the tree each vertex of which is labeled

by the set

(Ps (21 s (@51 Bs)s (Z5 T)s M),
where zs, tgarevariables, Ps(zg, ts), Zs = Z§(zs, ts), Tg = Ts(zs, ts)€ Fqlzs, ts], as,
Bs €Fq, As€ {0, 1}. The root w, of the tree I'; is labeled by the set

(F* (2, 1), (0, 0), (2, 1), 0),

and the root w, of the tree f‘z is labeled by the set

(F* (2, £),(—1,0), (z+1, 1), 0),
where

F* (2, £)=t@ —H@DE 218 118),

F (x, !/)=2 aPr (x, k),

k=0

Po (s )=1, @p=2x-Pp(x, 9)9"+y-P(x, y)% k>O0.

Vi denotes the set of vertices of the tree I'i, V =V, U v,, Vi' denotes the set of hang-
ing vertices, and |Vi'| + [Vy'| = |V'| = h. The set Vg of descendents of a vertex s€V\V’
and its labels is constructed on the basis of the collection of labels of s. In part 2 for-
mulas are given which express the labels of vertices v € Vg in terms of the labels of s. This
makes it possible to recurrently construct the trees I';, T2, proceeding from a given collec-
tion of labels of the roots w,, w, of the trees T',;, T,.

c) The next object figuring in our arguments is a finite-dimensional vector space V of

polynomials in the two variables x, y over a field Fq of degree no higher than e = q“™:
TV ={p(x, y)eF[x, y]|deg p (x, y) <e}.
In the space V we consider the basis {Qas}, Qan=x°y" a=0, 1,..., & b=0,1,..., e—a, and
assume that some ordering of it is fixed: @i,...,q, /= 1/2e(e + 1). We need to consider the
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collection of Fq-linear functionals {AV i} on V whose elements are numbered by pairs (v, i)
where veV' is a hanging vertex of I', i is an integer, 0=<Ci<(qS m, and

-y, [:V'—>Fq.

In part 3 formulas are given which provide expressions for the coefficients {@,iz,} @g0s6F7 Of
the functionals {Ayi} in the basis {g,,}.

m

d) We additionally need to consider the set of roots of the equation F(x) = 2

2k k=0
akx(q -1)/(q2=1) = 0 and the action on them of the group H = (A/I)* /F The group H is

cyclic; its generator is denoted by 6. In part 4 an explicit express1on is given for the
action of 8 on an element a€ R. The basic definitions of L, T, {Ay,i} and the action of H on
R are given in Sec. 3 in terms of algebraic geometry. However, to understand how the algo-
rithm proving the main theoremof this chapter works, it suffices to adopt the formulas of
parts 2-4 as definitions.

2. Trees T',, T,. Let s€V,\V, be a nonhanging vertex of fi labelled by the collection

(Ps(zg, tg), (ag, Bs), (Zs, Ts}, Ag). Then a) the set Vg of descendents of the vertex s is
in bijection with the set Mg U Ig where

M, ={peL | P, (0, B)=0}; (M
P, (y, )eF, [y, t] is defined by the equality
ps Y+ o, yt+ﬁ:)=yb.s’ps(y’ £) &

and the condition y‘l’f’s(y, t);

; {@, if P (0, 0)=£0,

*" | consists of one elment, if P +(0,0)=0; &
the polynomial F:’s(y, t)éF, [y, t] is defined by the equality

b~
Pyt ta, t+B)=tP,(y, t) (4)
and the condition t»fﬁs (y, t). We further identify Vg and Mg U Ig.

b) If v €Vg, then for the label of v there are the formulas
biy)

_ 5
‘D'u (zv' tv)=‘ps (2,”, tv)’ )
if vEMg;
P'u (z-yv tp)=ps (Z4s tv)’ if ’UEIS} (6)
b2) a,=0, BEM,CF, for vEM; 7
-¢u=ﬁ'y=o for ’Uﬁjs,; (8)
bs)
Z,(2,F 0y 2,8, 4B, I VEM,;
Zy (20 ‘v)~{zs @ty + o 1, 4B 1 06l ®
Ts (Z." s zwtv+ﬁs)i if 'UEMS;
Toteo b= {7 Gt S 2o o oer o
ba)
0P7,
_[o 1 3, B =5 (s B)=0; (1)
N, othe;wise.

*The proof follows immediately from the definition of I'i, the labels of its vertices,
the description of the process of resolving singularities of X; by means of successive mon-
oidal transformations, and the formulas giving the monoidal transformation ¢:F' + F in local
coordinates on F and F' (see [18, pp. 141-147], [15, p. 488]).%*
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COROLLARY. Let dy be the length of the path in fi going from the root wi to the vertex
vEVi'. Then

a)
deg. P,
deg,VPv} <(d,+ 1) (" —1);

b)
deg,ﬂZ o

deg, Z,
deg. T, [< @, +1).
deg, T,

3. Functionals {Ay.,i}. Let vEV', 0<i<¢s" The coefficients {ayigpl}, a =0, 1, ...,
e, b=0, I, ..., e —a of the linear form Ay i in the basis {xAyb} of the space V can be

computed by the formula
Gyiap = A"n i (xayb) = Ql (Zv(fe (uv)uv + ﬁu) a. Tv(fe (uv)1 uv+ ﬂ")e-a-b)’

where uy = ty — By and for a polynomial P (4,)€F¢[4,] Qj(p) denotes the coefficient of uyl, Zy,
Tv are polynomials of the collection by which the vertex v is labeled, and

fe(uv)=pS(I’Pw e)eFV[uv]' (12)

where PS is the standard procedure described in part 6.6; by definition, deg fe(uy) < e.

*There is a little less formal definition of fg(uy):
fe (u'y)=Re (fv (uv))’

in the notation of part 3.18.

Proof. Formula (12) follows immediately from the definition of the functionals {Ay,i}
and the properties of the operators Qp, Rp (Lemma 3.17).%

4. Action of the Group H on the Set R. The order of the group qu, equal to q — 1, is
relatively prime to the order h = (qm — 1)/(q — 1) of the group H (since m and q — | are rela-
tively prime); therefore, in the group (A/I)* there exists a unique subgroup H' of order h
such that under the factorization mapping (A/I)* - H the subgroup H' is mapped isomorphically
onto H. The elements of (A/I)* can be represented as nonzero polynomials of degree no higher
than m — | considered modulo p(T).

m—1

Let r(T) = :S rxTK be a polynomial whose image in (A/ — I)* is a generator of the sub-
k=0

group H' (and whose image in H is the generator 6 of H). Then for the action of 6 on an ele-
ment o€ R there is the formula

m—1 " q*~—1
9a=a-( rka(q ~1)/(qg*-1) . (13)

*Proof. This follows from the description of the '"supersingular' points of X, given in
parts 3.22-3.24 and Lemma 3.%

5. Computational Process

1. In this section we describe the computational process realizing the algorithm of con-
structing "modular" codes with the parameters indicated in the main theorem of Sec. 1, and we
estimate its temporal and spatial complexity, thus obtaining a proof of that theorem. The
computational process uses the formulas of Sec. 4 and is based on the standard procedures
described below in Sec. 6. Each step of the computational process is described according to
the following scheme: we indicate the information delivered to the input of each step, the
information obtained as a result of its operation, the temporal T and spatial S complexity
of the given step, and the method of computation (including a list of standard procedures
needed to realize the computations at the given step); moreover, when it is not altogether
obvious we present a proof of the fact that the resources T and S indicated are sufficient
to carry out the computations at the given step. The computational method is described semi-
formally but in such a way that translation of the description into a programming language of
sufficiently high level involves no difficulties.
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The computational process used breaks down into eight steps. At the first step we con-
struct an irreducible polynomial py(T) of degree m which is the generator of an ideal I. At the
second step we construct a polynomial r(T) whose image in the group H is a generator of it;
at the third step we construct the trees Tj, including collections of labels of their ver-—
tices. At the fourth step we compute the coefficients of the functionals {Ay ,j}. At step 5
we compute the collection of nonnegative integers {ny} numbered by elements v&V’, 0<Cn,<<q?™.
The formulas used at step 5 can be taken as the definition of ny (*we recall that, rigorously
speaking, ny is the order of the function t at the point Qy; see part 3.20%), The sixth step
is devoted to computing the basis in the Fg-space Vp,

(en,—b)

Vb=02V' IQO Ker Ay,l,
Vo,V ={p(x, y)eF,|x, y||deg p<e=¢*™}. At the seventh step we construct the set S of repre-
m
senters of orbits of the action of H on R — the set of roots of F(x)=2akx("n‘””q"‘) — and

h=0

the orbits themselves of this action. At the final and eighth step we construct the genera-
ting matrix M of the desired q®-ic code C. As the base field over which computations in steps
1-6 and 8 are made we use the field Fq; at the seventh step we use the field L = quhl'

2. Step 1. Construction of p(T). Input: m€Z;, modd, (my, g — 1) = 1.

Output: An irreducible polynomial of degree m over Fq:

r(N= Z Tk, a,6F,, ap=1.
=0

Resources: T'=0(¢™-m5-logtq), S=0 (ma'IOgaq);

Method: Sorting of all g™ unitary polynomials of degree m, and verification of their
irreducibility over Fq by means of the procedure FAC(s, ).

3. Step 2. Construction of the Generator in H. Input: me€Z,, p(T)€A=F,[T].

Output: a) A polynomial r(T)E A, deg r(T) < m — 1, such that the image of r(T) in H is
a generator. b) Integers h,, hz, h; = |G| = [L:Fg2], h2 = [H:G], whereG is the subgroup in
H generated by the image of TE€ A.

Resources:  T=0C(g*™-m?-log?q), S=0C(mlog q).

Method: a) Sorting of all (q® — 1) elements of the standard set of representers {f(T)€
F,[T]\ {0} |deg f<<m—1} for (A/1)* with verification of the order in H of each element. b)
hz = h/h, where h = {(q® — 1)/q — 1) and h, is the order of the image of T in H.

4. Step 3. Construction of the Graph I'. Input: The same as in step 2.
Output: Labeled trees ﬂ, I'~2; f=f‘uf2.

Resources: T =0 (q'8".m3-log%>g), S=0 (¢"*"- m3.log3g).

Method: Construction of f‘i is realized inductively, namely, we construct a subtree I —
Ti at the beginning of the process of constructing TI'j, including collectionsthe root wi of
the tree T;j that is labeled by the collection

(F* (2, ), (@ B)), (2—a £—B;), 0),
(@, B)=(0, 0), (e Bo)=(—1, 0

We suppose that the subtree I' C f‘i has already been constructed. There are then two pos-
sible situations: a) For all hanging vertices VEVI'- of the tree I' we have Ay = 1. In this

case IVH = !V;] , the subtree T' coincides with Tj, and the construction is finished. b)
There exists a hanging vertex v€ Vf. of the tree T such that Ay = 0. In this case the induc-
tive construction of T by means of the formulas of part 4.2 continues.

1°. We set V}'=(Vi‘\{'0})u(MvUIv), VI‘=VI‘U(M'DUI'0)'

2°. The labels of the vertices u€M,U/, are computed by formulas (4.3)-(4.11) using the
procedures SUBST, SR, ROOT.
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. *Estimate of resources: According to Lemma 3.13, for the number of vertices viof the tree
Ty there is the inequality v, + v2 < q“®; an estimate of the resources required in working
with an individual vertex is obtained from the estimates of complexity of the procedures
SUBST, SR, ROOT given in Sec. 6 and the estimates of the degrees of the polynomials Py, Zy,
Ty given in part 4.2.%"

5. Step 4. Computation of the Coefficients of the Functionals Ay,i. Input: Choice of
labels (Py(zy, tv), (av, By)s (Zy, Ty), Ay) for each hanging vertex vE& V' of the graph I.

Output: Collection of coefficients {@,,}, @ 6=0,1,...,e=¢%", a4+ b<e of linear forms
{Av.), i=1,...,¢%", 0V’ in the basis {x2y?} of the space V, @,;4,€F,.
Resources: T=0(¢%m.m? log?q), S=0 (¢%™ -m?-log?q).
Method: TFor vE€V' we set
uﬂ=t'ﬂ—ﬁfl;
Se(u,):=PS (s, P,, e)6F,[u,);

Pi—SUBST (s, Zyv fo (o), tty+BEF [1]:

Q:=SUBST (s, Tos Se (uv)v uv+ﬁv)epq ]It,,];

@piap: =Q; (SUBST (s, X,°X57°7°, P, Q)F,.

6. Step 5. Computation of the Collection {ny}. Input: The same as in step 4.

Output: The collection {n,}, we€l’, 0<n,<¢*, *n, 1is the order of the function t at
Qve X.*

Resources: T =0 (¢*"-m?.log?q), S=0(¢'%™-m?.log? q).
Method: For vEV' we set
Upi=1,— By
Fyam (1) = PS (5, Py, ¢"6F [u,]:
Fy:=SUBST (S, Ty, tty+Bos S 2m (1,))€F ¢ [11,];
ny:=min{n€Z, | Q, (F,) <0}
7. Step 6. Finding a Basis in V. Input: The collection {ny}, v€V', and the collec-

tion of coefficients {@a) 06V, 1 =0, ..., q*M, a =0, 1, ..., L, b=0,1, ..., L —a, of
linear forms {Ay i}; an integer b > 0.

Output: The collection {py}, r = 1, ..., dim V, of basis polynomials in the subspace
Vp & V.

Resources: T =0 (¢*".-m?.log?q), S=0 (¢"®™.m?.log?q).
Method: Application of LEQ(s, M).

8. Step 7. Construction of the Set of Orbits of the Action of H on R. Input: p(T),
r(T)€ A = Fq[T].

QOutput: a) The set S CL of representers of the orbits of the action of the group H on

m
the set R of roots of the polynomial F(x) =2akx(‘12k"‘)/(‘l'—1). b) For each 0 &S a list of ele-
k=0

ments R; C R lying in one 0 orbit.
Resources: T =0 (¢3m+2) S=0 (g*(m+2),

Method: a) We set (Py, ..., Pph,): = FAC(2s, F), whereq = P, n = (@™ + 1)/(q *+ 1) (*the
fact that nh, factors are obtained is proved in Lemma 3.24*),deg Py =hy;, j =1, ..., nha.
For j =1, ..., nh, we set

Aj={oc1j, ey anl;}:=ROOT (23, Pj), a,,eL.
We order the collection {Pi, ..., Pj, ..., Ppy,} so that vi Vj, i =1, ..., hyy, =1, ..,
nh, the following relation holds:
m—1 g*—1
fay,=0ay; (E fkag‘}zk_l)/(q'_”) €A UA
k=0
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(i.e., in order by the action of the generator 8 of the group H on an element .g,GA; to ob-
tain an element of A5 or an element of Aj+;; *see the description of the orbits of the action

of H on R given in part 3.24%). Further, we set
S: ={al"z’ 0i1,2051 o+ vs al.nll,}~
b) For o=0,,4,6S we set
R0:={oc,,k/,,+,-}, l=1, ey hls j———‘l, ooy /12.

9. Step 8. Comnstruction of the Generating Matrix of the Code. Input: The set S = R/H;
the collection {R;}, 06S; the collection of basis polynomials {py} in the space Vj.

Output: The generating matrix M = Mp b of the code C = Cp p,

- MéMat (kXn, Fp), n=(q"+1)/(g+1), k>b—g+1.
Resources: T =0 (¢'"".log?q), S=0 (¢'9"-log q).
Method: We construct the matrix

M'eéMat ((dim V') X n, Fs);

M=(my), r=1,...,dmV,, k=1,...,n:
ny

hg
Mz = Pr (@ 0)= X X Pr (%, (s—1ysts» O

alGRy i=1J=1

where 06 S in the first sum corresponds to the k—th element of S.

The matrix M is obtained from M' by deleting rows which are linear combinations of
other rows (this is done, for example, by the Gauss method).

At step 8 the algorithm finishes its work. Figure 1| shows the scheme of logical depen-
dence of the steps of the algorithm.

6. Standard Procedures

1. In the present section we give a brief description of the standard procedures used
in the computational process of Sec. 5 (one of them — PS — figures also in part 4.3). As a
model of the computing process we choose LRAM, i.e., an equiaccess address machine (a machine
with arbitrary access to memory) with a logarithmic bound on the length of cells; a descrip-
tion of this model of computations is contained, for example, in the survey [14]. Estimates
of the complexity of procedures are given for LRAM. We hereby do not strive to use algorithms
with the best known estimates, and in the presence of alternatives we choose an algorithm with
the simpler structure under the condition that it has a polynomial estimate of complexity (in
the sense we require). It can be verified that use of the best known algorithms with preser-
vation of the general scheme of the computing process does not lead to basic improvement of
the estimates in our main theorem. Below we use the word "algorithm" as a synonym for the
acronym "LRAM".

The choice of LRAM as the basic computational model is to considerable extent arbitrary
and is dictated by convenience considerations. The basic result of this chapter on the pos-
sibility of a polynomial computational process for "modular' codes is preserved for any

Fig. 1. Scheme of logical dependence of
the steps of the algorithm.

2639



reasonable computational model, for example, for a Turing machine MT, since for any computa-
tion on LRAM with time complexity T there exists a modelling of it on MT with complexity
O(T%0g®T) (see, for example, [1, Sec. 1.6]).

The procedure is described according to the following scheme: mname of procedure, NAME,
input data, output data, method of operation, estimate of time T (NAME) and space S (NAME)
complexity in the computational model we adopt. A description of the method of operation of
the procedure is presented only in the case where this procedure is not described (or its
description requires essential modification) in [1] or the survey [14]. Moreover, we shall
not present descriptions of the obvious procedures of the type of arithmetic actions on ele-
ments of finite fields and on polynomials over finite fields. The only thing we can reason-
ably say in this regard consists in the form in which we give the elements of finite fields.

2. Representation of Constants. By constants we mean elements of a fixed finite field
F a (in our case such a field can be taken to be the field th, h= (@@ ~—-1)/(q —1), a =hs).

We call such a field a collection of structural coefficients {Cijk}’ i, 3, k=1, ..., a,
cijk EFp, for some basis {a1,..., a,} of the field Fpa over Fp:

a
ai'a1=2011k'ak.
k=1
Generally speaking, we must go over to extensions within the field Fpa of fields of the
form Fob where b/a.

3. Passage to an Extension. To describe passage from a field'pr to a field Fpr, b/r,

we introduce the following procedure.
Extension of finite fields: EXTFF(b, F).
Input: b€ Zy, a unitary irreducible polynomial F € pr[X], deg F = s,

Qutput: a collection of structural constants {dijk} of the field Fpr, r =bs, 1, j, k =

I, ..., r.

Method: we note first of all that since the field pr enters in the input of the proce-
dure, we are given a collection of its structural constants {cjjk}, i, j, k=1, ..., b in
some basis {a;, ..., ap} over F,. As a basis of Fpr over Fp we choose {aj-B8d}, i =1, ...,
b, =0, ..., s—1; B is a root of F; F(B) = BS + qg-1BS5~' + ... + ao = 0, ai(Epr, i=0,

.y 8 — 1.
First we inductively compute BS, ..., B®S7?: if
Bsi=ap, ;4 ...+ @1, ;p F=0,..., s—2,
then
B = — (@t -+ Bt Bt G0 Bt o Boa, BED,

whereby for j =0, aj j =aj, i =0, ., 8§ — 1. We further compute the products {aiﬂj-asz}:

m s—1
(2 ciltat) ( au,k+i—sﬁ") for k4j>s;
t=1 u=0

(Z c,-“a,) pers for k47 <s.
=1

o,flaft=

Complexity:
T(EXTFF)=0%s%(p)?); S(EXTFF)=0 (b33 (p))-

Here and below L(n) for n€Z, denotes [logz(n)] + 1.
4. Solution of the System of Linear Equations. Linear system: LEQ(b, M).

Input: b&EZ,, MEMat(sXn, F ).
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Output: a basis in the space of solutions of the system of linear equations Mx = 0,
x € (Fpb) 0.

Complexity:
T(LEQ)=0(snb (p)): S(LEQ)=0(snbl(p))-

5. Operations on Polynomials. Aside from the procedures of arithmetic actions and the
Euclidean algorithm, we need also four procedures defining the actions with polynomials.

Substitution: SUBST(b, P, Q,, Q2).

Input: bEZ,, PEF»[X), Xo], Qi Qo6Fps [X]-

Output: Q=P (Qi(X), Qz(X))EFz» [X].

Complexity: T (SUBST)=0 (s2r‘6?(p)?), S (SUBST)= 0 (s*?l(p)), where s = deg P, r = max
(deg Q., deg Qaz).

Finding roots: ROOT(a, P).

Input: b€ Z4, an irreducible polynomial PE€ pr [x].
Output: a collection {B,, ..., Bg} of roots of P in prs, where s = deg P.

Method: wuse of EXTFF(b, P), finding {Bpi} i=1, ..., s — 1, where P(B) = 0.

Complexity: T(ROOT)=0(p-s-b%-l(p)2+b3-s3-I(p)?); S(ROOT)= O (b3-s3-1(p))-

Elimination of multiple roots: SR(b, P).

Input: b€Z,, PEF,m[X], deg P =s.

Output: R = HOD(P, Py), Pyx = aP/dX.

Complexity: T (SR)=0(s®-b3-1(p)?); S(SRy=0 (sbl{p)).

Expansion: FAC(b, P).

Input: &6Z,, PEF,{X], P has no multiple roots, deg P = s.

Output: the collection (P,, ..., P¢) of factors of P, Piel pr [x], irreducible over
F .

p

Method: Let ¢ bean Fp—linear Frobenius operator in the semisimple algebra R=Fp[X]/(P),

(P:E a;X'mod P r—vza,l’X‘PmodP. We first find the matrix MgEMat (r Xr, Fp), r =bs, of the action
of ¢ in the basis {a,X/modP}, i=1,...,8, j=0,..., s —1, of the algebraR over Fp, where {ei}
is a basis of pr over Fy. For this it suffices to compute {a/}, i=1,...,0; {X/?PmodP}, j =0,

., S — 1, asdone in part 3 in describing the procedure EXTFF and then compute {uiPXjP} which
gives the matrix M . Applying now the procedure LEQ(1, Mep— Iy), where [ EMat(rxr, F,) is the
identity matrix, we find a basis in the Fp-space R” of elements of R invariant under ¢ . Let
r,, r, be two linearly independent (over Fp) elements of R® (if none such exist, then P is
irreducible and t = 1). By sorting elements f€F;, we find f such that a + fb is a zero divisor
in the algebra R” (in order that a + fb be a zero divisor it suffices to require that the
determinant of the matrix of multiplication by (a + fb) in R® vanish). A polynomial H(X)
such that deg H < deg P and H(X) mod P = a + fb has as a factor a nontrivial divisor of P(X).
We then continue to act by induction on the degree of P(X)/G(X) where

G (X)=HOD (P (X), H (X))-
Complexity:
T(FAC)=0 (s%°%-L(p)*+ p-s*-L(p)D: S(FAC)=0(s%-b%-1(p))-

We also need one specific simple procedure which, as far as we know, is not described
in the literature (we have in mind its description as a procedure rather than as a method of
computation which is well known).

6. Expansion in Power Series.

Power series: PS(b, P, 4d).
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P(0,

Input: b, d€Z;, an absolutely irreducible polynomial P(X, Y)€ pr[X, Y] such that
0) = 0, Py(0, 0) + 0, s = deg P.
Output: a segment f,6F,s[X], deg f,<d, of length d of the power series of f obtained by

expanding Y in powers of X if X and Y are connected by the relation P(X, Y) = 0.

10.
11.

12.

13.
14,

15.
16.

17.

18.
19.

20.

21.

22.
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Method: recurrent computation of the polynomials f,, ..., f4, where
fi=— a2’ X;
fj+1=f}"‘a'l'Xj+l’Qj+1 (P (X, F)—a 1
j=1,...,d—1;

PX.Y)= X a,X7/;

1,}j=0

=0, a=ay,—Py (0,0)50.

Complexity:
T (PS)=0 (s%d*6*L (p)); S (PS)=0 (s*d%*-L(p))-
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