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1. Introduction

The goal of this paper is to explain how a simple but apparently new
fact of linear algebra together with the cohomological interpretation of
L-functions allows one to produce many examples of L-functions over
function fields vanishing to high order at the center point of their functional
equation. Conjectures of Birch and Swinnerton-Dyer, Bloch, and Beilinson
relate the orders of vanishing of some of these L-functions to Mordell–Weil
groups and other groups of algebraic cycles. For certain abelian varieties
of high analytic rank, we are also able to prove the conjecture of Birch
and Swinnerton-Dyer thus establishing the existence of large Mordell–Weil
groups in those cases.

In the rest of this section we state the main results of the paper.

1.1. Theorem. For every prime number p, every positive integer g, and
every integer R, there exist absolutely simple, non-isotrivial abelian vari-
eties J of dimension g over Fp(t) such that ords=1 L(J/Fp(t), s) ≥ R. For
all p and g there are examples of such J for which the conjecture of Birch
and Swinnerton-Dyer holds and so the rank of the finitely generated abelian
group J(Fp(t)) is at least R.

The precise meaning of non-isotrivial (and a stronger property enjoyed
by J) is explained in Sect. 5.3.

� This paper is based upon work partially supported by the National Science Foundation
under Grant No. DMS 0400877
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Our examples are completely explicit: We produce hyperelliptic curves
whose Jacobians have the properties asserted in the theorem. For example,
if p does not divide (2g + 2)(2g + 1) then the Jacobian of the curve with
affine equation y2 = x2g+2 + x2g+1 + t pn+1 over Fp(t) is absolutely simple,
non-isotrivial, and has Mordell–Weil group of rank ≥ pn/2n over Fp(t).
This curve and similar examples for other pairs (p, g) meet asymptotic
upper bounds on ranks explained in Sect. 11.

We can also produce high analytic ranks for L-functions of cohomology
groups of higher degree:

1.2. Theorem. For every prime number p > 2, every odd positive integer k,
and every integer R, there exist infinitely many integers g such that there
exist absolutely simple, non-isotrivial abelian varieties J of dimension g
over Fp(t) with

ords=(k+1)/2 L
(
Hk(J)prim, s

) ≥ R.

Here L(Hk(J)prim, s) is the L-function associated to the primitive part of
the k-th �-adic cohomology group of J . See Sect. 8.1 for details. A conjecture
(or rather “recurring fantasy”) of Bloch [Blo84] predicts that the order
of vanishing appearing in the theorem is equal to the rank of the group
of homologically trivial cycles of codimension k on J modulo rational
equivalence. Producing the predicted cycles, even in specific examples,
looks like an interesting but difficult problem.

We also obtain new results on elliptic curves. In [Ulm02] large ranks
were obtained by considering a specific elliptic curve over various rational
extensions of the base field. The following result shows that this is a very
general phenomenon.

1.3. Theorem. Let Fq be the field with q elements, q a power of p, and let
E be any elliptic curve defined over F = Fq(v) such that the j-invariant
of E does not lie in Fq. Then there exists a power r of q such that for
every integer R there are extensions of F of the form K = Fr(t) such that
ords=1 L(E/K, s) ≥ R.

Regarding isotrivial elliptic curves, our method also gives a new proof
of a result of Tate and Shafarevitch:

1.4. Theorem. Let E0 be a supersingular elliptic curve over Fp and let
E = E0 ×SpecFp SpecFp(t). Then for every integer R there exist quadratic
twists E ′ of E over Fp(t) such that the rank of E ′(Fp(t)) is ≥ R.

1.5. The key result of linear algebra and its implications for L-functions
already appeared in our previous work [Ulm05] on non-vanishing of L-func-
tions. (In that context, it was something of a technicality, but here it returns
in a more appealing guise.) For the convenience of the reader, we give
a brief review of the linear algebra from a somewhat different point of view
and a more general application to L-functions in Sects. 2 through 4. We
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then prove the results stated above in Sects. 5 through 10. In Sect. 11 we
discuss an upper bound on ranks in terms of conductors and then note that
the results of Sect. 7 show that the main term of the bound is sharp.

Our analytic rank results are all based on an understanding of the be-
havior of L-functions in towers of function fields, the simplest and most
important example being the tower Fq(t1/d) where d runs over integers
prime to p, the characteristic of Fq. That ranks of L-functions should often
be unbounded in towers became apparent while considering a question of
Ellenberg on towers over finite fields versus towers over number fields.
In a companion [Ulm] to this paper, we explain Ellenberg’s question and
ultimately answer it in the negative by giving several examples of abelian
varieties which have ranks over Fq(t1/d) bounded independently of d.

1.6. It is a pleasure to thank Jordan Ellenberg for his stimulating questions
about ranks of elliptic curves as well as Brian Conrey, Bill McCallum,
Dinesh Thakur, and especially Bjorn Poonen for their help.

2. Linear algebra

2.1. Proposition. Let V be a finite-dimensional vector space with sub-
spaces Wi indexed by i ∈ Z/aZ such that V = ⊕i∈Z/aZWi. Let φ : V → V
be an invertible linear transformation such that φ(Wi) = Wi+1 for all
i ∈ Z/aZ. Suppose that V admits a non-degenerate, φ-invariant bilinear
form 〈, 〉 which is either symmetric (in which case we set ε = 1) or skew-
symmetric (in which case ε = −1). Suppose that a is even and 〈, 〉 induces an
isomorphism Wa/2

∼= W∗
0 (the dual vector space of W0). Suppose also that

N = dim W0 is odd. Then the polynomial 1 − εT a divides det(1 − φT |V ).

The proof of Proposition 2.1 is given in Subsects. 2.2 through 2.5 below.

2.2. Lemma. Let V be a finite-dimensional vector space with subspaces
Wi indexed by i ∈ Z/aZ such that V = ⊕i∈Z/aZWi. Let φ : V → V be
a linear transformation such that φ(Wi) ⊂ Wi+1 for all i ∈ Z/aZ. Then

det(1 − φT |V ) = det(1 − φaT a|W0).(2.2.1)

Proof. We argue by induction on the dimension of W0. If W0 = {0} then φ
is nilpotent and both sides of 2.2.1 are 1. We may assume that the ground
field is algebraically closed and so if W0 �= {0} then φa has an eigenvector
v ∈ W0 with eigenvalue λ. Let W ′

i be the span of φiv and V ′ = ⊕W ′
i .

A simple computation shows that

det(1 − φT |V ′) = 1 − λT a = det(1 − φaT a|W ′
0).

Since characteristic polynomials are multiplicative in short exact sequences,
we may replace V with V/V ′ and Wi with Wi/W ′

i and finish by induction
on the dimension of W0. �




382 D. Ulmer

2.3. Lemma. Under the hypotheses of Proposition 2.1, if λ is an eigenvalue
of φa on W0 then so is λ−1.

Proof. First we note that since φa : W0 → W0 factors as

W0
��

φa/2

Wa/2 ��

φa

Wa/2 ��

φ−a/2

W0

the eigenvalues of φa on W0 are the same as the eigenvalues of φa on
Wa/2. On the other hand, the pairing 〈, 〉 induces a duality between W0
and Wa/2 for which φa is orthogonal (i.e., for all v ∈ W0, w ∈ Wa/2,
〈φav,w〉 = 〈v, φ−aw〉) and so the eigenvalues of φa on W0 are the inverses
of the eigenvalues of φa on Wa/2. �

2.4. Lemma. Under the hypotheses of Proposition 2.1, the determinant of
φa : W0 → W0 is εN .

Proof. The pairing 〈, 〉 induces a pairing on W = ∧N W0 ⊕∧N Wa/2 which
we again denote by 〈, 〉. The sign of this pairing is εN , i.e., 〈v,w〉 = εN〈w, v〉
for all v,w ∈ W . Let h : W → W be induced by

∧N
φa/2 and note that

h exchanges the subspaces
∧N W0 and

∧N Wa/2. Choose v ∈ ∧N W0 and
w ∈ ∧N Wa/2 such that 〈v,w〉 = 1. Then

det(φa|W0) = 〈h2v,w〉 = 〈hv, h−1w〉 = 〈w, v〉 = εN〈v,w〉 = εN .

�

2.5. Proposition 2.1 is an easy consequence of the lemmas. Indeed,
Lemmas 2.3 and 2.4 imply that ε is an eigenvalue of φa on W0, i.e., that
1 − εT divides det(1 − φaT |W0) and then Lemma 2.2 implies that 1 − εT a

divides det(1 − φT |V ). This completes the proof of Proposition 2.1.

2.6. Remarks. (1) Under the hypotheses of Proposition 2.1, εφa is the
asymmetry (in the sense of [CT02]) of the pairing (w,w′) =
〈w,φ−a/2w′〉 on W0. This provides another way to see that εφa has
determinant 1 and is conjugate to its inverse.

(2) With hypotheses as in Proposition 2.1 except with N even, we do not
get any consequences for the eigenvalues of φ except what is forced
by Lemma 2.3. See [Ulm05, 7.1.12] for a more precise version of this
remark.

On the other hand, combining Lemma 2.2 with well-known facts about
orthogonal transformations yields the following variant, whose proof will
be left to the reader.

2.7. Proposition. Let V be a finite-dimensional vector space with sub-
spaces Wi indexed by i ∈ Z/aZ such that V = ⊕i∈Z/aZWi. Let φ : V → V
be an invertible linear transformation such that φ(Wi) = Wi+1 for all
i ∈ Z/aZ. Suppose that V admits a φ-invariant bilinear form 〈, 〉 such that
〈, 〉 restricted to W0 is non-degenerate and symmetric. If N = dim W0 is odd
and ε = det(φa|W0), then 1 − εT a divides det(1 − φT |V ). If N = dim W0
is even and det(φa|W0) = −1, then 1 − T 2a divides det(1 − φT |V ).
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3. Group theory

We review some simple facts about the representation theory of an extension
of a finite abelian group by a cyclic group. Fix an algebraically closed field
k of characteristic zero. In the applications, k will be Q�.

3.1. Let H be a finite abelian group and let φ : H → H be an automor-
phism of H . Let C be the cyclic subgroup of Aut(H) generated by φ and
let b denote the order of C. We form the semidirect product H+ = H�C;
explicitly, H+ is the set of pairs (h, φi) with h ∈ H and i ∈ Z/bZ with
multiplication (h, φi)(h ′, φ j) = (hφi(h ′), φi+ j ). For a an integer, let H+

a be
the subgroup of H+ generated by H and φa; it has index gcd(a, b) in H+.

3.2. Let Ĥ denote the group of k× -valued characters of H . There is a natural
action of C on Ĥ: if χ ∈ Ĥ and h ∈ H , then χφ(h) is defined to be χ(φ(h)).
Given χ ∈ Ĥ , let a = aφ be the smallest positive integer such that χφa = χ.
Choose a (b/a)-th root of unity ζ ∈ k. We extend χ to a character χ̃ of H+

a
by setting χ̃(φa) = ζ . It is not hard to check that the induced representation
IndH+

H+
a

χ̃ is irreducible and up to isomorphism it only depends on ζ and the
orbit of the C action on Ĥ containing χ. We denote this orbit by o and write
σo,ζ for IndH+

H+
a

χ̃. Every irreducible representation of H+ is isomorphic to a
σo,ζ for a unique pair (o, ζ). (This is a special case of the “method of little
groups.” See [Ser77, 8.2] for details.)

It is easy to see that the dual of σo,ζ is σ−o,ζ−1 where −o = {χ−1|χ ∈ o}.
In particular, σo,ζ is self-dual if and only if o = −o and ζ ∈ {±1}. We write
σo for σo,1.

3.3. Let Σ = IndH+
C 1 where we write 1 for the trivial representation of C

with coefficients in k. I claim that

Σ ∼=
⊕

o⊂Ĥ

σo(3.3.1)

where the sum on the right is over the orbits of C acting on Ĥ . Indeed,
for each pair (o, ζ) choose χ ∈ o and extend it to χ̃ as above. Then using
standard notation for the inner product on the representation rings of H+
and C, we have

〈σo,ζ ,Σ〉H+ = 〈
IndH+

H+
a

χ̃, IndH+
C 1

〉
H+

= 〈
ResH+

C IndH+
H+

a
χ̃,1

〉
C

which is the multiplicity of 1 as eigenvalue of φ on IndH+
H+

a
χ̃. By Lemma 2.2,

this is the same as the multiplicity of 1 as an eigenvalue of χ̃(φa), namely
1 if ζ = 1 and 0 if ζ �= 1. Thus each σo appears in Σ exactly once and no
σo,ζ with ζ �= 1 appears. This establishes the claim.
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3.4. Note that (χφ)−1 = (χ−1)φ so if o ⊂ Ĥ is an orbit of C such that
o = −o (a “self-dual orbit”) then the involution χ �→ χ−1 of o is either
trivial or has no fixed points. The first case happens exactly when o consists
entirely of characters of order dividing 2 (in which case we say that o
“consists of order 2 characters”) and the second case happens when all the
characters in o have (the same) order larger than 2 (in which case we say o
“consists of higher order characters”).

3.5. In the applications of these results, F will be the function field of
a curve over a finite field Fq, and K will be a finite extension of F which is
“geometrically abelian,” i.e., such that the extension Fq K/Fq F is abelian.
Then H will be Gal(Fq K/Fq F) and φ will be the action of the geometric
(q−1-power) Frobenius on H . It is easy to see that b is then the degree of
the algebraic closure of Fq in the Galois closure L of K/F and we have the
diagram of fields

L = Fqb K

ss
ss
ss
ss
s

HH
HH

HH
HH

HH

Fqb F

LL
LL

LL
LL

LL
L

K

uu
uu
uu
uu
uu
u

F

and the corresponding diagram of Galois groups:

1

��
��
��
��

BB
BB

BB
BB

H

CC
CC

CC
CC

C

��
��
��
��

H+

3.6. Specializing further, the most interesting applications will be in the
case where d is an integer prime to the characteristic of F and K = F(u1/d)
for some u ∈ F such that [K : F] = d. In this case, H = µd by Kummer
theory, Ĥ = Z/dZ, and the action of φ is just multiplication by q−1. There
are at most two orbits o consisting of characters of order 2, namely o = {0}
and, if d is even, o = {d/2}. On the other hand there is a plentiful supply
of self-dual orbits consisting of higher order characters. Indeed, if d divides
qn + 1 for some n, then qn ≡ −1 (mod d) and so every orbit is self-dual.
Since q2n ≡ 1 (mod d) each orbit has cardinality at most 2n and so there
are at least (qn −1)/2n self-dual orbits consisting of higher order characters.
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3.7. The results of this section can be extended, with some additional
complications, to the case where H is an arbitrary finite group and the
extended results seem to have interesting applications to arithmetic. I hope
to report on this elsewhere.

4. Application to L-functions

We now apply the linear algebra result Proposition 2.1 to L-functions. The
discussion is a generalization of [Ulm05, 3.2, 4.2, and 7.1].

4.1. Let C be a smooth, proper, geometrically irreducible curve over the
finite field Fq of characteristic p and let F = Fq(C) be its field of functions.
Choose an algebraic closure Falg of F and let F ⊂ Falg be the separable
closure of F. Let GF = Gal(F/F) be the absolute Galois group of F. For
each place v of F we choose a decomposition group Dv ⊂ GF and we let Iv
and Frv be the corresponding inertia group and geometric Frobenius class.
We write deg v for the degree of v and qv = qdeg v for the cardinality of
the residue field at v. For a finite extension K of F, we denote Gal(F/K )
by GK .

Fix a prime � �= p and let Q� be an algebraic closure of Q�, the field of
�-adic numbers. Fix also imbeddings Q ↪→ C andQ ↪→ Q� and a compati-
ble isomorphism ι : Q� → C. Whenever a square root of q is needed inQ�,
we take the one mapping to the positive square root of q in C. Having made
this choice, we can define Tate twists by half integers.

4.2. Fix a continuous representation ρ : GF → GLr(Q�). (As is well-
known, ρ factors through GLr(E) for some finite extension E of Q�. See
[KS99, 9.0.7–9.0.8] for a discussion.) We assume that ρ satisfies the fol-
lowing conditions:

(1) ρ is unramified outside a finite set of places, so that it factors through
π1(U, η) for some non-empty open subscheme j : U ↪→ C. (Here η is
the geometric point of C defined by the fixed embedding F ↪→ Falg.)

(2) ρ is ι-pure of some integer weight w, i.e., for every place v where ρ is
unramified, each eigenvalue α of ρ(Frv) satisfies |ι(α)| = qw/2

v .
(3) ρ is self-dual of weight w and sign Sign(ρ) ∈ {±1}. In other words,

we assume that the space Q
r
� on which GF acts via ρ admits a non-

degenerate, GF-equivariant bilinear pairing 〈, 〉 with values in Q�(−w)

and with 〈v, v′〉 = Sign(ρ)〈v′, v〉 for all v, v′ ∈ Qr
�.

For each place v of F we write Condv ρ for the exponent of the
Artin conductor of ρ at v. (See [Ser79, Chap. VI] for definitions.) We
let Cond(ρ) = ∑

v(Condv ρ)[v] be the global Artin conductor of ρ, viewed
as an effective divisor on C.
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4.3. Attached to ρ we have an L-function, defined formally by a product
over the places of F:

L(ρ, F, T ) =
∏

v

det
(
1 − ρ(Frv)T

deg v
∣∣(Q

r
�

)ρ(Iv))−1

and, for a complex variable s, we define L(ρ, F, s) to be L(ρ, F, q−s).
Grothendieck’s analysis of L-functions shows that L(ρ, F, T ) is a ratio-

nal function in T and satisfies the functional equation

L(ρ, F, T ) = (
q

w+1
2 T

)N
L(ρ, F, (qw+1T )−1)

where

N = (2gC − 2)(deg ρ) + deg(Cond(ρ)).

(See, for example, [Mil80], especially Sect. VI.13.)
If K is a finite extension of F contained in F, we abbreviate

L(ρ|GK , K, T ) to L(ρ, K, T ).

4.4. Fix a finite extension K of F which is geometrically abelian in
the sense that Fq K/Fq F is abelian. We adopt the definitions and nota-
tion of Subsect. 3.5, so that the Galois closure of K/F is L = Fqb K ,
H = Gal(Fq K/Fq F), C = Gal(Fqb K/K ) ∼= Gal(Fqb/Fq) generated by the
q−1-power Frobenius φ, and H+ = Gal(L/F) ∼= H�C.

Continuing with the notations of Sect. 3 we let Σ = IndH+
C 1 so that

Σ ∼= ⊕o⊂Ĥσo where the sum is over orbits of C on Ĥ, the dual group of H .
We view Σ and the σo as representations of GF via the natural surjection
GF → H+.

Now consider L(ρ, K, T ) = L(ResGF
GK

ρ, K, T ). By standard properties
of L-functions (e.g., [Del73, 3.8]) and basic representation theory,

L
(

ResGF
GK

ρ, K, T
) = L

(
IndGF

GK
ResGF

GK
ρ, F, T

)

= L
(
ρ ⊗ IndGF

GK
1, F, T

)

= L(ρ ⊗ Σ, F, T )

=
∏

o⊂Ĥ

L(ρ ⊗ σo, F, T ).

Our basic result about L-functions says that for a suitable K , many of
the factors on the right hand side of the last equation vanish at the center
point of their functional equations:

4.5. Theorem. Let F, ρ, and K be as in 4.1, 4.2, and 4.4 respectively. We
keep the notations H, Ĥ, and C of 4.4. Fix an orbit o ⊂ Ĥ for the action of
C of cardinality |o| which is self-dual (o = −o) and consists of characters
of higher order (χ ∈ o �⇒ χ �= χ−1). Assume that for one (and thus
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every) χ ∈ o the degree of Cond(ρ ⊗ χ) is odd. Let w be the weight of
ρ and let ε = − Sign(ρ). Then 1 − ε(Tq

w+1
2 )|o| divides the numerator of

L(ρ ⊗ σo, F, T ).

Proof. The theorem is a fairly straightforward application of the linear
algebra result of Sect. 2 and the cohomological interpretation of L-functions.

Let j : U ↪→ C be a non-empty open subscheme over which both ρ and
σo (and therefore also ρ ⊗ σo) are unramified. These three representations
give rise to lisse �-adic sheaves on U and we let Fρ, Fσo , and Fρ⊗σo denote
their direct images under j on C. (These are the “middle extension” sheaves
on C attached to the representations.)

Grothendieck’s analysis of L-functions and our hypotheses on ρ give
a cohomological calculation of L(ρ ⊗ σo, F, T ):

L(ρ ⊗ σo, F, T )

= det
(
1 − φT |H1(C × Fq,Fρ⊗σo)

)

det
(
1 − φT |H0(C × Fq,Fρ⊗σo)

)
det

(
1 − φT |H2(C × Fq,Fρ⊗σo)

) ,

where φ is the geometric Frobenius in Gal(Fq/Fq). By Deligne’s theorem
on weights, there is no cancellation in this expression and so the numerator
of the L-function is precisely

det
(
1 − φT |H1(C × Fq,Fρ⊗σo)

)
.

The theorem is invariant under twisting and so we may replace ρ with
ρ ⊗Q�(

w+1
2 ) and assume that ρ is self-dual of weight −1 and sign Sign(ρ).

Since −o = o, σo is self-dual with sign +1 and so ρ ⊗ σo is self-dual with
sign Sign(ρ). Poincaré duality implies that H1(C × Fq,Fρ⊗σo) is self-dual
of weight 0 and sign ε = − Sign(ρ) as a representation of Gal(Fq/Fq).

On the other hand, σo factors as a representation of Gal(F/Fq F) into
lines and so on C = C × Fq

Fρ⊗σo
∼=

⊕

χ∈o

Fρ⊗χ,

where Fρ⊗χ is the middle extension sheaf attached to ρ ⊗ χ. Thus we have
a factorization

H1(C × Fq,Fρ⊗σo) =
⊕

χ∈o

H1(C × Fq,Fρ⊗χ).

Under the Poincaré duality pairing on H1(C × Fq,Fρ⊗σo), the subspaces
H1(C ×Fq,Fρ⊗χ) and H1(C ×Fq,Fρ⊗χ−1) are dual to one another. More-
over, φ is compatible with the pairing and sends H1(C × Fq,Fρ⊗χ) to
H1(C × Fq,Fρ⊗χφ ).
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For any middle extension sheaf Fτ on C associated to an �-adic repre-
sentation τ of GF satisfying the first hypothesis of Subsect. 4.2, we have

dim H0(C × Fq,Fτ ) = dim H2(C × Fq,Fτ )

both of these being the multiplicity with which the trivial representa-
tion appears in τ restricted to Gal(F/Fq F). It follows that the dimen-
sion of H1(C × Fq,Fτ ) has the same parity as the Euler characteristic
(2 − 2gC) deg(τ) − deg Cond(τ) and this has the same parity as the de-
gree of Cond(τ). Therefore, our hypotheses imply that the dimension of
H1(C × Fq,Fρ⊗χ) is odd.

Theorem 4.5 now follows easily from Proposition 2.1. Indeed, fix χ ∈ o
and set V = H1(C × Fq,Fρ⊗σo) and Wi = H1(C × Fq,Fρ⊗χφi ). The
geometric Frobenius φ permutes the Wi cyclically. Since o is self-dual
consisting of higher order characters, a = |o| is even. Poincaré duality gives
a non-degenerate pairing on V which induces a duality between W0 and Wa/2
and the dimension of W0 is odd. Thus the hypotheses of Proposition 2.1 are
satisfied and so 1−εT a divides the numerator of the twisted L-function and
1 − ε(q

w+1
2 T )a divides the numerator of the L-function L(ρ ⊗ σo, F, T ). �


4.6. Remark. One can formulate a variant of Theorem 4.5 with Proposi-
tion 2.7 playing the role of Proposition 2.1. This variant does not seem to
lead to unbounded ranks and so we omit it.

We now give a context in which Theorem 4.5 can be applied to deduce
unbounded ranks in towers. For the definition of the Swan conductor of
a representation, we refer to [Mil80, p. 188].

4.7. Theorem. Let F = Fq(u) where q is a power of p and for each d
prime to p let Fd = Fq(t) with td = u. Let ρ be a representation satisfying
the hypotheses of 4.2 which is self dual of weight w and sign −1. Let n be
the conductor of ρ, let n′ be the part of n which is prime to the places 0
and ∞ of F, and let Swan0(ρ) and Swan∞(ρ) be the exponents of the Swan
conductors of ρ at 0 and ∞. If deg n′ + Swan0(ρ) + Swan∞(ρ) is odd then
ords=(w+1)/2 L(ρ, Fd, s) is unbounded as d varies through integers prime
to p. More precisely, for d of the form d = qn + 1 we have

ords=(w+1)/2 L(ρ, Fd, s) ≥ d/2n − c

and

ords=(w+1)/2 L(ρ,Fq2n Fd, s) ≥ d − c,

where c is a constant independent of n.

Proof. Clearly it suffices to prove the “more precisely” assertion. The ex-
tension Fd/F is geometrically abelian with geometric Galois group H = µd

and the Frobenius φ acts on Ĥ = Z/dZ by multiplication by q−1. For d
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of the form qn + 1 we have qn ≡ −1 (mod d) and so every orbit o of C
(the group generated by φ) on Z/dZ satisfies o = −o, i.e., is self-dual. As
pointed out in 3.6, there are at least (qn − 1)/2n self-dual orbits consisting
of characters of higher order.

Now for n sufficiently large and all o such that each χ ∈ o has sufficiently
large order, the space of invariants of ρ ⊗ χ under the inertia group at 0 or
∞ is trivial. For such n and χ,

deg Cond(ρ ⊗ χ) = deg(n′) + Swan0(ρ) + Swan∞(ρ) + 2 dim ρ

which is odd and so Theorem 4.5 implies that for each such orbit o, the
L-function L(ρ ⊗ σo, f , F, s) vanishes at s = (w + 1)/2. The number of
“bad” orbits is bounded independently of n and so the factorization in
Subsect. 4.4 shows that L(ρ, Fd, s) has a zero of order at least d/2n − c at
s = (w + 1)/2 for some constant c independent of n.

Extending scalars to Fq2n F, each factor 1 − (Tq
w+1

2 )|o| dividing the

L-function becomes (1 − Tq2n w+1
2 )|o| and so the total order of vanishing

of L(ρ,Fq2n F(u1/d), s) at s = (w + 1)/2 is ≥ d − c for some constant c
independent of n. �


The analytic rank assertions in Theorems 1.1, 1.2, and 1.3 will all be
established using the “towers” Theorem 4.7. The Tate–Shafarevitch Theo-
rem 1.4 will follow similarly from an orthogonal (Sign(ρ) = 1) variant of
the towers theorem.

We end this section with another example of towers leading to unbounded
ranks. The proof is quite similar to that of Theorem 4.7 and thus will be
omitted.

4.8. Theorem. Let E be an elliptic curve over a finite field Fq of character-
istic p and let F = Fq(E). Let � and �′ be (not necessarily distinct) prime
numbers �= p with �′ odd. For each n ≥ 1 let Fn = Fq(E) and view Fn
as an extension of F via pullback under the multiplication-by-�′n isogeny
�′n : E → E. Assume that some power of Frobenius acting on the �′-torsion
E[�′] has eigenvalue −1. Let ρ be an �-adic representation satisfying the
hypotheses of 4.2 which is self dual of weight w and sign −1. Assume that
the degree of the conductor of ρ is odd. Then

ords=(w+1)/2 L(ρ, Fn, s) ≥ n.

4.9. Remark. The hypothesis on E in the theorem is very mild. By assuming
more about E we can improve the lower bound in the theorem to Ω(�′n).
We omit the details.

5. Proof of the first part of Theorem 1.1

In this section we will show that there are many examples of curves over
Fp(t) whose Jacobians satisfy the first part of Theorem 1.1, namely they
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are absolutely irreducible, non-isotrivial, and have large analytic rank. To
keep the exposition brief, we have chosen examples where the necessary
calculations have already appeared in the literature, but the reader who is so
inclined will have no trouble finding many other examples. In the following
two sections we will give examples where one can also prove the conjecture
of Birch and Swinnerton-Dyer and therefore conclude that algebraic ranks
are also large. As will be apparent, the class of examples for which one can
currently prove large algebraic ranks is considerably smaller than that for
which one can prove large analytic ranks.

5.1. Fix a prime p and a positive integer g. Let F = Fp(u) and for each d
not divisible by p let Fd = Fp(t) where u = td . Suppose that C is a curve
of genus g smooth and proper over F, let J = J(C) be its Jacobian, and let
V = V� J ⊗Q� be the �-adic Tate module of J for some prime � �= p. Let
ρ : GF → Aut(V ∗) ∼= GL2g(Q�) be the natural representation of Galois
on V ∗ ∼= H1(C × F,Q�). The representation ρ satisfies the hypotheses of
Sect. 4.2 with weight w = 1 and sign Sign(ρ) = −1.

The L-function of J is of course the same as the L-function of ρ and
so if ρ satisfies the hypotheses of the towers Theorem 4.7, then J will have
large analytic rank over Fd for suitable d.

5.2. We consider the monodromy groups attached to ρ. Let ρ′ be the
Tate twist ρ ⊗Q(1/2) which has weight w = 0 and let ρ′

0 be the restriction
ρ′|Gal(F/Fp F). Let Garith be the Zariski closure of the image of ρ′ and let Ggeom

be the Zariski closure of the image of ρ′
0. The latter group is a (possibly

non-connected) semi-simple algebraic group over Q� and, because ρ is
self-dual of sign −1, both groups are a priori contained in the symplectic
group Sp2g. In the examples we will consider below, it will turn out that
Garith = Ggeom = Sp2g.

As usual, we say that ρ′ is irreducible if V ∗ has no non-trivial subspaces
invariant under ρ′(GF ), or equivalently, under the action of Garith. We say
that ρ′ is Lie irreducible if the restriction of ρ′ to any finite index subgroup
of GF is irreducible. This is equivalent to saying that Garith acts irreducibly
and is connected and in this case we also say that Garith acts Lie irreducibly.

5.3. We say that J is non-isotrivial if there does not exist an abelian variety
J0 defined over a finite field Fq and a finite extension K of F = Fp(t)
containing Fq such that J ×F K ∼= J0 ×Fq K .

It is clear that if the monodromy group Garith acts Lie irreducibly, then
J is absolutely simple and non-isotrivial. Indeed, if J had a non-trivial
isogeny decomposition over a finite separable extension K/F, or if J became
isomorphic to a constant abelian variety over a finite separable extension
K/F, then ρ′ restricted to GK would be reducible. Since the monodromy
group Garith is invariant under finite, purely inseparable extensions similar
statements hold for any finite extension K/F.



Large ranks over function fields 391

In fact it is clear that when Garith acts Lie irreducibly (as defined in 5.2), J
is not even isogenous to a constant abelian variety over any extension, since
Garith is invariant under isogeny. Therefore, for all finite extensions K/F,
the K/Fq-trace and K/Fq-image of J ×F K vanish. (See Conrad [Con] for
a modern treatment of the K/k-trace and K/k-image.)

In light of this discussion, to prove the first part of Theorem 1.1, it will
suffice to exhibit curves whose Tate-module representations have Garith =
Sp2g and which satisfy the conductor hypothesis of the towers Theorem 4.7.
We do this in the following two subsections.

5.4. Assume that p > 2 and choose a polynomial f(x) ∈ Fp[x] of degree
2g with distinct roots, one of which is 0. Consider the curve C of genus g
smooth and proper over F = Fp(u) with affine equation

y2 = f(x)(x − u).(5.4.1)

Let J be the Jacobian of C and let ρ be the representation of GF on
H1(C × F,Q�). As we will explain in the rest of this subsection, results
of Katz and Sarnak show that ρ satisfies the hypotheses of Theorem 4.7
and has Garith = Sp2g and so J is an example satisfying the first part of
Theorem 1.1.

In order to apply the results of Katz and Sarnak, we need to make one
translation. Namely, they work with a lisse sheaf F on an open subset of
P

1 whose generic stalk is the cohomology with compact supports of the
affine curve defined by Eq. 5.4.1. The smooth, proper model of this curve
is obtained by adding exactly one point at infinity, and so the compactly
supported H1 of the open curve is canonically isomorphic to the usual H1

of the proper curve. This implies that Katz and Sarnak’s sheaf F is the
restriction to an open of P1 of the middle extension sheaf Fρ we considered
in the proof of Theorem 4.5. The same issue arises in the next subsection,
with the same resolution.

Now by [KS99, 10.1.12], ρ is everywhere tame and so Swan0(ρ) =
Swan∞(ρ) = 0. By [KS99, 10.1.9 and 10.1.12], n′, the prime-to-zero-and-
infinity part of the conductor of ρ, is the sum of the zeros of f except
0, each taken with multiplicity one. Thus, deg n′ = 2g − 1 is odd and so
deg n′ + Swan0(ρ) + Swan∞(ρ) is odd. Thus Theorem 4.7 implies that the
analytic rank of J is unbounded in the tower of fields Fd .

By [KS99, 10.1.16], the geometric monodromy group of ρ is the full
symplectic group Sp2g and therefore the same is true of the arithmetic
monodromy group since Ggeom ⊂ Garith ⊂ Sp2g. Thus J is absolutely simple
and non-isotrivial.

This completes the proof of the first part of Theorem 1.1 for p > 2.

5.5. Now assume that p = 2 and consider the curve C of genus g smooth
and proper over Fp(u) with affine equation

y2 + xy = x2g+1 + ux.
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Again let ρ be the representation of GF on H1(C × F,Q�). It is easy to see
that C has good reduction away from u = 0 and ∞ and so ρ is unramified
away from those two places. By [KS99, Proof of 10.2.2], ρ is tamely ramified
at 0 and by the first full paragraph of p. 302 of [KS99] and [Kat90, 7.5.4], the
Swan conductor of ρ at ∞ is 2g−1. Thus deg n′+Swan0(ρ)+Swan∞(ρ) =
2g − 1 is odd and Theorem 4.7 shows that J has unbounded analytic rank
in the tower of fields Fd .

By [KS99, 10.2.2], the geometric monodromy group of ρ is Sp2g and
so we conclude as in the previous section that J is absolutely simple and
non-isotrivial.

This completes the proof of the first part of Theorem 1.1 for p = 2.

6. BSD for curves defined by four monomials

In this section we will show that the Jacobians of curves defined by par-
ticularly simple equations satisfy the conjecture of Birch and Swinnerton-
Dyer. The main tools are a beautiful observation of Shioda [Shi86], al-
ready exploited in [Ulm02], that surfaces defined by four monomials are
often dominated by Fermat surfaces and so satisfy the Tate conjecture, and
well-known connections between the conjectures of Tate and of Birch and
Swinnerton-Dyer.

6.1. Let k be a field and consider an irreducible polynomial g ∈ k[x1, x2, x3]
which is the sum of exactly 4 non-zero monomials:

g = c0xa01
1 xa02

2 xa03
3 + · · · + c3xa31

1 xa32
2 xa33

3 =
3∑

i=0

ci

3∏

j=1

x
aij

j

For i = 0, . . . , 3, let ai0 = 1−∑3
j=1 aij and let A be the 4×4 integer matrix

(aij). We say that g satisfies Shioda’s conditions if two requirements hold.
First, we require that the determinant of A be non-zero. Assuming so, A has
an inverse in GL4(Q) and there is a well-defined smallest positive integer δ
such that B = δA−1 has integer coefficients. Our second requirement is that
δ be non-zero in k. Note that AB = δI4. Note also that Shioda’s conditions
are independent of the ordering of the variables xi and indeed independent
of their names, i.e., the condition makes sense for any polynomial ring in
three variables. The reader may be surprised to see the 1 in the definition of
A rather than deg(g), but it gives better (less divisible) values of δ.

6.2. Theorem. Let F = Fq(u) and let X be a curve smooth and proper
over F. Let J be the Jacobian of X. Assume that there exists an irreducible
polynomial g ∈ Fq[u, x, y] ⊂ F[x, y] which is the sum of exactly 4 non-
zero monomials, which satisfies Shioda’s conditions, and which gives rise to
the function field F(X) in the following sense: F(X) ∼= Frac(F[x, y]/(g)).
Then the conjecture of Birch and Swinnerton–Dyer conjecture holds for J,
namely Rank J(F) = ords=1 L(J/F, s).
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6.3. Remarks. (1) It is known that over function fields the weak form of
BSD (Rank = ord) is equivalent to the finiteness of and implies the
refined conjecture on the leading coefficient of the L-series. We give
a few more details about this below.

(2) If X satisfies the hypotheses of the theorem, then it is easy to check that
the same is true for X ×F Fr(t) where td = u for any positive integer d
not divisible by p and for any power r of q. Thus the theorem gives the
truth of BSD for curves over towers of function fields.

Proof of Theorem 6.2. Let Z be the surface in A3 defined by g = 0. Since g
is irreducible, Z is reduced and irreducible and so has a dense open subset
smooth over Fq. There is a morphism Z → A

1, namely (u, x, y) �→ u.
Let X be a model of Z smooth and proper over Fq. There is a rational

map X���P1 and at the expense of blowing up and down we may assume
that we have a morphism π : X → P

1 which is relatively minimal. The
generic fiber of π is a regular scheme (since its local rings are local rings of
X) of dimension 1 which is proper over F and has the same function field
as X does and so it is isomorphic to X → Spec F.

Let Fδ be the Fermat surface of degree δ. The assumption that g satisfies
Shioda’s conditions implies that (extending the ground fieldFq if necessary)
there is a dominant rational map Fδ���Z and therefore also a dominant
rational map Fδ���X. Indeed, let us use the notation of Subsect. 6.1 (setting
u = x1, x = x2, and y = x3) and define Z′ as the zero set in P3 \ {x0 = 0} of
the homogeneous Laurent polynomial

∑
i ci

∏
j x

aij

j . Clearly Z′ is birational
to Z. If y0, . . . , y3 are the standard coordinates on Fδ (so that yδ

0 + · · · +
yδ

3 = 0), then a rational map Fδ���Z′ is given by x j �→ ∏
k dk y

b jk

k where
(bjk) = B = δA−1 and d0, . . . , d3 ∈ Fq are solutions to

∏
j d

aij

j = c−1
i . This

proves that there is a dominant rational map from Fδ to X.
Now the Fermat surface Fδ is dominated by a product of Fermat curves

[SK79] and therefore so is X. As we will explain presently, this domination
by a product of curves is enough to imply the Tate conjecture for X and the
conjecture of Birch and Swinnerton-Dyer for J . (There is a large literature
on the connection between these conjectures; the approach that follows is
perhaps ahistorical, but has the virtue of being efficient and clear-cut.) That
X is dominated over an extension of Fq by a product of curves implies
[Tat94, §5] that the Tate conjecture (relating the rank of the Néron–Severi
group of X to it zeta function) holds for X over an extension of Fq and
therefore also over Fq. Consideration of the Kummer sequence in étale
cohomology [Tat66, 5.2] implies that the �-primary part of the Brauer
group of X is finite for all � �= p. A theorem of Artin generalized by
Grothendieck implies that the same holds for the �-primary parts of the
Tate–Shafarevitch group of J over F. (This can be extracted from [Gro68,
§4]; in the case when X has an F-rational point, it is proven in [Gro68, §4]
that Br(X) = (J/F).) Finally, a recent paper of Kato and Trihan [KT03]
proves that the full conjecture of Birch and Swinnerton-Dyer holds for J
over F as soon as one �-primary part of is finite. (In the applications



394 D. Ulmer

below, we will only need the theorem in cases where X is a curve with an
F-rational point and in this case, the reference to [KT03] may be replaced
with the simpler [Mil86, III.9.7].) �

6.4. Remark. The above proof of the Tate conjecture for X ultimately comes
down to two facts: Tate’s theorem on isogenies of abelian varieties over finite
fields and the fact that X is dominated by a product of curves, Fermat curves
as it turns out. It is not difficult to produce examples of surfaces not defined
by four monomials which are dominated by products of curves. But the four
monomials property has the charm that it is obviously preserved in towers,
i.e., when u is replaced by td . It looks like an interesting problem to give
examples of towers of surfaces dominated by products of curves beyond the
four monomial case.

7. End of the proof of Theorem 1.1

In order to finish the proof of Theorem 1.1 we have to exhibit for every
prime p and every integer g > 0 a curve X smooth and proper over F =
Fp(u) of genus g with three properties: (i) the Galois representation ρ on
H1(X × F,Q�) should satisfy the hypotheses of the towers Theorem 4.7
(so that we have large analytic ranks); (ii) the monodromy group of ρ
should be Lie-irreducible (so that J = J(X) will be absolutely simple and
non-isotrivial, cf. Subsect. 5.3); and (iii) X should satisfy the hypotheses
of the “four monomials” Theorem 6.2 (so that the conjecture of Birch and
Swinnerton-Dyer holds for J). In this section we will exhibit curves with
these properties.

7.1. There are many examples of such curves. The ones we have chosen
here allow for a fairly unified treatment and, as will be explained in Sect. 11,
they have good properties with respect to rank bounds. Here are the curves
we will study:

p > 2 p � (2g + 2)(2g + 1) y2 = x2g+2 + x2g+1 + u(7.1.1)

p > 2 p | (2g + 2) y2 = x2g+2 + x2g+1 + ux(7.1.2)

p > 2 p | (2g + 1) y2 = x2g+1 + x2g + ux(7.1.3)

p = 2 y2 + xy = x2g+1 + ux(7.1.4)

7.2. Let F = Fp(u) and let X be the regular, proper model of one of the
affine curves over F defined by equations 7.1.1–7.1.4. Then it is easy to
see that X is smooth over Spec F and satisfies the hypotheses of the four
monomials Theorem 6.2. (The quantity δ appearing in Shioda’s conditions
is equal to 2 in the first three cases, and 2g + 1 in the fourth case.) Thus the
Jacobian J of the curve X and all its base changes under u �→ td satisfy the
conjecture of Birch and Swinnerton-Dyer.
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In Subsects. 7.3 to 7.10 below, we will prove that the curve defined
by Eq. 7.1.1 satisfies the hypotheses of the towers Theorem 4.7 and has
Lie irreducible monodromy. Then in Sect. 7.11 we will give the minor
modifications needed to treat Eqs. 7.1.2 and 7.1.3. Finally, in Sect. 7.12 we
treat the last case, Eq. 7.1.4.

7.3. Lemma. Suppose that F is a global field of characteristic p > 2 and
X is a smooth hyperelliptic curve over F with affine equation y2 = f(x)
for some polynomial f ∈ F[x] with distinct roots. Let ρ be the natural
representation of GF on H1(X × F,Q�) (� any prime �= p). Then ρ is
everywhere tamely ramified if and only if the splitting field of f is an
everywhere tamely ramified extension of F.

Proof. The question of whether or not ρ is everywhere tame is independent
of � by [Sai03, 3.11] and thus we may assume � = 2. As a representation of
GF , H1(X × F,Q2) is dual to the 2-adic Tate module V2 J and so it suffices
to show that the latter is everywhere tame. The 2-torsion in J is spanned by
the classes of divisors of degree zero supported on the Weierstrass points
(α, 0) where α is a root of f together with the point at infinity on X if the
degree of f is odd. Using this it is not hard to check that the fixed field
of the kernel of the action of Galois on the 2-torsion J[2] is precisely the
splitting field of f . The restriction of ρ to the Galois group of this field takes
its values in I + 2M2(Z2) which is a pro-2 group and so this restriction is
at worst tamely ramified. Therefore ρ itself is tamely ramified if and only if
the splitting field of f is tamely ramified over F. �

7.4. Lemma. Let p > 2 be a prime and let n > 1 be an integer such that
p � n(n − 1). Then f(x) = xn + xn−1 + u is irreducible over Fp(u) and
its splitting field is everywhere tame with Galois group Sn, the symmetric
group on n letters.

Proof. We will see below that f is irreducible over Fp(u). Let K be its
splitting field. Considering f and its derivative f ′ = nxn−1 + (n − 1)xn−2

we see that the reduction of f at a place of Fp(u) has distinct roots except
at the places u = 0, u = a := −(1 − n)n−1n−n, and u = ∞. Thus K is
unramified over Fp(u) away from these places.

Let F0 be the completion Fp((u)) of Fp(u) at u = 0. Consideration of
the Newton polygon of f with respect to the valuation of F0 shows that one
root of f , call it α, lies in F0 and is congruent to −1 modulo u and the other
roots have valuation 1/(n − 1). We have

f(x) = (x − α)(xn−1 + (α + 1)xn−2 + · · · + (αn−2 + αn−3)x − u/α).

If g(x) denotes the second factor on the right and β is a root of g, then
g(x/β) is congruent modulo the maximal ideal of F0(β) to xn−1 + b where
b �= 0. Since p � (n −1), this reduction has distinct roots and so by Hensel’s
lemma all the roots of g lie in F0(β). Thus the splitting field of f over F0 is
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a cyclic extension of degree (n − 1). We conclude that there are two places
of K over u = 0, one unramified and the other totally ramified with index
e = n − 1. In particular, the ramification over 0 is tame.

Now let v = 1/u and F∞ = Fp((v)) be the completion of Fp(u) at
u = ∞. Changing variables, let

h(x) = u−n f(ux) = xn + vxn−1 + vn−1.

Consideration of the Newton polygon of h with respect to the valuation of
F∞ shows that h is irreducible over F∞ (and so f is irreducible over Fp(u))
and that its roots all have valuation (n − 1)/n. If γ is one of these roots,
then modulo the maximal ideal of F∞(γ), h(x/γ) is congruent to xn + c
with c �= 0. Since p � n this reduction has distinct roots and so by Hensel’s
lemma, all of the roots of h lie in F∞(β). Therefore the splitting field of f
over F∞ is a cyclic extension of degree n and is totally ramified (e = n).
Thus K is totally and tamely ramified over the place u = ∞ of Fp(u).

Now let v = u − a and Fa = Fp((v)) be the completion of Fp(u) at
u = a. The specialization of f to u = a has n −2 simple roots and a double
root b = (1 − n)/n. By Hensel’s lemma, f has n − 2 of its roots in Fa.
Considering the Newton polygon of f(x + b), we see that the other two
roots of f have valuation 1/2 and thus lie in a ramified quadratic extension
of Fa. Thus K has n − 2 split places (e = 1) and one place with e = 2 over
u = a. Since p > 2, the ramification is tame.

This shows that K is everywhere tame over Fp(u). Inertia at 0 is gen-
erated by an (n − 1)-cycle σ , inertia at ∞ is generated by an n-cycle τ
and inertia at a is generated by a simple transposition ρ. Moreover, by the
known structure of the tame fundamental group of P1 minus 3 points, we
may choose these generators so that ρσ = τ . Choosing labels so that 1 is
the fixed point of σ and τ = (12 · · · n) we see immediately that ρ = (12).
Since the symmetric group is generated by (12) and (12 · · · n) we conclude
that the Galois group of K over Fp(u) is Sn. �

7.5. Corollary. With hypotheses as in Lemma 7.4, The affine plane curve
defined by

g(x, x ′) = xn + xn−1 − x ′n − x ′n−1 = 0

has exactly two irreducible components over Fp both of which are rational
over Fp.

Proof. With notation as in Lemma 7.4, the curve in question is the fiber
product of two copies of f = 0 over the u-line. Its set of irreducible
components is thus in bijection with the orbits of Sn on the set of ordered
pairs of roots of f in Fp(u) and there are two such orbits, the diagonal
and the rest. The equations of the two components are x − x ′ = 0 and
g(x, x ′)/(x − x ′) = 0, both of which are Fp-rational. �
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7.6. From here through 7.10 we let X be the curve defined by 7.1.1 and J
its Jacobian. We let ρ be the representation of GF on H1(X × F,Q�). Let
π : X → P

1 be the model of X constructed in the proof of Theorem 6.2.
Then j : U ↪→ P

1, with U = P1 \ {0, a,∞}, is the largest open subset of P1

over which π is smooth. Let FU be the lisse sheaf on U corresponding to the
representation ρ and set F = j∗FU . This is the “middle extension” sheaf
attached to ρ and we may recover ρ from it as the stalk Fη at the geometric
generic point η corresponding to the fixed algebraic closure Falg of F.

Recall that a linear transformation is called a unipotent pseudoreflection
if all of its eigenvalues are 1 and its space of invariants has codimension 1.

7.7. Lemma. The sheaf F is everywhere tamely ramified. At the place
u = a inertia acts via unipotent pseudoreflections and in particular the
exponent of the Artin conductor is 1. Therefore, F (or rather ρ) satisfies
the hypotheses of Theorem 4.7.

Proof. The preceding two lemmas show that ρ is everywhere tamely ram-
ified and therefore the same is true of F . To analyze the ramification at
u = a, consider the following surface: let

V1 = SpecFp[u, x, y]/(y2 − (x2g+2 + x2g+1 + u))

V2 = SpecFp[u, x ′, y′]/(y′2 − (1 + x ′ + ux ′2g+2
))

and define Y as the result of glueing V1 and V2 using the map

(x ′, y′, u) = (x−1, yx−g−1, u).

There is a map Y → A
1 (projection onto the u coordinate) which is proper,

relatively minimal, and whose generic fiber is X. Moreover, Y is a regular
surface and therefore we may identify Y with the open subset π−1(A1) ⊂
X where π : X → P

1 was constructed in the proof of Theorem 6.2.
The restriction πA1 : Y → A

1 is smooth except over u = a, and over
u = a, it has an isolated singularity which is an ordinary double point. In
classical language, πA1 is a Lefschetz pencil. The famous Picard-Lefschetz
formula ([SGA7-2, 3.4] or [Mil80, V.3.14]) gives the action inertia on
FA1 = R1πA1∗Q� and in particular it shows that the action of inertia at
u = a is by unipotent pseudoreflections. Since the ramification at u = a
is tame, the exponent of the Artin conductor is just the codimension of the
space of inertia invariants which is 1. �

7.8. Lemma. F is geometrically irreducible as middle extension sheaf
on P1. Equivalently, ρ restricted to Gal(F/Fp F) is geometrically irre-
ducible.

Proof. We apply the diophantine criterion for irreducibility of Katz, along
the lines of [KS99, 10.1.15]. This criterion amounts to using the Grothen-
dieck-Lefschetz trace formula and the Weil conjectures to prove that
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EndGal(F/Fp F)(ρ) is one-dimensional by estimating certain sums of traces.
By Schur’s lemma, this one-dimensionality is equivalent to the desired
irreducibility. We refer to [KS99, 10.1.15] for more details.

What has to be shown is that
∑

u∈Fq
u �=0,a

Tr(Fru |F )2 = q2 + O(q3/2)

as q ranges through all powers of p.
Using the Grothendieck-Lefschetz trace formula on the fibers of π we

see that

Tr(Fru |F ) = q − 1 −
∑

x∈Fq

(1 + χ(x2g+2 + x2g+1 + u))

= −1 −
∑

x∈Fq

χ(x2g+2 + x2g+1 + u)

where χ is the nontrivial quadratic character of Fq
× extended as usual to

a function on Fq. (The reader will note that there are two points at infinity
on the affine curve 7.1.1.) By theorems of Weil and Deligne, the trace is
O(q1/2). Thus the sum to be estimated is

∑

u∈Fq
u �=0,a

(
− 1 −

∑

x∈Fq

χ(x2g+2 + x2g+1 + u)
)2

and because of the Deligne estimate, we may drop the conditions u �= 0, a.
Thus our sum is

∑

u∈Fq

∑

x,x′∈Fq

χ((x2g+2 + x2g+1 + u)(x ′2g+2 + x ′2g+1 + u)) + O(q3/2)

=
∑

x,x′∈Fq

∑

u∈Fq

χ(u2 + u(x2g+2 + x2g+1 + x ′2g+2 + x ′2g+1
)

+ (x2g+2 + x2g+1)(x ′2g+2 + x ′2g+1
)) + O(q3/2).

The inner sum over u is related to the number of points on the hyperelliptic
curve

y2 = u2 + u(x2g+2 + x2g+1 + x ′2g+2 + x ′2g+1
)

+ (x2g+2 + x2g+1)(x ′2g+2 + x ′2g+1
).

Noting that g(x, x ′) = (x2g+2 + x2g+1) − (x ′2g+2 + x ′2g+1
) = 0 if and only

if the quadratic polynomial in u has a double root, we see that the sum over
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u is −1 if g(x, x ′) �= 0 and it is q − 1 if g(x, x ′) = 0. Therefore the sum to
be estimated is

∑

x,x′∈Fq
g(x,x′) �=0

(−1) +
∑

x,x′∈Fq
g(x,x′)=0

(q − 1) + O(q3/2).

The first sum is over an affine open subset ofA2 and is therefore −q2+O(q).
The second sum is over a curve which by Corollary 7.5 has exactly 2
components and therefore has 2q + O(q1/2) points. Thus the second sum
contributes 2q2 + O(q3/2) and the entire sum is q2 + O(q3/2). �

7.9. Remark. Another approach to irreducibility would be to assume � = 2
and use Lemma 7.4 to argue that the mod 2 representation J[2] is irre-
ducible and so a fortiori the 2-adic representation V2 J is irreducible. But
this argument does not apply to the other curves 7.1.2 and 7.1.3 whereas the
argument given above does apply with minor modifications.

We recall from Subsect. 5.2 the notion of a Lie irreducible representation.

7.10. Lemma. The representation ρ is Lie irreducible. In fact, the geometric
monodromy group of ρ is the full symplectic group Sp2g.

Proof. Later in the proof we are going to assume that � = 2. It follows
from [Chi04] and the fact that Ggeom is a priori contained in Sp2g that if
Ggeom = Sp2g for one � �= p then it is so for all � �= p. The reader who
prefers not to go into this may simply assume that � = 2 for the entire proof
of the last part of Theorem 1.1.

We have already seen that ρ′ := ρ|Gal(F/Fp F) is irreducible. It follows
from [Kat87, Proposition 1] that ρ′ is either Lie irreducible, tensor decom-
posable (in the sense that ρ′ ∼= σ ⊗ τ where σ and τ are representations of
Gal(F/Fp F) with σ Lie irreducible and τ of degree > 1 with finite image),
or is induced from a representation of a proper subgroup of Gal(F/Fp F).
We rule out the last two possibilities.

Since inertia at u = 1 acts via a unipotent pseudoreflection, ρ′ can be
tensor decomposable only if the degree of σ is 1, which implies that σ has
finite image. But if it were so, then ρ′ would also have finite image and this
is impossible because a unipotent pseudoreflection has infinite order.

Now suppose that ρ′ is induced from a representation σ of some subgroup
of Gal(F/Fp F) corresponding to a cover π : C → P1. We write ρ′(x) for
ρ viewed (by restriction) as a representation of the inertia group I(x) at
a place x ∈ P1 and similarly for σ . We have

ρ′(x) =
⊕

y �→x

IndI(x)
I(y) σ(y)

where the sum is over points of C mapping to x. Considering this equality
at the place u = a where inertia acts with invariants of codimension 1, we
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see that I(y) = I(a) for all y over a, in other words, σ must be unramified
over a. We also must have that σ is at worst tamely ramified over 0 and ∞.
This means that π must be a cyclic cover obtained by extracting a root of u,
i.e., C = P1 with coordinate v and π∗(u) = vm .

We argue that m > 1 is incompatible with what we know about the
action of inertia at u = 0 on 2-torsion. Indeed, if m > 1 and h is a generator
of tame inertia at 0, then the trace of h on ρ′(0) is zero. On the other hand,
the action of h on the 2-torsion subgroup J[2] has non-zero trace. More
precisely, label the roots αi (i = 0, . . . , 2g +1) of f(x) = x2g+2 + x2g+1 + t
so that α0 is fixed by I(0) and the others are permuted cyclically (cf. the
proof of Lemma 7.4). Let Pi be the Weierstrass point (αi, 0) on X and let Di
be the class of Pi − P0 in J[2]. Then J[2] is generated as F2 vector space by
D1, . . . , D2g+1 with the single relation

∑
Di = 0. The proof of 7.4 shows

that h permutes the Di cyclically. Considering the matrix of h in the basis
D1, . . . , D2g of J[2] we see that h has trace −1 = 1 on J[2] and therefore
h has non-zero trace on ρ′(0). Thus m > 1 is impossible and so F is not
induced from any non-trivial cover.

This completes the proof that ρ is Lie irreducible. Since there is a place
where inertia acts on ρ by a unipotent pseudoreflection, in fact the geometric
monodromy group of ρ is Sp2g (see [Kat90, 1.5] for details). �


7.11. This completes the proof that the curves 7.1.1 are examples for
Theorem 1.1. For 7.1.2 and 7.1.3, the proof is essentially the same. Very
minor modifications are needed in Lemma 7.7 (checking that X → P

1 is
a Lefschetz pencil overA1\{0}) and in Lemma 7.8 (applying the diophantine
criterion for irreducibility). At the end of the proof of Lemma 7.10 (checking
Lie irreducibility), for 7.1.2, we use the action of monodromy at ∞ (which
again is a cyclic permutation of order 2g+1) and for 7.1.3 we use Lemma 7.4
to see that in terms of a suitable basis of J[2], a generator h of tame inertia
at 0 has one fixed vector and permutes the other 2g − 1 vectors cyclically.
Altogether this completes the proof of Theorem 1.1 for p > 2.

7.12. For p = 2 and the curve 7.1.4, we already saw in Subsect. 5.5 that
the hypotheses of the towers Theorem 4.7 are satisfied and that this curve
has large geometric monodromy group. We also saw in Subsect. 7.2 that the
hypotheses of the four monomials Theorem 6.2 are satisfied. This completes
the proof of Theorem 1.1 for p = 2.

8. Proof of Theorem 1.2

We will use some basic representation theory to see that the action of GF

on Hk
prim(J,Q�) satisfies the hypotheses of Theorem 4.7 where J is the

Jacobian of one of the curves studied in Sect. 5.4 for suitable g and k.
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8.1. If A is a principally polarized abelian variety of dimension g over
a field F (e.g., a Jacobian), then the étale cohomology group H1(A× F,Q�)
carries a non-degenerate symplectic form 〈, 〉. If k is odd, then the same is
true of Hk(A × F,Q�)

∼= ∧k H1(A × F,Q�).
If k > 1, define a linear map

φ :
k∧

H1(A × F,Q�) →
k−2∧

H1(A × F,Q�)

by

φ(w1 ∧ · · · ∧ wk)

=
∑

1≤i< j≤k

(−1)i+ j−1〈wi, w j〉w1 ∧ · · · ∧ ŵi ∧ · · · ∧ ŵ j ∧ · · · ∧ wk

where a hat denotes a vector to omit.
Choose a symplectic basis v1, . . . , v2g of H1(A × F,Q�), i.e., one sat-

isfying 〈vi, v j+g〉 = δij and 〈vi, v j〉 = 〈vi+g, v j+g〉 = 0 for 1 ≤ i, j ≤ g.
Define a linear map ψ : ∧k−2 H1(A × F,Q�) → ∧k H1(A × F,Q�) by

ψ(w) = w ∧ (v1 ∧ vg+1 + · · · + vg ∧ v2g).

The map ψ is independent of the choice of basis; it depends only on the
symplectic form 〈, 〉.

We define the primitive part Hk
prim(A × F,Q�) to be the kernel of φ. It

is well known that if k ≤ g then ψ is injective and we have a direct sum
decomposition

Hk(A × F,Q�)
∼= Hk

prim(A × F,Q�)
⊕

Im(ψ).(8.1.1)

Also, both φ and ψ are equivariant for the action of GF and so this direct
sum decomposition is respected by Galois. The pairing on Hk(A × F,Q�)

induced by 〈, 〉 restricts to a non-degenerate pairing on Hk
prim(A × F,Q�).

8.2. Now assume that p > 2 and let C be one of the curves considered
in Sect. 5.4 and J its Jacobian. Let ρ1 be the representation of GF on
H1(J × F,Q�) and let ρk be the representation of GF on Hk

prim(J × F,Q�).
Then ρk is self-dual of weight k and sign −1. Because the monodromy
group of ρ1 is the full symplectic group, ρk is irreducible.

The representation ρ1 is everywhere tamely ramified and at each finite
place u0 ∈ A1 of bad reduction, the local inertia group I(u0) acts via
unipotent pseudoreflections. (By [KS99, 10.1.13] the action is either trivial
or by unipotent pseudoreflections, but it is not hard to see that the fibration
X → P

1 attached to the curves we are considering is a Lefschetz fibration
over A1 and so the local monodromies at finite places of bad reduction are
in fact unipotent pseudoreflections.) This means that in terms of a suitable
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symplectic basis v1, . . . , v2g, the action of inertia is

s(v1) = v1 + λ(s)vg+1

s(vi) = vi i = 2, . . . , 2g(8.2.1)

where λ : I(u0) → Q� is a non-zero character.
Because ρ1 is everywhere tame, ρk is also everywhere tame. In particular,

the exponent of the conductor of ρk at a place u0 is just the codimension
of the space of invariants of ρk(I(u0)). We will show that at finite u0
this codimension depends only on g and k and that for every k there are
infinitely many g such that this codimension is odd. For such g and k, the
representation ρk satisfies the hypotheses of Theorem 4.7 and this will prove
Theorem 1.2.

8.3. We fix a finite place u0 �= 0 of F where C has bad reduction and
consider the action of the inertia group I(u0) on

∧k H1(J × F,Q�). Choose
a symplectic basis v1, . . . , v2g of V = H1(A × F,Q�) such that the action
of I(u0) is given by 8.2.1. Let V1 be the span of v1 and vg+1 and let V2 be
the span of v2, . . . , vg and vg+2, . . . , v2g. Then we have

k∧
V ∼=

( 2∧
V1 ⊗

k−2∧
V2

) ⊕(
V1 ⊗

k−1∧
V2

) ⊕( k∧
V2

)
.

It is easy to see using 8.2.1 that I(u0) acts trivially on the first and third
summands and that the codimension of its invariants on the middle summand
is dim

∧k−1 V2 = (2g−2
k−1

)
.

A similar analysis shows that the space of I(u0 )-invariants on ψ(
∧k−2 V )

has codimension
(2g−2

k−3

)
. From the direct sum decomposition 8.1.1 we con-

clude that the exponent of the conductor of ρk at u0, i.e., the codimension
of the I(u0) invariants on Hk

prim(J × F,Q�), is
(2g−2

k−1

) − (2g−2
k−3

)
.

8.4. To conclude the proof of Theorem 1.2, we will show that for every
odd k there are infinitely many g such that

(2g−2
k−1

) − (2g−2
k−3

)
is odd. We recall

the well-known fact that the 2-adic valuation of
(n

m

)
is equal to the number

of carries in the sum of m and n − m in base 2. Since k is odd, exactly one
of k − 1 and k − 3 is congruent to 2 (mod 4) and the other is congruent to
0 (mod 4). To fix ideas, suppose k − 1 is 0 (mod 4). Let a be an integer so
that 2a > k and choose g so that 2g − k − 1 is congruent to 0 (mod 2a).
Then there are no carries in the sum (k − 1) + (2g − k − 1) and so

(2g−2
k−1

)

is odd. On the other hand, both k − 3 and 2g − k + 1 are congruent to 2
(mod 4) and so there is at least one carry in the sum (k − 3) + (2g − k + 1)

and
(2g−2

k−3

)
is even. The case where k − 1 ≡ 2 (mod 4) is similar and will

be left to the reader. This completes the proof of Theorem 1.2.

8.5. Remark. The above proof would carry over verbatim to p = 2 if we
had a curve over F2(u) with large, everywhere tame monodromy, and inertia
acting by unipotent reflections at an odd number of non-zero finite places.
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9. Proof of Theorem 1.3

Let p be any prime, q a power of p, and E an elliptic curve over F = Fq(v).
Let ρ be the representation of GF on H1(E × F,Q�) for some � �= p; ρ is
self dual of weight 1 and sign −1. For every finite separable extension K
of F, we have L(E/K, s) = L(ρ, K, s). We prove Theorem 1.3 by showing
that after replacing F with an extension of the form Fr(u), the hypotheses
of Theorem 4.7 are met and so E obtains large analytic rank over Fr(t) with
td = u for large d of the form rn + 1.

9.1. Lemma. Suppose that E is an elliptic curve over F = Fq(v) with
j(E) �∈ Fq. Then there is a finite separable extension of F of the form Fr(u)
over which E has an Fr-rational place of multiplicative reduction and two
Fr-rational places of good reduction.

Proof. Extending the ground field to Fr and making a linear change of
coordinates, we may assume that the j-invariant of E has a pole at v = 0.
It is well known that there is a finite separable extension of the completion
Fr((v)) over which E obtains multiplicative reduction.

The following lemma (whose proof is due to Bjorn Poonen) says that
we may realize the local extension as the completion of a global extension
of rational fields. Admitting the lemma, E has an Fr-rational place of
multiplicative reduction over Fr(u). Clearly at the expense of increasing r
we may insure that E also has two Fr-rational places of good reduction over
Fr(u). �

9.2. Lemma. Let F = Fr(v) and let K0 be a finite separable extension
of F0 := Fr((v)). Then there exists a finite separable extension K of F of
the form K = Fr(u) so that the completion of K at the place u = 0 is
isomorphic, as extension of F0, to K0.

Proof. It is well known that K0 is abstractly isomorphic to Fr((�)). Let
g(T ) ∈ Fr[[T ]] (T an indeterminate) be the formal series such that g(�) = v
in K0. Since K0/F0 is a separable extension, g′(�), the derivative series
evaluated at � , is not zero. For a positive integer n, let gn be the sum of
the first n terms of g. Then as n → ∞, the valuation of g′

n(�) stabilizes
at a finite value whereas the valuation of gn(�) − v tends to infinity. By
Hensel’s lemma, for any sufficiently large n, there is a root u of gn(T ) − v
in K0 which is congruent to � modulo a high power of � and which is
thus a uniformizer of K0. Now let K be the subfield of K0 generated by Fr
and u. Since v is a polynomial in u with a non-zero derivative, K is a finite,
separable extension of F. �


9.3. With these preliminaries out of the way, we can prove Theorem 1.3.
Since the j-invariant of E is not in Fq, ρ is irreducible.

If the degree of the conductor of E is odd, we make a linear change of
coordinates so that u = 0 and u = ∞ are places of good reduction. Then,
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in the notation of Theorem 4.7, deg(n′) + Swan0(ρ) + Swan∞(ρ) is the
degree of the conductor of E which is odd. Thus ρ satisfies the hypotheses
of Theorem 4.7.

If the degree of the conductor of E is even, we make a change of
coordinates so that u = 0 is a place of good reduction and u = ∞ is
a place of multiplicative reduction. Then, in the notation of Theorem 4.7,
deg(n′)+Swan0(ρ)+Swan∞(ρ) is one less than the degree of the conductor
of E and is therefore odd. Again ρ satisfies the hypotheses of Theorem 4.7.

�

9.4. In [Ulm] we give examples of elliptic curves over Fq(u) with bounded
rank in the tower Fq(t) (td = u), d → ∞.

10. Proof of Theorem 1.4

We use the notation of the statement of Theorem 1.4. Tate and Shafarevitch
observed in [TS67] that to produce a quadratic twist E ′ of E with large
rank, one must produce a hyperelliptic curve C → P

1
t whose Jacobian has

many factors isogenous to E0. More precisely, if E ′ is the twist of E by the
quadratic extension Fp(C), then the rank of E ′(Fp(t)) is equal to the rank of
the endomorphsim ring of E0 (which in our case is 2) times the number of
isogeny factors of J(C) isogenous to E0. (See [Ulm, §4] for more details.)
Moreover, we may detect the number of times a particular abelian variety
appears in the Jacobian of a curve via Honda-Tate theory by considering
the inverse roots of its zeta function. In the rest of this section we will use
an orthogonal variant of the towers Theorem 4.7 to produce hyperelliptic
curves whose Jacobians have many isogeny factors isogenous to a given
supersingular elliptic curve.

10.1. We call the inverse roots of the zeta function of a curve its Weil
numbers. It is well known (see, e.g., [Wat69, Chap. 4]) that a supersingular
elliptic curve over Fp (any p) either has Weil number ζ4

√
p with ζ4 a prim-

itive 4-th root of unity, or p = 3 and the Weil number is ζ12

√
3 with ζ12

a primitive 12-th root of unity, or p = 2 and the Weil number is ζ8

√
2

with ζ8 a primitive 8-th root of unity. We start with the case p > 2 and E0
a supersingular elliptic curve with Weil number ζ4

√
p.

10.2. Let F = Fp(u) and let C1 be a geometrically irreducible curve
smooth and proper over Fp with genus g ≥ 0 equipped with a degree 2
morphism π : C1 → P

1. We assume π to be ramified at 2g + 2 geometric
points (a1, . . . , a2g+1,∞) one of which is infinity and none of which are 0.
Corresponding to the covering π : C1 → P

1 is a character ρ of GF of
order 2. The numerator of the zeta function of C1 is L(ρ, F, s).

For a positive integer d not divisible by p, we let Fd = Fp(t) be the
extension of F with u = td and we let πd : Cd → P

1
t be the 2-1 covering
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corresponding to ρ restricted to Gal(F/Fp(t)). It is not hard to check that Cd

is the normalization of the fiber product C1 ×P1
u
P

1
t . The ramification points

of πd are the d-th roots of the ai , 0, and, if d is odd, ∞.

10.3. The numerator of the zeta function of Cd is L(ρ, Fd, s) and by the
analysis in Subsect. 4.4,

L(ρ, Fd, s) =
∏

o⊂Z/dZ

L(ρ ⊗ σo, F, s)

where the product is over the orbits of multiplication by p on Z/dZ. If χ is
a character of Gal(F/Fp(µd, u)) of order d corresponding to the extension
Fp(µd, t), then it is easy to see that deg Cond(ρ ⊗ χ i) is odd except when
χ i has order dividing 2. It follows from Theorem 4.5 that if d = pn + 1
and o ⊂ Z/dZ is any orbit for multiplication by p other than {0} or {d/2}
and a = #o, then 1 + (Tp1/2)a divides L(ρ ⊗ σo, F, s). If we take n odd
and let o be an orbit passing through i ∈ (Z/dZ)×, then a is 2n and so
ζ4

√
p is a root of 1 + (Tp1/2)a. Since there are φ(pn + 1)/2n such orbits,

we see that ζ4
√

p is an inverse root of the numerator of the zeta function of
Cd with large multiplicity. As discussed above, this shows that E ′ has large
rank over Fd = Fp(t).

10.4. Now consider the case where E0 is a supersingular elliptic curve over
F3 with Weil number ζ12

√
3 where ζ12 is a primitive 12-th root of unity. We

proceed as above except that we assume that n ≡ 3 (mod 6) so that ζ12

√
3

is an inverse root of 1 + (T
√

3)a where a = 2n.

10.5. If p = 2 then we proceed as above starting with a curve C1 → P
1
u

corresponding to a quadratic character ρ satisfying the conductor condition
of 4.7, namely that Swan0(ρ) + Swan∞(ρ) + deg n′ is odd. (For example,
y2 + y = u.) If the Weil number of E0 is ζ4

√
2 then we take d = pn + 1

with n odd and if the Weil number of E0 is ζ8

√
2 then we take d = pn + 1

with n ≡ 2 (mod 4).

10.6. Interestingly, the argument above does not prove that if E0 is any
supersingular elliptic curve over Fq then there are quadratic twists of E with
high rank, only the slightly weaker statement that there is a power r of q
and quadratic twists of E with high rank over Fr(t). The problem is that if
the Weil number of E0 is ζm

√
q with m odd, then this Weil number is not

a root of 1 + (q1/2T )a for any even a.

11. A remark on rank bounds

Suppose as usual that F is the function field of a curve C of genus gC

over Fq and that ρ is a representation of GF satisfying the hypotheses of
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Subsect. 4.2 and (for simplicity) that ρ restricted to Gal(F/Fq F) has no
trivial constituents. Let n be the conductor of ρ. Then the Grothendieck-
Ogg-Shafarevitch formula says that the degree of the L-function ρ over F
as a polynomial in q−s is D = deg(n) + deg(ρ)(2gC − 2). In particular, we
have the “geometric” rank bound (cf. [Ulm04])

ords=(w+1)/2 L(ρ, F, s) ≤ ords=(w+1)/2 L(ρ,Fr F, s) ≤ D(11.1)

valid for any power r of q.
This can be improved when D is large with respect to q, gC , and deg(ρ).

Indeed, minor modifications of Brumer’s argument in [Bru92] (itself mod-
elled on Mestre’s [Mes86]) allow one to prove the arithmetic rank bound

ords=(w+1)/2 L(ρ, F, s) ≤ D

2 logq D
+ O

(
D

(logq D)2

)
(11.2)

where the implied constant depends only on q, gC , and deg(ρ).
In [Ulm02] we showed that the main term of this arithmetic bound, as

well as the geometric bound, are sharp for L-functions of elliptic curves.
The towers Theorem 4.7 gives a large supply of other examples related to
this question.

Indeed, suppose that ρ is a representation of GF where F = Fq(u)
satisfying the hypotheses of 4.7 and let N be the quantity Swan0(ρ) +
Swan∞ + deg(n′) appearing in that result. Then the degree of L(ρ, Fd, s),
where Fd = Fq(t) with u = td , is asymptotic to Nd; they differ by an
amount bounded independently of d. The towers Theorem 4.7 shows that
for d of the form d = qn + 1

ords=(w+1)/2 L(ρ, Fd, s) ≥ d

2 logq d
− c

and
ords=(w+1)/2 L(ρ,Fq2n Fd, s) ≥ d − c′

where c and c′ are constants independent of n. These lower bounds are
roughly 1/N times the upper bounds discussed above.

For the curves discussed in Sect. 7 with p > 2, we have N = 1 and so
we have a large collection of interesting representations for which the main
term of the rank bounds are sharp.
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[Del73] Deligne, P.: Les constantes des équations fonctionnelles des fonctions L . In:
Modular Functions of One Variable, II (Proc. Internat. Summer School, Univ.
Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 349, pp. 501–597
(French) (1973)

[Gro68] Grothendieck, A.: Le groupe de Brauer. III. Exemples et compléments. Dix
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