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Annals of Mathematics, 155 (2002), 295-315 

Elliptic curves with large rank 
over function fields 

By DOUGLAS ULMER* 

Abstract 

We produce explicit elliptic curves over Fp(t) whose Mordell-Weil groups 
have arbitrarily large rank. Our method is to prove the conjecture of Birch 
and Swinnerton-Dyer for these curves (or rather the Tate conjecture for related 

elliptic surfaces) and then use zeta functions to determine the rank. In contrast 
to earlier examples of Shafarevitch and Tate, our curves are not isotrivial. 

Asymptotically these curves have maximal rank for their conductor. Mo- 
tivated by this fact, we make a conjecture about the growth of ranks of elliptic 
curves over number fields. 

1. Introduction 

1.1. Let K be a field and consider elliptic curves defined over K. A 
natural question is whether there exist elliptic curves over K with arbitrarily 
large Mordell-Weil rank. In other words, for every r is there an E such that 

E(K) contains at least r independent points of infinite order? The general 
expectation seems to be that such curves exist for any field K which is not 

algebraic over a finite field. 

1.2. For fields of characteristic zero, it obviously suffices to treat the case 
K = Q. Here the question is open and it seems to be quite difficult to pro- 
duce examples with large rank. At this writing, the largest known rank is 
24 ([MMOO]) and the largest proven analytic rank (i.e., order of vanishing of 
L-series at s = 1) is 3 ([GZ86]). 

1.3. For fields of characteristic p, it suffices to consider the rational func- 
tion field K = Fp(t). In [TS67], Shafarevitch and Tate produced elliptic curves 
over K of arbitrarily large rank. They considered a supersingular curve Eo 

*This paper is based upon work supported by the National Science Foundation under Grant No. 
DMS-0070839. 
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defined over Fp (viewed as a curve E over K in the obvious way) and showed 
that that there are quadratic extensions L/K such that the Jacobian of the 
curve over Fp attached to L has a large number of factors isogenous to Eo 
over Fp. This implies that the quadratic twist of E by L has large rank. 

1.4. The examples of Shafarevitch and Tate are "isotrivial," i.e., after 
a finite extension (L/K in fact), they become isomorphic to elliptic curves 
defined over Fp. (Equivalently, their j-invariants lie in Fp.) There is no analog 
of this property for an elliptic curve over Q and so it is not clear whether 
their examples provide evidence for the question over Q. (On the other hand, 
isotriviality makes sense for fields like Q(t), and it is conceivable that the 

arguments of Tate and Shafarevitch might be generalized to this context.) 

The aim of this paper is to produce elliptic curves over K = Fp(t) which 
are nonisotrivial (j IFp) and which have arbitrarily large rank. 

THEOREM 1.5. Let p be an arbitrary prime number, Fp the field of p 
elements, and Fp(t) the rational function field in one variable over Fp. Let E 
be the elliptic curve defined over K = Fp(t) by the Weierstrass equation 

y2 + xy = x3 - td 

where d = pn + 1 and n is a positive integer. Then j(E) IFp, the conjecture 
of Birch and Swinnerton-Dyer holds for E over K, and the rank of E(K) is 
at least (pn - 1)/2n. 

1.6. Remarks. 

1. We give a simple expression for the exact rank of E(K) in Theorem 9.2. 
The j-invariant of E is t-d( - 2433td)-1. 

2. In fact we prove the conjecture of Birch and Swinnerton-Dyer for E 
over Fq(t) for q any power of p, and we show that RankE(IFp2n(t)) 
Rank E(Fp(t)) = pn if 6 , d and pn - 2 if 61d. 

3. In Section 10 we explain that the curves in Theorem 1.5 asymptotically 
have maximal ranks for their conductor and we make a conjecture about 
ranks of elliptic curves over number fields. 

4. The displayed Weierstrass equation also defines an elliptic curve over 

Q(t). It turns out that this curve has rank which is bounded indepen- 
dently of d, even over Q(t). 

1.7. The proof of the theorem involves an appealing mix of geometry and 
arithmetic. We begin with the geometry: First, we construct an elliptic surface 
£ -- P1 over Fp whose generic fiber is E/K. The rank of the Mordell-Weil 

296 



ELLIPTIC CURVES WITH LARGE RANK 

group E(K) is closely related to the rank of the Neron-Severi group of 8, i.e., 
to curves on £ up to algebraic equivalence. Next, we define a dominant rational 

map from a Fermat surface Fd to £, which induces a birational isomorphism 
between 8 and a certain quotient Fd/r of the Fermat surface. Thirdly, we 

carry out a fairly detailed analysis of the geometry of this birational map. 
Then comes the arithmetic: The Tate conjecture (on cycles and poles 

of zeta functions) is known for Fermat surfaces and this allows us to deduce 
it for E. (The conjecture of Birch and Swinnerton-Dyer for E is equivalent 
to the Tate conjecture for E.) Also, the detailed analysis of the birational 

isomorphism between Fd/T and £ allows us to express the zeta function of £ 
in terms of that of Fd which was calculated by Weil in terms of Gauss sums. 

Finally, an explicit calculation of Gauss sums allows us to show that the zeta 
function of £ has a large order pole at s = 1, and therefore E(K) has large 
rank. 

1.8. One of the key ideas of the proof, namely relating £ to a Fermat 
surface, is due to Shioda. In [Shi86, §5], he exhibited (nonisotrivial) elliptic 
curves En (n > 1 an integer) defined over Fp(t) (with p - 3 (mod 4)) which 
are related in a similar way to Fermat surfaces. This allowed him to calculate 
the rank of En over Fp(t) and thus to show that it tends to infinity with n. (In 
fact, it is not difficult to see that Shioda's curves achieve their full rank over 

Fp2n(t); i.e., En(Fp2n(t)) = En(Fp(t)).) The methods of this paper can be used 
to show that the rank of En(Fp(t)) also tends to infinity (although in general, 
En(JFp(t)) has smaller rank than En(Fp(t))). 

1.9. Our theorem says that E(K) has large rank, but the proof does 
not explicitly produce any points. Exhibiting explicit points, and computing 
invariants such as the height pairing, looks like an interesting project. Do these 
Mordell-Weil lattices have high densities or other special properties? 

1.10. It is a pleasure to thank Felipe Voloch for bringing Shioda's paper 
[Shi86] to my attention, Pavlos Tzermias for his help with p-adic Gamma 
functions and the Gross-Koblitz formula, and Dinesh Thakur for a number of 
useful remarks. 

2. Invariants of E 

2.1. We work in somewhat greater generality than in the introduction. 
Let k be a perfect field (of characteristic p = 0 or a prime) and set K = k(t). 
Fix a positive integer d which is not divisible by p. Let Ed be the elliptic curve 
over K with plane cubic model 

(2.1.1) y2 + xy 3 - td. 

We will usually drop d from the notation and write E for Ed. 
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2.2. Straightforward calculation shows that the discriminant of this model 
is A = td(l- 2433td) and j(E) = 1/A. Thus E has good reduction at all places 
of K except t = 0, the divisors of (1 - 2433td) and possibly t = 00. 

Applying Tate's algorithm ([Tat75]), we see that at t = 0, E has split 
multiplicative reduction of type Id and all geometric components of the special 
fiber are rational over k. At places v dividing (1-2433td), E has multiplicative 
reduction of type I1; the tangent directions at the node are rational over kv(/u4) 
where kv is the residue field at v and /4 denotes the 4th roots of unity. 

2.3. The reduction type of E at t = oo depends on d (mod 6) and on k. 
Write d = 6a - b where 0 < b < 6. Changing coordinates via x = t2ax', 
y = t3ay', and t = t'- we have the model 

y/2 + t/ax/y/ = x/3- tb. 

Applying Tate's algorithm, we find the data in the following table. 

b 0 1 2 3 4 5 
Reduction I II IV IO IV* II* 

1 if A4 ( k 2 if ,3 t k 1 if ,4 j k 1 
3 if 14 C k 4 if 13 C k 3 if 14 C k 

n 1 2 if /4 t k 4 if ,3 9Z k 5 if ,4 9 k 
3 if A4 C k 5 if /3 C k 7 if A4 C k 

Here c is the number of geometric components of multiplicity 1 in the special 
fiber which are k-rational and n is the number of irreducible components of 
the special fiber as a scheme over k. 

The exponent of the conductor at t oo is 0 if b = 0; 2 if b > 0 and p ' 6; 
and d + 2 if pl6. 

3. Construction of £ 

3.1. As before, we let k be a perfect field of characteristic p (possibly 0), 
K = k(t), and E the elliptic curve over K defined by Equation 2.1.1. Our 
purpose in this section is to construct the unique elliptic surface 7r £ I-> P1 
over k such that £ is regular and 7r is proper, flat, and relatively minimal, with 

generic fiber E -> Spec K. We also relate the Neron-Severi group of £ to the 
Mordell-Weil group E(K). 

3.2. To that end, let U be the closed subset of P2 x A1 over k defined by 
the equation 

y2z + xyz - x3 + z3td = 0 

where x, y, and z are the coordinates on I2 and t is the coordinate on A1. 

Similarly, define U' c P2 x A1 by the equation 

y'2z' + t'ax'y'z' - x3 + z'3tb = 0 

where d = 6a - b with 0 < b < 6. 
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Let W be the result of glueing U \ {t = 0} and U' \ {t' = 0} via the iden- 
tification ([x', y', z'], t') = ([t-2ax, t-3ay, z], t-1). (W stands for "Weierstrass 

model.") Projection onto the t or t' coordinate gives a proper, flat, and rel- 

atively minimal morphism W -> P whose fibers are the naive reductions of 
E at places of K. However, W may not be regular; there are singularities at 
the point ([, 0,1],0) in U if d > 1, and at ([, 0, 1],0) in U' if b > 1. We note 
that W is a local complete intersection and nonsingular in codimension 1, so 
is normal. 

To resolve the singularity in U we must blow up W [d/2J times. The fiber 
over t = 0 is then a chain of d rational curves meeting transversally; i.e., it is 
the fiber in the Neron model of E at t = 0. Tate's algorithm gives the recipe 
for resolving the singularity in U'. The fiber over t = oo was recorded in the 

previous section. We denote by £ the result of this desingularization. We have 
a commutative diagram 

£ >W 

I?1 

where £ -> W is a birational isomorphism and the maps to P1 are proper, flat, 
and relatively minimal. The map 7r admits a canonical section, the "0-section," 
defined in the U coordinates by t - ([0, 1, 0], t). 

3.4. Let £ = £ XSpeck Spec k. The Neron-Severi group NS(£) is by defi- 
nition the group of divisors on £ modulo algebraic equivalence. The "theorem 
of the base" asserts that this is a finitely generated abelian group. The Neron- 
Severi group of £ is by definition the image of the group of divisors on £ in 

NS(£). In other words, it is the group of (k-rational) divisors on £ modulo al- 

gebraic equivalence over k. (If k is finite, NS(£) is the set of Gal(k/k)-invariant 
elements of NS(£).) 

3.5. Let L C NS(£) be the subgroup generated by the the class of the 
0-section and classes of divisors supported in fibers of r. The formula of Tate 
and Shioda ([Tat66], [Shi72]) says that 

Rank E(K) = Rank NS(E) - Rank L 

= Rank NS(E) - 2- (nv -1) 
v 

where the sum is over all closed points of IP and nv is the number of irreducible 
components of the fiber at v. 
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Although they are not strictly necessary for our purposes, the following 
remarks may help to clarify this formula. We have an exact sequence 

0 -, L -* NS(£) -, E(K) -* 0 

where the map NS(£) -> E(K) can be defined as follows: given a divisor on £, 
take its intersection with the generic fiber E and add the resulting points in 

E(K). With some work, this can be shown to be well-defined with kernel L. 
There is a section s : E(K) -- NS(£) which sends a point in E(K) to 

its closure in £. But note that this section is not in general a homomorphism. 
(There is a canonical section after tensoring the exact sequence with Q which 
makes NS(£) 0 Q the orthogonal direct sum, with respect to the intersection 
pairing, of L 0 Q and E(K) 0 Q.) The exact sequence is equivalent to the 
assertion that that s(E(K)) is a set of coset representatives for L in NS(E). 
See [MP86] for more details. 

The Shioda-Tate formula will allow us to compute the rank of E(K) in 
terms of NS(£), which we will eventually compute using the Tate conjecture. 

3.6. We will want to consider the situation for different degrees, so we 
write Ud, Ud, Wd and £d for the surfaces considered in this section; we then have 
similar definitions where d is replaced by 1. Note that there is a finite morphism 
Wd -> W1 defined in the U coordinates by ([x,y, z],t) ([x,y,z], td). 

4. Fermat surfaces 

4.1. In this section we will make a connection between Fermat surfaces 
and the elliptic surface £. 

Let Fd be the Fermat surface of degree d, i.e., the hypersurface in I3 
defined by 

xo + xd + x2 + x 3dO. 

We write /d for the group of dth roots of unity in k. Let G C Autj(Fd) be the 

quotient of Ad4 modulo a diagonally embedded copy of /d. The action on Fd 
is 

Z ' X = [Co, Cl, 23] [Xo, X,X2,X3] = [0CoO,(lX1,(2X2,(C33]- 

The canonical morphism Fd -- F ([xo X, X2, x3] ` 
[xO, , xI, xd]) induces an 

isomorphism Fd/G - F1 P2 

4.2. We define dominant rational maps Fd--+Wd and Wd--+F1 using the 
Ud coordinates as follows: 

[XO, Xl, 2,X}3] ( [XoXlX2), (XOX2)d dXiOA2 ) 
° 

3) 
\·-·' x!· ]·I · (ll··~·~··r 

1,2,_\d 
3dl~"aIX:221lc3 
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and 

([X, y], t) [yz, xyz, -x3, z3td]. 

The rational map Wd--+Fl factors as Wd -> W1--+F and W1--+Fl is a bira- 
tional isomorphism with inverse 

[X0X, 
X2 , x3] (xQ [Z2 

X oxx-X, xx2,xz , o /X1 

and so Wd--+Fl has generic degree d. Also, the composition Fd--+Wd--+Fl is 
the canonical morphism Fd -, F1 which has degree d3, so Fd--+Wd has generic 
degree d2. 

4.3. Fix a primitive dth root of unity ( E k and let F C G be the subgroup 
generated by [p2, (, 1, 1] and [1, (, (3, 1], which can also be described as 

r = {[0, 1, 2, 03] 3l623 1 } 

It is evident from the definitions that the rational map Fd--+Wd factors through 
Fd/r. Considering degrees, we see that the induced map Fd/r--+Wd is a 
birational isomorphism. We denote its inverse by Od : Wd--+Fd/F. 

Note that since Fd is regular, and thus normal, Fd/F is normal. 
To summarize, we have the following commutative diagram, where the 

vertical arrows are finite surjective morphisms, the horizontal arrows are bira- 
tional isomorphisms, and the diagonal arrows are dominant rational maps. 

, Fd 

v v 
Ed '>Wd _d _ Fd/r 

V V 

W1- -- F1 

The surfaces Wd, W1, and Fd/r are normal, whereas Fd, Ed, and F1 are 
regular. 

5. Analysis of Pd 

5.1. We will eventually compute the zeta-function of £d in terms of that 
of Fd. In order to do this, we need some detailed geometric information about 
Pd : Wd--+Fd/r. Specifically, we need to find explicit closed sets to be removed 

from Wd and Fd/F so that Pd induces an isomorphism on the remaining open 
sets. Attacked directly, this computation could be rather unpleasant, since we 
would need equations for Fd/F. 
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To avoid this problem, we prove a lemma which could be phrased collo- 

quially as saying that "a rational map from a normal variety is defined at a 

point if and only if its composition with a finite map is." 

LEMMA 5.2. Let W, X, Y, and Z be varieties over k (separated integral 
schemes of finite type over k) and assume that X is normal. Let g : X--+Y be 
a rational map and let f: W -* X and h :Y -+ Z be finite morphisms, with f 
surjective. 

1. g o f is defined at w E W if and only if g is defined at f(w). 
2. g is defined at x E X if and only if h o g is defined at x. 

Proof. We may assume that all our varieties are affine, say W = Spec R, 
X = Spec S, Y = Spec T, and Z = Spec U, and that we have homomorphisms 
g* : T - 

S[1/s] for some s C S and f* : S - R, and h* : U -+ T. The 

hypotheses imply that R, S, T, and U are domains, S is integrally closed, R 
is integral over f*(S), T is integral over h*(U) and f* is injective. 

To prove 1, we must show that (g o f)* factors through R if and only if g* 
factors through S. The "if" direction is trivial. For the converse, take t E T 
and write down an equation of integrality for f*(g*(t)) over f*(S): 

f*(g*(t))n + f*(si)f*(g*(t))n1 +...+ f*(sn) = O. 

Since f* is injective, this implies 

g*(t)n + slg*(t)n-1 + .+ Sn = 0. 

But S is integrally closed and g*(t) E S[1/s], so g*(t) E S. 
To prove 2, we must show that (h o g)* factors through S if and only if g* 

factors through S. Again the "if" direction is trivial. For the converse, take 
t E T and write down an equation of integrality over h* (U): 

tn + h*(ul)tn1 + .. + h*(un) = 0. 

Applying g* we have an equation of integrality for g*(t) over (h o g)*(U) C S. 
Since S is integrally closed and g*(t) E S[1/s], we have g*(t) E S. D 

COROLLARY 5.3. Consider a diagram of varieties 

7rX 7ry 

X-- Y 

where the vertical arrows are finite surjective morphisms, the horizontal arrows 
are dominant rational maps and X and Y are normal. If V c X and V' C Y 
are open subsets such that 4 induces a biregular isomorphism : V-V', then 
b induces a biregular isomorphism from V = 7rx (V) to V' = 7ry (V'). 
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Proof. By the trivial half of part 1 of the lemma, 0 o 7rx is defined on V, 
thus lry o q is defined there as well. Part 2 of the lemma then implies that q 
is defined on V. Similarly, q-1 is defined on V'. Obviously q(V) C V' and 

q-1(V') c V. Since 0-1 o : V -V and X o V'-1 : V ' represent the 
rational maps idx and idy, they must be the identity maps. D 

5.4. Now we apply the corollary to the diagram 
S0d 

Wd -- Fd/r 

W1 __ F. 
So1 

The rational map 1i is defined in the U1 coordinates by 

(p1([X, y, z], t) = [y2z, xyz -x3, z3t 

and ' 1 is defined by 

2-(2 3 2 3X22X3 
1 ([X0 l, X2, 3]) = ([XOXlX2, XX2, -X, 06X 

We let V C W1 be the subset of U1 where xyz =7 0 and let V' C F1 be the 
subset where XOXlX2 = 0. It is easy to see that 1i is defined on V, p 1 is 
defined on V', and they are inverse morphisms. We conclude that pd maps 
the subset of Ud where xyz = 0 isomorphically onto a certain subset of Fd/F 
which will be described in the next subsection. 

5.5. Consider the projection morphisms Fd - Fd/F - F1. The subset 

XOXlX2 = 0 of F1 has three irreducible components, all lines. Its inverse image 
in Fd consists of three irreducible curves (Fermat curves of degree d). It fol- 
lows that the inverse image of XOXlx2 = 0 in Fd/F is also the union of three 
irreducible curves. Thus the open set V' C Fd/F of the preceding subsection 
is the complement of the union of three irreducible curves. 

5.6. Now we consider the open subset V C Wd. It is obtained from Wd by 
removing the subset where t' = 0 from U, as well as the subset where xyz = 0 
from Ud. 

The subset of Ud where t' = 0 is an irreducible curve. 
The subset {x = 0} = {x = 0 = y2z + z3td} of Ud consists of the zero 

section (z = 0) and one or two other components, 1 if d is odd or U4 V- k and 
two if d is even and 4 C k. 

The subset {y = 0} = {y = 0 = 3 - z3td of Ud is irreducible if 3 /f d, it 
has two components if 31d and /3 t k, and it has three components if 31d and 
A/3 C k. 

The subset where z = 0 is contained in the subset where x = 0. 
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In summary, V is obtained from Wd by removing a closed subset which is 
a union of curves. The number of irreducible components of this union is 

2 if2 1'dor A4¢k f 1 if3 d 
3 if 21d and 14 C k 

2 if 3d and 3 k 
3 if 3|d and /3 C k. 

5.7. We only used the trivial half of part 1 of the lemma. We included 
the other half because it is of use if one wants to analyze (pd using the rational 
map Fd--+Wd. 

6. The Tate conjecture 

From now on, we take k to be Fq, the field of q elements, where q is a 
power of p. 

6.1. Let X be a variety over Fq. The zeta function of X is by definition 

((X, s) -= 1 - q-qdeg(x)s 

where the product is over all closed points of X and deg(x) is the degree of 
the residue field at x as an extension of Fq. (For our purposes it is enough to 
view this as a formal series in q-S.) Alternatively, ((X, s) = Z(X, q-S) where 

Z(X, T) = exp NnTn") 
n=l 

and Nn is the number of points on X rational over Fqn. 
It is immediate from the definition that the zeta function is multiplica- 

tive for disjoint unions: if X = X1 U X2 is a disjoint union, then ((X, s) = 

((Xl, S)((X2, s). 
It is a theorem of Dwork that Z(X, T) is a rational function of T. We 

will need the deeper connection with cohomology. Fix a prime e = p and write 

Hi(X) for the £-adic etale cohomology group Ht(X X Spec q Spec q, Qe). Then 

2 dim X 

(6.1.1) Z(X,T)= 1I det(l-Fr*TIHi(X)() 
i=O 

where Fr: X -- X is the q-power Frobenius endomorphism. 
Deligne's proof of the Weil conjectures implies that when X is smooth 

and proper over Fq, the eigenvalues of Fr* on Hi(X) are algebraic numbers 
independent of e and have absolute value qi/2 in any complex embedding. 

6.2. Now assume that X is a smooth and proper variety over Fq. The 
Neron-Severi group NS(X) is defined to be the group of divisors on X modulo 
algebraic equivalence over Fq. There is a cycle class map NS(X) - H2(X) 
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which induces an injection NS(X) 0 Qe -- H2(X)Fr=q where the exponent 
signifies the subspace where Fr* acts by multiplication by q. This, together 
with the cohomological description of zeta functions, gives inequalities 

(6.2.1) Rank NS(X) < dim,Q, H2(X)Fr=q < -_ord ((X, s). 
s=1 

The Tate conjecture ([Tat65]) asserts that these are all equalities. We will 
refer to this assertion as "(T) for X." (It would be more precise to refer to this 
as (T1), since there are conjectures for cycles of every codimension, but we will 
not need the others. Also, there are refined conjectures relating the leading 
coefficient of the Taylor expansion of ((X, s) at s = 1 to other invariants of X.) 

6.3. In the case where X -+ C is an elliptic surface over Fq with a 
section (so that the generic fiber is an elliptic curve E over the function 
field K = Fq(C)), the Tate conjecture for X is equivalent to the Birch and 

Swinnerton-Dyer conjecture for E. (More precisely (T) for X implies that 
Rank E(K) = ords= L(E/K, s). Moreover, Tate proved ([Tat66]) that when 

(T) holds the refined conjecture of Birch and Swinnerton-Dyer on the lead- 
ing Taylor coefficient of L(E/K, s) is true up to a power of p. Milne showed 

([Mil75]) that the full refined conjecture is true. We only need the rank con- 

jecture.) 
Still assuming that X is an elliptic surface, the cohomological expres- 

sion 6.1.1 for the zeta function and the Euler characteristic formula of Groth- 
endieck, Ogg, and Shafarevitch lead to an upper bound on ords=l L(E/K, s) 
and thus also to an upper bound on Rank E(K). If g is the genus of C and n 
is the conductor of E (an effective divisor on C), then we have 

ord L(E/K, s) < 4g - 4 + deg(n) s=- 

if E/K is nonconstant, and 

ord L(E/K, s) < 4g s=1 

if E/K is constant. These bounds are "geometric" in that they are insensitive 
to the finite field Fq. As we will explain in Section 10, there exists a more 
refined arithmetic bound, and asymptotically this bound is met by the curves 
in Theorem 1.5. 

PROPOSITION 6.4. Let E be the elliptic curve over IFq(t) defined by Equa- 
tion 2.1.1, let £ be the elliptic surface over IFq defined in Section 3, and let Fd/F 
be the quotient of the Fermat surface of degree d over IFq defined in Section 4. 

1. The Tate conjecture holds for £. Equivalently, the conjecture of Birch 
and Swinnerton-Dyer holds for E. 
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2. Rank E(lFq(t)) = - ord=i ((Fd/r, s) - 1 + £ where 

0 if2 dor 4 q - 1 0 3 - 3 d 
1 if 21d and 41q - 1 

- d 
2 if 3d and 31q - 1. 

6.5. Remark. The £ term accounts for the points on E with either x = 0 
or y = 0. 

Proof. Part 1 follows from the existence of a dominant rational map 
Fd--+£ and well-known results on the Tate conjecture. (We refer to [Tat94], 
especially §5 for these results.) Indeed, if X--+Y is a dominant rational map, 
(T) for X implies (T) for Y. But (T) is trivial for curves, and its truth for two 
varieties implies it for their product. Since a Fermat variety is dominated by 
a product of curves ([SK79]), (T) follows for Fermat varieties, and this implies 
(T) for £. 

The equivalence of (T) for £ and the conjecture of Birch and Swinnerton- 

Dyer for E was already noted above. 
To prove 2, we use the geometric analysis of Section 5 and the multiplica- 

tivity of zeta functions. From the Shioda-Tate formula (Subsection 3.5) and 
Part 1 we have 

Rank E(K) = Rank NS(£) -Rank L 

- ord ((£, s) - Rank L. 
s=l 

Since £ is obtained from W by blowing up, i.e., by removing points and adding 
curves, multiplicativity of zeta functions yields that 

- ord (£, s) = -ord C(W, s) + (n -1) 

s= 

where nv is the number of irreducible components in the fibre at v. Combining 
multiplicativity with the geometric analysis of Section 5 we see that 

- ord (W, s) - 4 - = - ord (Fd/r, s) - 3. 
s=l s=l 

Assembling these ingredients gives the desired formula. D 

6.6. Note that we did not need the actual values of nv in the proof, since 

they cancel out. Nevertheless, we recorded them in Section 2 for future use, 
e.g., for height computations. 
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7. The zeta function of a Fermat surface 

7.1. The zeta functions of Fermat varieties were computed in terms of 
Gauss and Jacobi sums by Weil in his landmark paper [Wei49]. We will need a 
refinement of this calculation due to Shioda which takes into account the action 
of G, and we will need to make the relevant Jacobi sums explicit. Remarkably, 
an explicit calculation of zeta functions of Fermat varieties over the prime field 
does not seem to be in the literature. When doing explicit calculations, most 
authors pass immediately to the case where q - 1 modd. In the next two 
sections, we will explicitly compute the zeta function of Fd/F over any finite 
field Fq, in the "supersingular" case, i.e., when d divides pn +1 for some positive 
integer n. 

7.2. We will use the cohomological description 
2 dim X 

((X,s)= Z(X,q-s) = II Pi(X,q-s)(-1)i+ 
i=O 

where 

Pi(X, T) = det (1 - Fr* THi(X)) . 

Since Hi(Fd/r) = Hi(Fd)r and the eigenvalues of Frobenius on Hi(Fd) 
have absolute value qi/2, only P2(Fd/F,q-s) can contribute to the order of 
pole of ((Fd/r,s) at s = 1. Thus we will concentrate on H2(Fd) and its F 
invariants. 

7.3. Fix an algebraic closure Q of Q. Let p be a prime of 0-, the ring of 

integers of Q, over p. We view all finite fields of characteristic p as subfields of 

OC,/P, which is an algebraic closure of Fp. 
Reduction modulo p induces an isomorphism between the group of all 

roots of unity of order prime to p in 0-, and the multiplicative group of 0(//p. 
We let t: (OC/p)x -> Q denote the inverse of this isomorphism. We will use 
the same letter t for the restriction to any finite field Fqx. 

Fix an algebraic closure Qe of Qe and an embedding Q - Qe. For conve- 
nience, we will assume that f _ 1 modpd so that Qe contains all the pdth roots 
of unity. 

7.4. Now we introduce Gauss and Jacobi sums. Fix a nontrivial character 

0 

: Fp - (Qx and for each finite extension Fpf of fFp, let : pf --, Q be 

defined by 4 = 00 o TrjF Jp -. If X : IF - QX is a nontrivial character, we 
define a Gauss sum by 

9(x,) - - x(x)Z(x).E 

pfXEI 
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If Xi,... , Xn are characters 

pf 

-Q , not all trivial, such that the prod- 
uct X ... Xn is trivial, we define a Jacobi sum by 

J(X, , pfXn) 
= 

f1 Xl(Xl)'".. Xn(Xn) 
x 1,... XnEIF 

x1+---+xn=O 

It is well-known (see [Wei49] for example) that 

J(X .. X) = -- Hi=1 (xi, V) if all Xi are nontrivial 
J(XI,, *'Xn) - 0 p 

0 Uotherwise 

and that (in any complex embedding) g(X, ) = pf/2. 

7.5. Recall the group G of automorphisms of Fd introduced in Section 4. 
Let G denote the group of characters G with values in Q (and thus also Qe via 
our fixed embedding). Using the character t: (C(,/p)x - Qx, we can identify 
G with 

{a =(a, al, a2, a3) E (Z//dZ)4 jai= } 

where the pairing G x G -* QX is 

3 

a(z) = ((ao, al,a2,a3), [(o, I1, 2,3]) = f t(i)ai 
i=O 

Note that by our assumption that f - Imodpd, the values of a E G lie in 
Q(,ad) C Q&f 

For a E G, we denote by H2(Fd)(a) the subspace of classes c E H2(Fd) 
such that z*(c) = a(z)c for all z E G. Also, we write qa for (qao,...,qa3) if 
a = (ao,..., a3). 

Recall that Fr : Fd -* Fd denotes the q-power Frobenius endomorphism. 
From the formula 

Fr o [(o, '1, C2, 3] = [(Oq, Cq, 2, ( ] o Fr 

we deduce that Fr* sends H2(Fd)(a) to H2(Fd)(qa). For each a E G, we let 

u(a) denote the smallest positive integer such that qu(a)a = a. Then (Fru(a))* 
maps H2(Fd)(a) to itself. 

It turns out that H2(Fd)(a) is zero or 1-dimensional, and (FrU(a))* acts 
by multiplication by a Jacobi sum. More precisely, for a E G, a : 0, define a 

qu(a)_- 
Jacobi sum J(a) as follows: Let Xi: Fq() 

- b Q be defined as Xi = t d a 
qu(a) 

and set J(a) = J(xo,.., X3). Note that J(qa) = J(a). By convention, we set 

J(0) = q. 
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PROPOSITION 7.6 (Shioda). Let Fd be the Fermat surface of degree d 
over Fq and let G' =- a = (ao,. ..,a3) E G a = 0 or ai 0 for i = 0,...3}. 

1. H2(Fd)(a) is zero if a q G' and is 1-dimensional if a E G'. 

2. If a E G' then (FrU(a))* acts on H2(Fd)(a) by multiplication by J(a). 

3. If a E G' then the characteristic polynomial of Fr* on =a) H2(Fd)(qa) 
is equal to (1 - J(a)TU(a)). 

Proof. In [SK79], Shioda and Katsura show that the cohomology of a 
Fermat variety is built up from the cohomology of lower dimensional Fermat 
varieties of the same degree. This allows one to reduce to the case of curves. 
The proposition for Fermat curves is [Kat81, Cor. 2.4]. 

We will sketch another proof, closely related to that in [Kat81], which 
works uniformly in all dimensions. For simplicity we will only discuss the case 
of Fermat surfaces. 

To that end, consider the finite morphism 7r : Fd -- Fd/G - P2. The 

sheaf F = 7r*Qe carries a natural action of G and we have a decomposition 
. = - aEO.(a). By the Leray spectral sequence for 7r, 

H(Fd)(a) = H2t (P2 x SpecFq,F a)(a) Ht (p2 x Spec Fq, (a)). 

Now each .F(a) is lisse of rank 1 on the locus {[Yo,... ,Y3]yi $ 0 if 

ai = 0} C P2 and is zero elsewhere. If r = qf is a power of qU(a) and y is 
an Fr-rational point of P2 with corresponding Frobenius Fry = Frf, then Fry 
induces an automorphism of the geometric stalk, Fry : .F(a)y -- F(a)V. We 

have Tr FrylI(a)V = Xa,r(Y) where Xa,r is defined by 

3 

Xa,r([YO,. ..3]) = Htr ai(y) 
i=O 

3 u(a)I _ a 
= n^ (C)-^ai(N)) _Hta i d 

NFr/F u(a) (Yi) 
i=O - 

and we interpret tb(0) as 0 if b 0 and as 1 if b = 0. 

Using the Grothendieck-Lefschetz trace formula and the Hasse-Davenport 
relation, we see that 

11 det (1 -(FrU(a))*TIHi(Fd)(a))(1)i+1 
i=O 

_ -(J(a)T)-1 if a O 
(1 - T)-(l - qT)-(l - q2T)-1 if a = 0. 
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Now Deligne's purity theorem for the Hi(Fd) implies that H2(Fd)(a) is either 
0 or 1-dimensional, and is nonzero if and only if J(a) 

- O, i.e., if and only 
if a C '. We also see that (Fru(a))* acts on H2(Fd)(a) by multiplication 
by J(a). 

Part 3 is an easy consequence of Part 2. D 

The proposition reduces the problem of computing the order of pole of 
the zeta function of Fd/F to computing some Jacobi sums. Let Fr C G be the 
set of characters which are trivial on r C G. Clearly Fr is the cyclic subgroup 
of order d generated by (3, -6, 2, 1). With this notation, we have: 

COROLLARY 7.7. Let A1,... ,Ak be the orbits of multiplication by q on 
Fr n G' and choose ai c Ai. Then 

k 

P2(Fd/F, T) = ((1- J(ai)Tu(ai)). 
i=1 

8. Explicit Gauss and Jacobi sums 

PROPOSITION 8.1. Suppose that some power of p is congruent to -1 
modulo d. Then for all a E G', J(a) = q(a). 

The rest of this section is devoted to proving the proposition. 

LEMMA 8.2. Let b be a rational number with 0 < b < 1 and suppose that 
there exist positive integers n and f such that (pn + 1)b CE and (pf - l)b E Z. 

If b f4 1/2 then f is even and setting e = gcd(n, f/2), we have (pe + 1)b E Z. 

Proof. Write b = c/d in lowest terms. If b : 1/2 then d > 2. Our 

assumptions imply that pn -1 mod d and pf 1 mod d, and so f must be 
even since d > 2. Now 

gcd(p2n- 1 pf- 1) = pgcd(2n,f) 1 = p2e_ 1 

so p2e _ Imodd. Since pn = (pe)(n/e) = -1 mod d, we must have that n/e is 
odd and pe _ -Imod d. Thus (pe + 1)b E Z, as desired. D 

LEMMA 8.3 (Shafarevitch-Tate). Let X F: - Q> be a nontrivial 

character which is trivial on Fpf. Then g(X, ) = -(x)pf where x c F2f is 
Pf p2f 

any element with Trp 2f / f (x) = 0. 

Proof. Recall that (x) = o (TrF p2f/p (x)) where 0o is a fixed nontrivial 
character of Fp. Abbreviating TrFp 2f 7/p 

to Tr, we have 
p 3 i 
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g(X,) = - E x(x) (x) 

p2 f 

x(x) 5 (xy) 
XX2f f pf 

pf -1 ifTr(x)=O 

xEF x(x) -1 ifTr(x) 0 

p2f pf 
Tr(x))=O 

But Tr: Fp2f -+ Fpf is pf-linear and surjective, so its kernel is a 1-dimensional 

Fpf-vector space. This means that there is just one term in the last displayed 
sum, and this proves the lemma. D 

Proof of Proposition 8.1. If a = 0 then u(a) = 1 and J(a) = q by defini- 
tion. If a = (d/2,d/2,d/2,d/2), then u(a) = 1 and J(a) = g(t(q-1)/2, )4/q 
But it is elementary and well-known that g(t(q-1)/2,b) = v±-q, and so 

J(a) = q. 
Now assume that a E G' and a Z O, a 7 (d/2, d/2, d/2, d/2). Lemma 8.2, 

qu(a)_i 

applied to the bi = ai/d, shows that u(a) is even. Setting gi = g(t d ai, ) 

and e = gcd(n, u(a)/2) we have 

gi ( tqdu(a) i( 

XEFX 
qu(a) 

-= 
- 

E t d 
ai 

(NF ) /2()) (X) 
XEIFX 

qXu(a) 

which, by the Hasse-Davenport relation, is 
(f/~ N^~\ u(a)/(2e) 

q 2e 1 
- d x 

(We have abusively written i for the additive characters of both Fqu(a) and 

Fq2e.) But by Lemma 8.2, (qe + l)ai/d E Z and so the inner sum is of the type 
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considered in Lemma 8.3. Thus 

= (tq2e_ ) 
iu(a)/(2e) 

where x G F qe is any element with Tr F2e/Iqe (x) = 0. 

Taking the product over i = 0,..., 3 and using the fact that z3=O ai 
Omod d, we see that J(a) = q(a). O 

9. The rank of E 

9.1. We are now in a position to compute the rank of Ed over IFq(t) for 
any d dividing pn + 1. By Proposition 6.4, the rank is 

- 
(ordt.(F/T,) 1+{0 if 2/[d or 4 q - 1 

01 if 3 and3q- - 
s=l( /) d 1 if 31d and 3 q- 1 

S=1 if 21d and 41q - 1 + 

By Corollary 7.7 and Proposition 8.1, - ords=1 ((Fd/F, s) is equal to the 
number of orbits of multiplication by q on Fr n GC'. Here 

G' = {a E G a = 0 or a = (ao,..., a3) with ai # 0} 

and Fr is the cyclic subgroup of G generated by (3, -6, 2, 1). Thus Fr n G' 
is in bijection with {a3 E Z/dZ I 6a3 0} U {0}. The size of the orbit of a3 
depends only on e = d and is equal to Oe(q), the order of q in (Z/eZ). (d,a3) 
Thus we have 

-ord (Fdr, s) = + 1 s=1 eld oe(q) 
e6 

(The term 1 corresponds to e = 1, i.e., to a3 = 0.) 
Putting everything together, we have our main theorem. 

THEOREM 9.2. Let p be a prime, n a positive integer, and d a divisor of 
pn + 1. Let q be a power of p and let E be the elliptic curve over Fq(t) defined 
by 

y2 + y 
3 - td 

Then the j-invariant of E is not in Fq, the conjecture of Birch and Swinnerton- 
Dyer holds for E, and the rank of E(Fq(t)) is 

5o(e) 0 if 2 Id or 4 Iq-1 if 3dn 
+Oe ,(q( )i an-) ±+ I{ 

' 
, d+ 1 if 3d and 3 4 q-1 

H el \readq 2 if31d and 31q - 1. 

Here c(e) is the cardinality of (7Z/e7Z) and e (q) is the order of q in (7Z/eZ)x. 
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9.3. We now specialize to the case where d = pn + 1. If q = p then 
Oe(p) < 2n for all divisors e of d. Applying the theorem, we see that the rank 
of E over IFp(t) is at least (pn- 1)/2n. This completes the proof of Theorem 1.5. 

On the other hand, if we take q to be a power of p2n, then oe(q) = 1 for 
all divisors e of d. The theorem then implies that the rank of E over IFq(t) is 
d - 1 = pn if 6 d and d - 3 = pn - 2 if 61d. 

10. Rank bounds 

10.1. Let C be a smooth complete curve of genus g over IFq and let E 
be an elliptic curve over K = Iq(C). Write n for the conductor of E and let 
deg(n) be the degree of n, viewed as an effective divisor on C. As mentioned 
in Section 6, there is a geometric bound on the rank of E: 

r>iEV^ ^ -r/^^\^ 9 if E is constant Rank E(K) < ord L(E/K, s) < g if E is constant -s=l - 4g - 4 + deg(n) if E is not constant. 

This bound is geometric in that it is not affected if we extend the constant 
field IFq. But as we have seen in the previous section, both Rank E(K) and 
ords=l L(E/K, s) can change dramatically if the constant field is enlarged. 

In fact, there is an arithmetic bound, i.e., a bound which is sensitive to 
the finite field of constants. In [Bru92, Prop. 6.9] Brumer used Weil's "explicit 
formula" technique to prove an upper bound 

4g - 4 + deg(n) deg(n) 
dL /Ks) log deg(n) (logq deg(n))2 

where logq denotes the logarithm to base q and C is an explicit constant de- 
pending only on g and q. (Here we ignore the finitely many elliptic curves over 
K with trivial conductor.) This is the function field analogue of a theorem of 
Mestre [Mes86] which says that if E is a modular elliptic curve over Q then, 
assuming a generalized Riemann hypothesis, 

ord L(E/Q, s) = O(log N/ log log N). s=1 

Brumer's bound is visibly sensitive to the field of constants and is an 
improvement on the geometric bound when deg(n) is large with respect to q. 

10.2. The curves of Theorem 9.2 show that the main term of Brumer's 
arithmetic bound over Fp(t) is sharp. Indeed, the curve with d = pn + 1 has 
deg(n) = pn + 4 if 6 / d and deg(n) = pn + 2 if 61d, and its rank (analytic 
and algebraic) is at least (pn - 1)/2n. (Note also that these curves meet the 
geometric bound over Fq(t) when Fq contains Fp2n.) 
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10.3. The (isotrivial) elliptic curves of [TS67] also meet the main term of 
Brumer's arithmetic bound over Fp(t). Indeed, the curve of their Theorem 2 

(with f = pn +1) has deg(n) approximately 2pn and rank approximately pn/n. 

10.4. The preceding remarks show that the Brumer arithmetic bound is 

asymptotically sharp in the function field case. We believe that the Mestre 
bound should likewise be asymptotically sharp in the number field case. 

Let K now be a number field. For a positive integer N, let rK(N) be 
the maximum, over all elliptic curves E over K with conductor n satisfying 
NK/,,(n) = N, of Rank E(K); if there are no such curves, we set rK(N) = 0. 

Assuming various standard conjectures, it follows from a simple generalization 
of Mestre's argument that rK(N) = O(log N/log log N) (where the constant 
of course depends on K), and so the limit in the following conjecture is finite. 

CONJECTURE 10.5. 

lim sup rK(N) > 
N log N/ log log N 

10.6. If E is an elliptic curve over Q, let NCl(E) be its conductor and let 

NK(E) be the norm from K to Q of the conductor of E viewed as elliptic curve 
over K. Then there is a constant C depending only on K such that 

< NL, (E)[K:(CQ] < 
- NK(E) - 

for all elliptic curves E over Q. This can be used to prove that the conjecture 
for a general number field K follows from the conjecture for Q. 

10.7 (Added in proof). If one replaces "elliptic curve" with "abelian vari- 

ety" in the definition of rK(N) then the limit in Conjecture 10.5 is still finite 
and the conjecture has been proven unconditionally. See E. Kowalski and 
P. Michel, Acta Arith. 94 (2000), 303-343. 
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