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MODULAR SYMBOLS FOR F,(T)

JEREMY T. TEITELBAUM

Iniroduction. Modular symbols were invented by Manin as a tool for studying
the arithmetic of modular forms for SL,(Z). Described in detail in [Man], these
modular symbols are elements of the relative homology group H, (X, cusps) where
X is a modular curve obtained as the quotient of the complex upper half-plane by
a congruence subgroup of SL,(Z). This group is generated by the classes of paths
joining a to b where a and b belong to Q U {o0}. Manin supplied an explicit finite
set of generators for H, (X, cusps) of this type, as well as the complete set of relations
among them. This makes it very simple to calculate this H, explicitly. His construc-
tion also makes the action of the Hecke operators transparent. Using this infor-
mation, one can exploit the duality between modular forms and H, (X, cusps) to
calculate the structure of the space of modular forms on X.

Modular symbols have proven to be extremely useful for a variety of purposes.
For example, Mazur and Swinnerton-Dyer used modular symbols to define p-adic
L-functions associated to modular forms; these L-functions play a role in a variety
of interesting “p-adic Birch and Swinnerton-Dyer” type conjectures such as those
studied initially in [MTT] and [MT]. A generalized, “A-adic” modular symbol is
a crucial ingredient in the proof by Stevens and Greenberg of the (weight-two)
“exceptional zero conjecture” of [MTT]. Modular symbols play a fundamental
role in studying congruences between Eisenstein series and cusp forms, as in the
work of Mazur ([Maz3]) and Stevens ({St]). In addition, Cremona ({Cr]) has used
modular symbols as the basic tool in large scale computations of the Hecke module
structure of the space of (weight-two) cusp forms for I'y(N).

In this paper, we describe a theory of modular symbols for Drinfeld’s “upper
half-plane” Q over F,[[1/T]]. Our modular symbols, which are constructed using
the tree 7 of PGL,(F,((1/T))), are related to a certain class of cusp forms for GL,
over (the adeles of) F,(T) in the same way that Manin’s symbols are related to cusp
forms of weight two for GL, over the adeles of Q. Many of the applications of
Manin’s modular symbols transfer immediately to our situation. For example,
modular symbols yield a practical method for calculating the Hecke-module struc-
ture of certain spaces of cusp forms for GL, over F,(T), making possible the
construction of tables of elliptic curves over F (T)like the famous Antwerp IV tables
of elliptic curves over Q ([MF4]). Gekeler ([Gek2]), using other methods, has
constructed tables of this type, but we believe that computations based on modular
symbols are more efficient for large-scale, machine-based numerical investigations.

Received 27 August 1991. Revision received 16 March 1992.
This research was partially supported by NSF grant DMS-9015523.

271



272 JEREMY T. TEITELBAUM

In support of this claim, we refer to Cremona’s success with these techniques in the
classical setting ([Cr]).

In addition, our modular symbols yield information on congruences between
cusp forms and Eisenstein series and can be used to construct distributions on local
rings of F,(T).

Perhaps the most important difference between the modular symbols we con-
struct and the classical ones is that we find only “even” symbols. Thus our space of
modular symbols is one-half the dimension one would expect from a direct compari-
son with the classical case. The missing symbols reflect the fact that only half of the
cohomology of the upper half-plane Q can be seen on the tree 7 ; the other half is
tied up in étale coverings of Q which our modular symbols cannot detect.

In the first section of this paper, we establish our notation and conventions, and
very briefly recall the relationship between harmonic functions on the tree J and
automorphic forms. In the second section, we define modular symbols and deduce
their basic properties. In our main theorems, we prove that the space of Q-valued
modular symbols is dual to the space of Q-valued harmonic functions, and we give
explicit generators and relations for the space of modular symbols. The first of
these results is based on a pairing between the modular symbols for a congruence
subgroup I" of GL,(F,[T]), and the I'-invariant cuspidal harmonic functions on
the tree 7. This pairing is nondegenerate over Q, and the determinant of the pair-
ing is intimately related to the arithmetic of Drinfeld’s modular curve Xy = I'\Q.
Indeed, the degree to which this pairing fails to be perfect over Z is measured by
the image of the cuspidal divisor group of Xt in the group of connected compo-
nents of the Neron model of Jac(Xy). The generators and relations we describe for
modular symbols are formally identical to Manin’s original results for the classical
symbols; we derive them by a careful study of the action of GL,(F,[T]) on 7.

The final section of the paper consists of examples of the various applications of
modular symbols. First, we describe how modular symbols are used to compute the
special values L(f, 1, ) of L-functions associated to twists of a particular auto-
morphic form f. This is a function field version of Birch’s formula, and using it one
may construct tables like those in Stevens’s book ([St]) of special values. Next, we
show how modular symbols may be used to construct distributions which, by the
function field version of the conjectures in [MTT] and [MT], ought to be related
to v-adic periods. We provide a numerical example supporting this conjecture.
Evidence for these conjectures has been obtained by a different method by Rock-
more and Tan ([TR]). We might say that Rockmore and Tan begin with the
equation of an elliptic curve, and then work hard to find the associated modular
form; we are able to find the modular form for an elliptic curve rather easily, but
then must search hard for the equation of that curve.

At the end of the paper, we observe a congruence on modular symbols analogous
to that discovered by Manin and proved by Mazur. Presumably, the proper function
field version of Mazur’s proof will establish these congruences as well; building the
delicate machinary necessary for such a proof is a major open problem in the theory
of Drinfeld modular curves.



MODULAR SYMBOLS FOR F,(T) 273

Notation and conventions. Let k = F,(T) be the field of rational functions in T
over the finite field F,. Fix the valuation “at infinity” defined by | T| = ¢, let k, be
the completion of k at infinity, and let @ be the valuation ring in k. We also let
A = F,[T] denote the ring of polynomials in T.

We will be working extensively with the tree 7 associated to PGL, (k). Recall
that the vertices of J are the cosets PGL, (k. )/PGL,(®), and the oriented edges of
F are the cosets PGL,(k,,)/A” where

b
N = {(z d) € PGL,(0): |¢| < 1}.

Asiswellknown, 7 is ahomogeneous tree, with g + 1 edgesleaving every vertex.
The group GL,(A)acts on J on the left. We will be interested in the “Hecke-type”
subgroups of GL,(A). If N is an ideal of A, we will use the standard notations:

r0 = = (g f)mod o},
1
r0 == (g 7)mos .

I'(N) = {y: y = ((1) (:)(mod N)},

By a congruence subgroup of GL,(A4) we will mean a subgroup containing some
T'(N).

Fix a vertex x, of 7. An infinite path, without backtracking, which departs
from x, is called an end of 7. The ends of 7 are naturally identified with the points
of P*(k_). The rational ends of  are those ends which correspond to points of
P!(k) = P'(k_). The action of GL,(A4) on .7 extends naturally to the ends of 7. All
of this data is independent of the choice of the base vertex xg.

Throughout this paper, we will rely on [Se] for essential facts about the action
of GL,(4) on 4 and its ends.

Much of the arithmetic interest in 7~ derives from Drinfeld’s theory of modular
curves for GL,(A). Drinfeld has constructed an “upper half-plane” Q which is closely
related to the group GL,(A) and to the tree . In particular, if I" is a congruence
subgroup of GL,(A4), then I acts on Q and one may construct a quotient Y. = I'\ Q.
Y- is an affine algebraic curve, and it may be compactified by the addition of finitely
many cusps to obtain a complete algebraic curve Xr. In addition, there is a map
from Q to 7, called the “reduction” map, which is compatible with the action of T,
and yields a map from Y; to T'\ 7. For details of this construction, we refer the
reader to the works of Drinfeld, Goss, and Gekeler cited in the references. We will
call the curves X “Drinfeld modular curves.” If " is one of the three special types
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of subgroups mentioned above, we will refer to the quotient curve I'\Q as X,(N),
X{(N), or X(N), as appropriate.

In the classical case, modular symbols are used to study modular forms. Before
introducing our symbols, then, we will describe the modular forms in our situation.

Definition 1. Let R be an abelian group. An R-valued function f on the edges
of 7 is called an R-valued harmonic cocycle if

1. fis alternating; that is, f(e*) = —f(e) if e* denotes the opposite of the edge e.

2. f is harmonic; that is, for each vertex v,

> fley=0

e—v

where the sum is over the edges leaving v.

Suppose that T is a subgroup of GL,(4). If f is I'-invariant and supported on
finitely many edges mod I, then f is said to be a cuspidal harmonic cocycle for I
We will let C,,,.(T, R) denote the group of such functions.

Of particular interest is the group G, (I',(N), C) where C is the complex num-
bers. As is explained in [Gek2], C,,.(I',(N), C) is isomorphic to a certain space of
automorphic forms on the adelic group GL,(A;). By means of this isomorphism,
it makes sense to speak of “newforms” in C,,.(I';(N), C). Before we can state the
arithmetic significance of these automorphic forms, we must introduce the Hecke
operators.

Let N be an ideal of 4 and let z be a prime of 4 which is relatively prime to N.
Suppose f € Gy, (Io(N), C) is a harmonic cocycle. Let P be the monic irreducible
polynomial generating = and define

wa=o((5 1))+ 2. (o 7))

This defines the action of the Hecke operator T,. The operators T, generate a
commutative algebra T which acts as correspondences on I',(N)\ Z and on X (N),
and as linear endomorphisms on C,,.(I',(N), C).

As is discussed in [Gek2], Drinfeld has proved the Weil-Taniyama-Shimura
conjecture for function fields. This means that we may take advantage of the follow-
ing theorem relating the action of the Hecke operators on harmonic cocycles to
elliptic curves.

THEOREM 2. (Drinfeld) There is a one-to-one correspondence between isogeny
classes of elliptic curves E over k having split multiplicative reduction at the place at
infinity of k and conductor N away from infinity, and newforms f in C,,(T((N), C)
on which T acts by rational numbers. An elliptic curve E belongs to the isogeny class
corresponding to a newform f if and only if, for all primes  of A which are prime to
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N, we have
[E(4/m)| = g5 + 1 —a,
where T, = a,f.

Definition of modular symbols. In this section we introduce our modular
symbols and establish their basic properties.

Definition3. The group M of modular symbols is the group of divisors of degree
zero supported on the k-rational points of P;. We will let [r, s] denote the divisor

) — .

Most of our arguments in this paper are based on a geometric realization of
modular symbols. We think of the modular symbol [r, s] as a path in the tree
J running from the rational end r to the rational end d; there is only one such
path.

Suppose x is a subtree of J with finitely many ends, all of which are rational.
Suppose in addition we are given a function « on the edges of x which is nonzero,
alternating (meaning that «(e*) = —a(e)) and harmonic (meaning that the sum of
the values of « on the edges leaving each vertex is zero). It is not hard to see that the
data {x, a} determines an element m of M in a unique way. We will frequently view
elements m of M as this sort of labeled subtree of 7.

The analogy between our modular symbols and Manin’s should be clear. In each
case, modular symbols are “geodesics” connecting points on the “boundary” of the
“upper half-plane.”

Definition 4. Suppose that I" = GL,(4) is a congruence subgroup and that R is
a '-module. Then the group

Mr(R)=Ho(I'’, M ® R)

of coinvariants of M @ R relative to the I action will be called the group of R-valued
modular symbols for T.

The structure of M. In this section we recall and slightly generalize results of
Serre ([Se, Chapter I1.2]) on the structure of the group My . Serre defines the
“Steinberg module” of GL,(k) to be the kernel of the augmentation map

Z[PI1 > Z.

Clearly, this kernel is precisely our group of modular symbols. To determine the
structure of M and M, we rely on Serre’s alternative resolution of M by I'-modules,
which is based on the decomposition of the tree 7~ into “stable” and “unstable”
regions. Serre limits himself to considering groups which are free from torsion of
order prime to p, but we work more generally since we would like to apply our
results to I'h(N). Therefore, we adapt Serre’s definition of “stability” to this more
general situation.
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Definition 5. A vertex v (resp. edge e) is said to be “stable” (relative to I) if the
stabilizer of v (resp. €) in I has order prime to p.

Since any element of I" fixing an edge e also fixes its bounding vertices, the
unstable vertices and edges of 7~ form a union of connected subtrees of ~ which
we denote by 7. When I is free from torsion of order prime to p, Serre proves that
the group Hy (7, Z) of connected components of 7, is isomorphic to Z[P;]. This
is not the case for general T'; for example, 7, for the full group GL,(4) is the entire
tree . However, the argument of [ Se, Chapter I1.2, Lemma 13] will work provided
we make the following assumption on I':

I" is contained in some I'y(N). 4]

We will adopt this hypothesis on I" from now on.

Following Serre, let L, be the natural complex with L, and L, the free abelian
groups on the stable edges and vertices of 7. Serre proves that there are only finitely
many stable vertices and edges modulo the action of T'. If we let C,(7, Z) and
C.(7 ., Z) denote the chain complexes on .7 and 7, respectively, we see that the
complex L, fits into the exact sequence

0-C (T, L)-C (7, L)L, —0.
The corresponding long exact sequence in homology expresses M as H,(L,) and
shows that Hy(L, ) = 0. Suppose that we compute the group cohomology H,(I', L))
of T with coefficients in the complex L,. There are two ways to do this, corre-

sponding to the two spectral sequences

EZ =H,(T, Hy(L,))

Eplq = Hq(r’ LP) } - Hp+q(r’ L*).

Weleaveit to the reader to verify that the first of these proves that H (T, L) = M.
We will apply the second spectral sequence in a moment. Before doing so, let us

observe that, by Shapiro’s lemma and Serre’s observation that the stable edges and

vertices are finite in number mod I, the groups H, (T, L;) are finite for i = 0 and

i = 1. Since both of the Hy(T', C;(7, Z)) are torsion-free, we obtain from the long

exact sequence of group homology two exact sequences

0- HO(F5 Ci(ywa Z)) g Ho(ra Ci(gz Z)) - Ho(r, L,) -0 i= 0, 1.

This tells us that the Hy(T", L;) are precisely the relative chains for the pair
I\7,T'\7,), and therefore that

H,(T\7, T\ 7, Z) = Ker(Ho(I', L1} = Ho(T', Ly)).
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The significance of this relative homology group is explained by the following
lemma.

LemMma 6. The subgraph T\J_ of T\ can be retracted to the finitely many
ends of '\ .

Proof. Serre describes a retraction of 7, onto the rational ends of 7. To see
how this is done, pick an unstable vertex v in 4. Then the p-Sylow subgroup of
Stab(v) fixes a unique rational end of 7 (here we are using our assumption (1) on
I'), and the vertex v retracts to this end along the unique path joining it to v.

To establish our lemma, it suffices to prove that I'\ 7, is simply connected. If we
know this, then there will be a unique path in '\ 7, joining a vertex v to a rational
end, and we may define a retraction along this path. Suppose therefore that we have
a cycle ¢ in the quotient. We may lift ¢ back to a path joining two vertices v; and
v, in Z_, such that yv, = v, for some y e I. Clearly, v, and v, belong to the same
connected component of . Therefore, there is a unique rational end x of 7 and
element 7, € Stab(v,) such that x is the unique fixed point of 7, in P{. Since y7,y™*
fixes v, and v, is in the same component of 7, as v,, the element yt,7~! must also
fix x. Therefore yx = x. Consider now the paths p; and p, from x to v, and v,
respectively. Our original path from v, to v, is equivalent to the path p, — p,, but
this latter path is trivial in the quotient I'\ 7. Thus we see that I'\ .7 is simply
connected.

Using this lemma, we see that

H, (N7, T\ 7, Z) = H,(T'\ 7, cusps, Z)

is the cohomology of I'\ 7 relative to its finitely many ends; these ends correspond
to the cusps of I".

Let us finally apply the first of our two spectral sequences for computing
H, (T, L,). We obtain from it, and our computations above, the exact sequence

H,([T, Ly)—» M- H,(T'\7, cusps, Z) - 0.

Also, as we have previously observed, the group on the left of this sequence is finite,
and so Mt is, up to torsion, precisely the homology of '\ J relative to the cusps.
The dimension of My is given by the formula

dim My ® Q = g(Xr) + h(Xy) — 1

where g(Xr) and h(X[) are respectively the genus of X;- and the number of cusps of
I'. Formulas for these numbers were found by Goss; the reader may look them up
in [Gol].

Having identified M as (more or less) the relative homology of the quotient
graph, it is reasonable to ask for the absolute homology. This is supplied by the
group of “closed” modular symbols, which we define here.
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Definition 7. Let M2(R) denote the subgroup of M (R) generated by the [r, 5]
where r and s are T'-equivalent. For simplicity, let MY denote M2(Z).

By tracing back through the work we have just done, it is not hard to verify that
the quotient of MR by its torsion subgroup is isomorphic to the absolute homology
group H,(I'\ 7, Z).

I see some arguments in favor of defining the modular symbols to be the torsion-
free quotient of My, rather than M. Manin makes such a choice for the classical
symbols. I elected not to remove the torsion because, as we hope to explain in a later
paper, it contains interesting information about the existence of “unusual” modular
forms with coefficients in, say, Z/IZ for some prime [ different from p. Fortunately,
the torsion in My is usually very small. Indeed, the torsion is GL,(F,[T]) is killed
by g% — 1, and so this also kills the torison in Mr.. In specific cases, one can account
for the torsion exactly. For example, using results of Gekeler [ Gek2], one can show
that, if I = I'y(NV) for N a prime of odd degree, then M is torsion-free, while if N
is a prime of even degree, then the torsion subgroup is cyclic of order g + 1.

Modular symbols and harmonic cocycles. Now that we understand the structure
of the group of modular symbols, we may begin to relate them to harmonic cocycles.
This relationship is expressed by a pairing between the modular symbols and the
harmonic cocycles. In the classical case, this pairing is the deRham pairing given
by integration over cycles; we view our pairing as an integration pairing as well,
but the actual calculation of the integral is rather trivial.

Definition 8. Suppose [r, s] is a modular symbol and f is an R-valued, cuspidal
harmonic cocycle of level N. Then we define

f f = the sum of the values of f along [r, s],

and we extend this “integral” to M. by linearity.

LEMMA 9. The pairing in Definition 8 is well defined. In addition, it enjoys the

following properties:
1. We have the relation
s t 1
[r+]s=]"
¥(s} 5
f= J Sfor.

¥(r)

2. Let y e GL,(k). Then

3. The pairing is symmetric with respect to the action of the Hecke algebra. Suppose
Jor example that T = I'y(N) for some N and that & = (P) is prime to N. Then if
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we define

T.[r,s] = [Pr, Ps] + Z |:

Qmod P

we have

Llrsl f=1I[rs]-T.f.

Proof. We know that the quotient I';(N)\  is a finite graph with finitely many
ends attached and that these ends correspond to the I, (N) equivalence classes of
the rational ends of 7. Since f is T,(N) invariant, the pairing {5 f can be computed
on the quotient tree I'y(N)\ 7. In addition, since f is cuspidal, it vanishes off all but
finitely many edges of this quotient tree. Consequently, the sum involved in comput-
ing the “integral” is a finite sum, and the pairing is well defined.

To obtain the first property, observe that traveling from r to s, and then from s
to t, takes you from r to t. However, there is a unique path from r to ¢ which does
not backtrack. Consequently, adding the first two integrals together yields the sum
of the values of f along the unique nonbacktracking path from r to t, with the
contribution from any other edges canceled out.

The second property simply reflects the fact that the GL, (k) action on the ends
is compatible with the action on the edges, and the third property follows immedi-
ately from the second since T, acts through GL, (k).

In the next section, we explore some of the arithmetic implications of the pairing
between harmonic cocycles and modular symbols.

Modular symbols and the cuspidal divisor group. In this section we employ
techniques of Kurihara ([K]) to relate the pairing between modular symbols and
harmonic cocycles for I' to the group of connected components in the Jacobian of
Xr.

In order to simplify matters, we will restrict the class of I' which we will consider
beyond the restriction imposed in () above. Namely, we now require that, for some
ideal N of A, we have

cither T,(N) = T < T,(N)  orT = I'(N). (+1)

This enables us to consider the most important groups from the point of view of
arithmetic, without worrying too much about unpleasant details.

Our calculations in this section are based on finding the intersection graph of a
regular model for X over the ring R = F,[[1/T]], and then using this graph to
relate the integration pairing to the group of connected components in Jac(Xy). To
simplify the notation somewhat, let G*(I') be the quotient graph I'\ .

Definition 10. Let G(I') be the smallest subgraph of G*(I') = '\ containing
the stable region of G*. Assign to every edge of G(I') the label (or “length”)

w(e) = |Stab(e)|.
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We now describe an adjustment process for the graph G(I'). Suppose e is an edge
of G(I') of length w(e). Subdivide e by adding w(e) — 1 vertices in the middle of it;
this replaces the single edge e of length w(e) with w(e) edges of length 1:

length w(e)
wi(e) I A N
* * = % * * %,

Let G™&(T') be the graph which results from making these modifications to G(I').

PROPOSITION 11.  Assuming that the genus of X is greater than O and that hypoth-
esis (T1) is satisfied, the finite graph G*%(I') is the intersection graph of a regular
model of X1 over R.

Proof. We minic here the proof of the characteristic-zero version of this result,
due to Kurihara. The only slight complication comes from the cusps. We begin by
considering the cases I' = I'(I) or I' = I';(I). Since both of these groups are free from
torsion of order prime to p, the stabilizer of any stable edge is trivial. This obviously
means that G"¥(I') = G(I'). In addition, each of these groups has the property
that the stabilizer of any cusp ¢ consists of the full group of translations z—z + b
for b e J, where J is an ideal of A. This property implies that the stabilizer of an
unstable vertex v fixes one edge adjacent to v and transitively permutes the remain-
ing adjacent edges. Consequently, the quotient of the unstable subgraph 7, of 7
by I consists of finitely many rays of the form

Furthermore, the complement of G(I') in G*(T') consists of finitely many open rays
of the form

* * * *- 0]

where the initial edge is stable. It follows from Lemma 24 of [Tei] that, in the open
curve Y, the set of points which reduce to an open ray of this form is a punctured
open disk, and that in the compactified curve X the puncture is “filled in.” We will
now define a covering of X by affinoids. For each stable edge e in G*(I'), let Uf(e)
be the set of points which reduce to e or its two bounding vertices. In case both of
these vertices are stable, it is clear that U(e) is an affinoid, since U (e) is isomorphic
to a similarly defined subset of Q. If ¢ meets one stable vertex v and one unstable
vertex v’, it is not hard to see that U{e) is the affinoid U(v) reducing to v with one
of the ¢ + 1 “holes” in U(v) filled in by a closed disk. Consequently, U(e) is an
affinoid in this case as well. Our assumption that the genus of X is greater than
zero rules out the possibility of a stable edge meeting two unstable vertices.

Each U(e) has a canonical reduction. If both bounding vertices of e are stable,
then this reduction is two affine lines, punctured at all but one of the rational points
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and meeting with rational tangents at the remaining one. If one of the vertices
is unstable, U(e) is an affine line punctured at all but one of the rational points.
Consequently, the formal scheme associated to Xy is regular and has intersection
graph G*¢(I") = G(I), and algebraization ([D1]) gives a regular model for X with
intersection graph G.

To finish our work, we must consider the case where I' contains I'; (N), but is
not free from torsion of order prime to p. Here we follow Kurihara ([K]). Since
H =T'/T;(N)is of order prime to p, we obtain a model for X by taking the quotient
of X, (N) by H, and the resulting model will have intersection graph H\ G(I'), which
we label with the orders of the stabilizers. Then it follows from Kurihara’s work that
resolving the quotient singularities introduced by H leads to a model with graph
G™&(I") obtained by subdividing the edges of G(I';(N)) in the way that we have
described.

We will apply our construction of a regular model for X in order to obtain
information about the group of connected components of the Neron model of its
Jacobian, and to relate this group to modular symbols.

LemMmA 12.  Let Ci3¥(I') be the integer-valued harmonic functions on the edges of
the graph G™&(T') and let ®(T') be the finite group of connected components of the
Neron model of Jac(Xy). Then there is an exact sequence

0—-H,(G™(I), Z) L Hom(CiE(IN), Z) - ®(I') - 0.

If x is a cycle in G™E, one evaluates h(x) on a harmonic function [ by summing the
values of f on the edges in G™® which make up x.

Proof. This is easily seen to be equivalent to Raynaud’s formula for ®([R]).

In order to relate @ to modular symbols, we proceed in two steps. First, we recover
the I'-invariant, cuspidal harmonic cocycles from certain functions on the subgraph
G(I') of '\ 7; then we relate these functions on G(I') to functions on G™#(I').

The first step of this program is quite simple. Let C be the space of alternating
functions on the edges of G(I') which satisfy the relation

y L

fley=0. @

e W(e)
(Here, as usual, the sum is over the oriented edges e meeting v.) A function in C
can be extended by zero to give a function on the edges of I'\ 7 and then pulled
back to the edges of 7. It is easy to see that this gives an isomorphism between C
and C,,(T, Z).

The second step in our program is to relate the functions on G(I') satisfying
equation (2) to the harmonic functions on G*#(I'). The graph G"%(I') is obtained
from G(I') by subdividing some edges. Therefore, an integral-valued function f on
G(I') gives rise to a function f on G™&(I") which takes values in Q. This function f
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is defined by setting f = 1/w(e) on the w(e) edges of G**¢(I') obtained from sub-
dividing an edge e of G(I). It is clear that if f satisfies equation (2), then f will be
harmonic in the usual sense on G™¢.

LEMMA 13.  The map [ f is an isomorphism.

Proof. Itisclear that fi— f is an isomorphism for Q-valued harmonic functions;
to prove that the isomorphism is defined over Z it suffices to show that, if f is a
cuspidal harmonic cocycle for T, then f(e) is divisible by w(e) = |Stab(e)| for every
stable edge e of 7. We know that the stabilizer of e is GL,(F,[T])-conjugate to a
subgroup of the group of diagonal matrices. This implies that, if y stabilizes e, then
y also stabilizes two cusps, and therefore y stabilizes an entire modular symbol.
Indeed, we can say even more. Choose an e such that y # 1 generates its stabilizer
and let ¢’ be an edge adjacent to e, oriented along the path fixed by y. Then 7 fixes
e’ and e but does not fix any of the other edges, leaving the common vertex of e and
e’. If f is harmonic, then one must have f(e) = f(e’) (mod |Stab(e)|). Therefore, f
is constant mod |Stab(e)| along the entire modular symbol determined by 7. Since
f is cuspidal, however, f is eventually zero along this path, and therefore f(e) is
divisible by w(e) = |Stab(e)|. This proves the lemma.

If we combine the various elements of this analysis with what we already know
about the relationship between the homology of I'\J and My, we obtain the
following result.

THEOREM 14. Suppose that T satisfies our hypothesis (11). Then the “integration”
pairing between modular symbols and cuspidal harmonic cocycles induces exact
sequences

MQ - Hom(C,, (T, Z), Z) > ® - 0
and
MI‘ - Hom(char(r5 Z)a Z) - (I)/(I)c“sp - 0

where ®°**P is the subgroup of ® generated by the cuspidal divisors. The kernel of the
first map is the torsion subgroup of M.

Proof. The first exact sequence follows from Lemma 12 after substituting the
appropriate groups into the exact sequence of that lemma and checking that the
integration pairing induces the map h. Since the map from M°(T') factors through
H,(I'\ 7, Z), the kernel is precisely the torsion group. To obtain the second exact
sequence, observe that an element of M- joining two cusps r and s will map to the
path in G™# which joins the components where the corresponding cusps reduce.
Raynaud’s theorem ([R]) tells us that this is precisely the image of (r) — (s) in .

We may apply this result to obtain a version of a theorem of Manin and Drinfeld
([D2]) in the function field situation.
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THEOREM 15. Let F be a monic polynomial in F,[T] and let T = I'y(F). Suppose

that = € F,[T] is a prime polynomial of degree d such that m = 1 (mod F). Then
1 + g% — T, kills ®°*?(T").

Proof. By Theorem 14, it suffices to show that
(1 +q%— T,)[0,a] € M2.

We compute that

a+x
(1 +4¢"~T)[o,a] = [na,a] + }, [ - ,a]
xmodn
However, by an elementary calculation, each of the modular symbols appearing on
the right-hand side of the above expression does in fact belong to M?.

Of course, this result is much weaker than Manin’s and Drinfeld’s results in the
classical case. In the classical case, the calculation we have made in the proof of this
theorem shows that the endomorphism %, = 1 + ¢¢ — T, actually kills the divisor
class(a) — (o). This was sufficient to prove that the cuspidal divisors on the classical
modular curves are of finite order ([D2]). Gekeler ([Gek1]) has proved that the
cuspidal divisor classes are of finite order using methods of Kubert and Lang. Our
method suffices to prove only that #, carries (a) — (o) into the connected compo-
nent of the Neron model of the Jacobian of X- at the infinite place of F(T). This
is an inherent limitation of the modular symbols in the function field case and
reflects the fact that the upper half-plane Q is not simply connected. This means
that a large part of the cohomology of X is not “visible” on the tree 7.

It would be interesting to understand the group

Cusp®(I') = J°(X1) n Cusp(T)

of cuspidal divisor classes lying in the connected component of the fiber of the
Jacobian of X above the place at infinity of k. If N is of degree three, it is not hard
to show by the calculations in [Gek2] that Cusp®(I,(N))is trivial. However, I have
no information on more general cases.

This concludes our discussion of modular symbols and the cuspidal group. In the
next section, we will describe explicit generators and relations for My, which can
be used for calculations.

Generators and relations for modular symbols. In this section we describe the
space of modular symbols in a form which is eminently suitable for calculation and
completely analogous to the original description of Manin for the classical symbols.

Suppose that
_fa b
9=\, d
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is a matrix in GL,(A). Then we define “basic” modular symbols
(9) = [¥(o0), y(O)] = La/c, b/d].
This construction extends by linearity to yield a homomorphism
$: Z[GL,(4)] > M.

LEMMA 16. The map ¢ is surjective.

Proof. This is proved exactly in the classical case and is a simple consequence
of the Euclidean algorithm. Namely, every symbol can be written as a sum of
symbols of the form [r/s, co] where r and s are relatively prime elements of F,[T].
We proceed by induction on the degree of s. If s has degree zero, then [r/s, c0] = (g)

where
(T 1
9= s O

Otherwise, we may find a polynomial s, of degree less than s which solves the
congruence rs; = 1 (mod s). If we set r; = (rs; — 1)/s, we find a matrix g so that

g= (’ ") e GL,(F,[T])
S S

1

and [r/s, 0] = (g) + [r,/s,, o0]. Since s, has smaller degree than s, the symbol
[r./s;, oo] is in the image of ¢. By induction, ¢ is surjective.

Let I be the left ideal of Z[ GL,(F,[T])] which annihilates the modular symbol
[oo, 0. It is clear that [ is precisely the kernel of the map ¢. By finding explicit
generators for I, we will be able to find all of the relations among the modular
symbols.

Before beginning this calculation, let us recall some facts about the action of
GL,(A) on 7. (See [Se], as usual, for the details.) The quotient of the tree by
GL,(A) is an infinite ray. We may number the vertices in this ray with successive
nonnegative integers, the origin being labeled with 0. The “type” of a vertex v of 7
is the index assigned to the equivalence class of v in GL,(4)\ 7. This labeling has
the property that, if v is of type 0, then all adjacent vertices are of type 1. If v is of
type n > 0, then v has g adjacent vertices of type n — 1, and one adjacent vertex of
type n + 1. In addition, the stabilizer of a type 0 vertex is conjugate to GL,(F,), and
by choosing one type-0 vertex we may identify the set of all type-0 vertices with the
coset space

% = GL,(A)/GL,(F,).
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Any path of the form (g) for g € GL,(4) is GL,(A) equivalent to [co, 0] and
therefore passes through a unique vertex of type 0. Conversely, suppose we pick
a vertex v of type 0 and ask for the modular symbols [r, s] which pass through v
and no other vertex of type O. It is not hard to see that such a symbol is entirely
determined by choosing two vertices v’ and v” adjacent to v. The path from v’ to v”
can be extended in only one way to a path joining two rational ends and having v
as its only vertex of type 0; this path must then be of the form (g). Since we may
identify the vertices adjacent to v with P{.-q, there is a well-defined map

. @y DIVO(PE) > M.

Lemma 17. The map 1 is an isomorphism.

Proof. The surjectivity of i follows from Lemma 16. To see that 1 is injective, we
will construct an inverse x to it. Let m be an element of M, viewed as a labeled
subtree of . This labeled subtree determines uniquely a divisor of degree zero on
the projective line of edges leaving each vertex of type 0; if we call this divisor x,(m),
then it is clear that @), x,, is an inverse to .

A more canonical interpretation of this lemma is given in the following corollary.

CorOLLARY 18.  The GL,(A) module M is induced from GL,(F,). In fact,
M = Indgr2(g), Div° (P}, ).
Let us now apply our results on the structure of M to constructing relations for

modular symbols.

COROLLARY 19.  Let I be the ideal in Z[GL,(F,)] which kills the divisor (c0) — (0)
on Py (in the usual projective action). Then I = Z[GL,(A)1l,.

Proof. Suppose that x € I. Write x in the form

Y. 9%,

ge ¥
where x, € Z[GL,(F,)]. Then the modular symbols gx,[cc, 0] correspond to

elements of Div°(Pi~q) coming from different type 0 vertices; consequently each
gx,[c0, 0] = 0. This means that x, € I,.

The preceding lemma reduces the problem of determining the ideal I to that of
determining the ideal I;,. The next lemma carries this out.

LemMa 20. The ideal 1 is generated by the following elements:
1. the set of elements of the form 1 — d, where d € GL,(F,) is a diagonal matrix;
2. the element 1 + w, where
p— 0 - 1 .
"o (1 0)’
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_ 01
TA\-1 1)
Proof. Let J be the ideal generated by the given elements. Clearly J < I,,.
Suppose a = Y n,7 belongs to I,. Define I(a), the length of g, by the formula

3. the element 1 + t + t2, where

l@y=3 |n].

We will reduce I(a) to 0 mod J. We begin by using the second relation above to
arrange things so that, if n, # 0, then n,,,; = Ofor all 4. Now pick some t with n, # 0.
Suppose that

(t(0)) — (z(0)) = (x) — ()

Then there must be some other ' with n,, # 0 so that

(¥'(e0)) = (@(O0) = () - (2.

The point (z) must be different from (x) since we have already assumed that
7’ # twd. Pick y € GL,(F,) so that y(x) = o0, y(¥) = 0, and y(z) = 1. Then we have
the equations

77 ((00) — (0)) = (0) - (0),
1’ ((00) = (0)) = ¢ ((0) — (0)).
We conclude that y7 = d and yt' = td’ for diagonal matrices d and 4'. Consequently,
asa—t—1v —y* (modJ).

But the element on the right-hand side of the above equation has smaller length
than g, since we deleted two terms but only added one. Therefore, by repeating this
procedure, we can eventually write a directly as an element of J.

IfT" is a congruence subgroup of GL,(4), then we know that the action of I" on
the modular symbols (g) is given very simply by the rule y(g) = (yg). Consequently,
taking the action of I" into account, we have the following presentation of My by
generators and relations.

THEOREM 21. The group Mr of modular symbols fdr I" is isomorphic to the
quotient of the free abelian group Z[T'\GL,(A4)] by the relations
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(9)—(gd)=0 (d a diagonal matrix),
(9) + (gw) =0,
(9) + (gt) + (g£*) = 0,

where w and t are the matrices in the statement of the preceding lemma.

Just as in the classical case, these relations can be applied quite simply in practice.
To illustrate this, let us work out the case where I' = I'(N), and N is a monic
irreducible polynomial over F,. Our notation for this calculation was suggested by
Cremona’s work in the classical case ([Cr]).

Suppose that a and b are relatively prime polynomials in F,[T]. Let M(a, b) be
the coset

M(a, b) = Ty(N) (" ”)
a b

in Ty (N)\GL,(A) for any polynomials u and v such that ub — va € F}. It is easy to
see that every coset can be represented in this way, independently of the choice of u
and v. Indeed, if u’ and v’ are another set of polynomials satisfying u’b — v'a € F},
the fact that a and b are relatively prime means that zu’' — u = ax and zv' — v = bx
for elements z € F} and x € F, [ T]. From this it follows easily that the matrices with
a and b in the bottom row and either u and v or u’ and v’ in the top row are
equivalent. It is also not hard to check that two cosets M(a, b) and M(a’, b’) are
equal if and only if there is a polynomial A € A which is prime to N such that

(Aa, Ab) = (a', V") (mod N).

From our results above, we conclude that the space M(Z) of modular symbols
is the quotient of the free abelian group on the M(a, b) of rank g™ + 1 by the
relations

M(a, by — M(da,d'b)=0  ford, d e F¥,
M(a, b) + M(—b, a) =0,
M(a, b) + M(~b, a + b) + M(—a — b, a) = 0.

These relations can be manipulated quite simply in practice; we work out an
example for ¢ = 7 and N of degree three in the next section.

Applications.

A numerical example. In this section we will work out a numerical example
which will serve to illustrate the applications which we will describe later in the
paper. We will set g = 7and N = T? — 2. The Hecke module structure of the space



288 JEREMY T. TEITELBAUM

of modular forms for I = T';,(N) has been worked out by Gekeler, in [Gek2], by
different techniques. Our discussion of this case will highlight the differences in our
methods. In some places we will be able to extend Gekeler’s results, while in others
we will rely on his more detailed study.

In addition to these calculations, which duplicate Gekeler’s in most essentials, we
have carried out similar calculations for other primes, and conductors of degree
larger than 3. We will describe the details of these calculations in another paper.

We begin the calculation with 344 coset representatives M{a, b) for T;,(N). Up to
equivalence, these are M(1, 0) and M(x, 1) as x runs through representatives for
F,[T]/N. Applying the relations M(a, b) = M(da, d'b) for d, d’ € F}, we reduce the
number of representatives to 58, consisting of M(1, 0), M(0, 1), and M(x, 1) for x
monic. Using the two term relation M(a, b) = — M(—b, a), we see that M(1,1) =0,
that M(1,0) = — M(0, 1), and that the remaining 56 representatives are grouped in
pairs; thus we have reduced the number of independent symbols to 29. When we
apply the three-term relations, the space of symbols is reduced to an 8-dimensional
space. Conveniently, this space is represented by elements

{MO, )} U{M(T +a,1):aeF,}.

Once we have this basis of “fundamental” symbols, we can compute the action of
the Hecke algebra. For example, let T, be the operator associated to the prime
7 = (T). Then we find the following matrix for T, in the basis above:

§ 0 0 0 0 0 0 0]
-6 -7 —6 —6 -8 —6 —8§ -8
0 2 2 0 2 0 2 0
0 2 0 2 2 0 0 2
o 0 2 2 2 0 1 1
o 2 0 0 0 2 2 2
o 0 2 o0 1 2 2 1
0 0o o 2 1 2 1 2]

The characteristic polynomial P,(u) of this matrix is
P(u) = (u + 4)(u — 8)(u? — 3u — 2)°.

By Theorem 14, we know that the space of cusp forms (with values in Q) is the linear
dual of the space M2 of “closed” modular symbols. In terms of our basis, the group
of closed symbols M? is spanned by the M(T + a, 1). Of particular interest is the
cusp form f with f(M(0, 1)) = 2, and other values defined by the following table.
This cusp form is an eigenvector for T, with eigenvalue —4.

a=-3-2-10123,

G)
SM(T + a, 1)) =

2 2 34223,
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By Drinfeld’s theorem, this cusp form corresponds to an elliptic curve E over F (T)
with conductor oo - N. Using Gekeler’s tabulation of such curves ([Gek2]), we see
that the equation of E is

yr=x% — 3T(T? + 2)x + 2T6 — 373 — 1.

Besides finding rational eigenvalues, our method is suitable for studying the
higher genus components of the Jacobian of X,(N). For example, if we compute
the action of T, for the prime p = (T 4 1), we see that this piece is irreducible of
dimension 6 over the Hecke algebra. Indeed, the characteristic polynomial of T, on
Mp, factored over Q, is

Pw) = (u—2)u® + 3u® — 22u* — 51u® + 94u® + 40u — 64)

showing the elliptic factor and the degree-six factor.
I do not know the exact ring generated by the Hecke operators in this case.

Modular symbols and L-series. In this section we relate modular symbols to
values of L-functions. Our goal is the analogue of Birch’s formula, which gives a
formula for the special value of the L-functions of a twist of an automorphic form
in terms of modular symbols [Maz3]. We will base our computations on Mazur’s
construction of the “modular element.”

Let us fix a level N and consider modular symbols and harmonic cocycles for
IH(N). Suppose that y is a primitive Dirichlet character for F,[ T] of conductor F,
relatively prime to N, and trivial on F}. In addition, to simplify the notation
somewhat, let [r/s] denote the modular symbol [r/s, c0].

Definition 22. The universal special value A(y) € Moy, (C) is defined to be

AR = ¥ @ [l%]

amod F
a monic

The universal special value plays exactly the same role in the function field case
as the analogous expression does for the usual modular symbols. The following
theorem illustrates this.

THEOREM 23. Let f be a cuspidal, complex-valued, harmonic cocycle for T,(N).
Suppose that f is an eigenvector for the Hecke algebra. Let y be a nontrivial Dirichlet
character of conductor F for F,[T] which is trivial on F}. Then

L(f, % 1) = ©AG0) - f

where L(f, y, s) is the L-function associated to f twisted by y, and t, is an appropriate
Gauss sum. (For the precise definition of this Gauss sum, see [TR, p. 6].)
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Proof. The proof of this theorem is an exercise in change of notation. We leave
it to the reader to verify that Proposition 1 and equation 3.4.8 of [TR] together
imply, in our notation, that

SLfph= Y ﬂ@J;L

amod F
amonic

which is precisely the statement of the theorem.

The case where y is trivial requires somewhat special handling; in this case (as
pointed out in [TR]), we have

W= [ @

Let us apply this discussion to the numerical example we have already considered.
Once again, we take g = 7 and N = T?® — 2. In equation (3), we gave a numerical
description of an eigenform f for the Hecke operators on I'y(N) corresponding to
a particular elliptic curve. Since f(M(0, 1)) = 2, we see from equation (4) that

L(f, 1) = 1/3.

Perhaps the best way to view this is as a normalization, since the harmonic cocycle
f is determined only up to multiplication by an element of Q.

In Table 1, we tabulate the special values A(y): f for the quadratic Dirichlet
characters which are trivial on F} and have conductors of degree 2, in those cases
where the functional equation does not force A(y)- f to vanish. In this table, the
values of 3 reflect the three components of the elliptic curve E at the prime N, and
the values of 12 ought (by the Birch and Swinnerton-Dyer conjecture) to imply the
existence of a Tate-Shafarevich group of order 4.

Distributions arising from modular symbols. Suppose that f is a harmonic co-
cycle which represents a new form with rational eigenvalues for I';(V). Suppose that
7 is a prime polynomial which divides N exactly once and that f is an eigenvector

for the operator
1 a
= *
T.f(e) mgldnf«o n) e) *
with eigenvalue 1.

Let @, be the ring of integers in the n-adic completion of F (T). It follows from
equation (*) that the function

uw+nwa=[$]f
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TaBLE 1. Values of A(y,,)" f

m Al f

1 3
T2-2T+3 3
T2 +2T-2 3
T2 —-3T—-1 3
T2+ T-1 12
T2+ T-3 3
T?+2T+2 3
T2 +2T+3 12
T>+T+3 3
T2 +3T-2 3
T2-3T-2 12
T2 —-3T+1 3
T2-T-—1 3

is a Q-valued distribution on the compact opens in ¢,. Furthermore, by Theorem
14, the denominator of this distribution is bounded. Similar distributions have been
studied by Galovich and Rosen [Ga]. In the classical case, Mazur and Swinnerton-
Dyer ([MSwD]) showed that analogous distributions can be integrated against
{x)* to obtain a p-adic L-function. The existence of this measure in the function
field setting suggests the existence of an L-function, although a straightforward
translation of the classical ideas is blocked by the lack of a logarithm in characteris-
tic p. Nevertheless, recent work of Goss ([Go3]) gives some indication of how such
a function might be constructed. We will not pursue this issue here, but we hope to
return to it in a later paper.

Even though we do not yet know the correct L-function arising from the distribu-
tion u, we can pursue the formal similarity with the classical case to state a “modular
symbols” version of a conjecture derived from the L-function which avoids any use
of logarithms.

To study this conjecture, return now to our eigenform f of level N and our selected
prime polynomial = which exactly divides N. The function f corresponds to an
elliptic curve E( f) over F,(T) having totally split reduction at co and at =. The curve
E(f) therefore has a Tate multiplicative period g(E) at the place =. In the classical
case, the “exceptional zero conjecture” of [MTT] claims a relationship between this
g and a certain expression in modular symbols. This conjecture has been proved by
Greenberg and Stevens, and a function field version of it has been proposed by
Mazur. This function field version has in turn been studied by Tan ([Tan]), who
obtains some theoretical results. Tan and Rockmore ([TR]) have recently obtained
numerical evidence for the function field conjecture. Our contribution to the func-
tion field version of the exceptional zero conjecture is a formal consequence of the
existence of the measure u above, and amounts to giving a characteristic p version
of the multiplicative formula for g(E) in [MT, p. 712]. In addition, our method easily
lends itself to the collection of computational data, yielding an alternative to the
methods of Tan and Rockmore.
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Let us define

m, = ord,q(E),

q(E)
™’

q:

and

g(f)=lm [] b,

n—o0 a mod %
(a,m)=1

Then the function field version of the refined Birch and Swinnerton-Dyer conjec-
ture can be stated

3 = gy

exactly as in [MT, loc. cit].
If we apply our numerical results for N = = = T — 2 and g = 7 in our situation,
we find that

q(f) = 2 (mod ),
g = —1 (mod 7).
We can also check that, for the elliptic curve E(f), we have m, = 3. Since

a(f)’=q*  (mod7),

we see that our conjecture holds mod =. This is admittedly not very satisfying, but
we hope it is illustrative.

Congruences. In his original work on modular symbols, Manin observed an
important congruence. For example, he found that the values of the modular
symbols [a] for X,(11) depended only on a mod 5. Mazur later showed the relation-
ship between the Eisenstein ideal and this congruence, and proved it as part of his
study of the Eisenstein ideal. In this section, we will make Manin’s observation and
raise the hope that Mazur’s proof will be carried over to the function field case.

Consider once again our form f associated to the elliptic curve E of conductor
N = T3 — 2 with g = 7. Gekeler has shown ([Gek4]) that the cuspidal group on
the curve X is of order 57 = (3)(19). One expects 3 to function as an “Fisenstein
prime” for f, and indeed one can confirm from the equation of E that E has a rational
point of order 3.
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Following a course suggested by Manin in the classical case, let R be the subring
of F(T) of rational functions with denominators prime to N. Define a function
h: R* - Z/3Z by setting

h(x)=[x]"f (mod 3).

Then by direct calculation using the modular symbols for f (which we have supplied
above), one can check that & (apparently) depends only on x mod N. Indeed, h
appears to be homomorphism from (R/N)*/F#, which is a cyclic group of order 57,
into Z/3Z.

A somewhat more exotic congruence of this type arises from the case ¢ = 3 and
N = T? — T + 1. Here (as Gekeler showed first) the Hecke algebra T is a simple
algebra; in fact, it is the ring of integers in the cyclic cubic field

Qx1/(x®+x*—dx+ 1)

of discriminant 169, with the Hecke operator associated to the prime = = (T) acting
as x. There is only one newform f with T, f = xf. In this case, Gekeler shows that
the cuspidal group is of order 13, and therefore the Eisenstein prime P is the ideal

P=(13,4 —x) < S =Z[x]/(x® + x* — 4x + 1).

We extend the integration pairing to take values in S. If we let R be the local ring
at N in F (T), we may construct a map

(R/N)*/F 5 (S/P) = Z/(13)Z,

h(x) = [x]-f.

We have checked numerically that this map is an isomorphism between Z/(13)Z
and the cyclic group (R/N)*/F.

In the classical case, the homomorphism 4 has an interpretation as a sort of
“reciprocity law.” ([Maz2, Proposition 18.8]). Because of the strong analogy be-
tween the classical and the function field situations, developing Mazur’s Eisenstein
ideal machinery for Drinfeld modular curves should enable one to construct a proof
of the preceding congruence in the function field case as well. This is clearly a difficult
but important problem in the theory of Drinfeld modular curves.

Conclusions. We hope that our discussion of modular symbols for F,(T) illus-
trates that they may be as useful in the function field setting as in the classical one.
We also feel that we have raised many more questions than we have answered. Some
questions we have in mind are:

1. What can be done with modular symbols for the general class of Drinfeld

modular curves—for example, if the fixed “place at infinity” has degree greater
than one, or if the field F (T) is replaced by a more general function field?
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2. What is the correct arithmetic interpretation of the distributions we have
described?

3. Where are the “odd” modular symbols?

4. Can one prove Mazur’s results about the Eisenstein ideal in the setting of
Drinfeld modular curves, and thereby prove the congruence we have discussed
above?

Besides these theoretical questions, we now have a rather general technique for
gathering numerical data about elliptic curves and automorphic forms over func-
tion fields. The tables in the Antwerp IV volume ([MF4]) have become a standard
reference; computing similar tables for function fields using modular symbols is
clearly an important computational project.

[Br]
(€]
D1
[D2]
[Gekl]
[Gek2]
[Gek3]
[Gek4]
[Ga]
[Goi]
[Go2]
[Go3]
[JL]
[X]
[Man]
[MF4]
[Maz1]
[Maz2]

[Maz3]
[MSwD]
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