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Abstract

In this thesis we develop and present algorithms for two-descent and descent

via two-isogeny on elliptic curves over function fields of the form Fq(T ). The

approach taken requires several sub-algorithms to be developed in the function

field case: for solving genus zero curves, local solvability testing of homoge-

neous spaces and searching for points on everywhere-locally-solvable homoge-

neous spaces. The latter requires the notion of basis reduction for polynomial

lattices, building on similar approaches taken over Q using LLL basis reduction.

The algorithms presented here have all been implemented in a computer algebra

package, Magma.
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0.1 Introduction

A well known problem in number theory is to develop ways of calculating the

rank, Mordell-Weil group or finding points on elliptic curves. Two such methods

for doing this are two-descent and descent via two-isogeny. These methods are

already very well developed for elliptic curves over the rational numbers and

much has also been accomplished for when the base-field is a number field.

But there is another direction in which the descent methods can be extended

which has seen much less work than other cases: when the base field of an elliptic

curve is a function field. It is the purpose of this thesis to establish a basis for

further study in this area. The algorithms for two-descent and descent via two-

isogeny require many sub-algorithms during the course of their application, and

these must therefore also be developed in this new setting.

There are subtle differences in the theory behind these many algorithms.

Some (e.g. deciding local-solvability of homogeneous spaces) require not too

much extra work to adapt them. Others however (e.g. lattice basis reduction

or conic solving) need new techniques and theory to be developed.

Once all the “smaller” algorithms that form the building blocks of the descent

algorithms are established, we can put them all together and use them to find

the rank and Mordell-Weil groups of elliptic curves over function fields, and this,

as will become clear from the content of this thesis, is what has been achieved

with explicit worked examples given in many cases throughout.

The algorithms formulated and presented in this thesis have all been imple-

mented in the computer algebra package Magma [Mag] (by the author in most

cases) and it is hoped that these programs will be included in future releases of

the software.
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Chapter 1

Background on function

fields

1.1 Definitions

A rational function field in one variable (univariate) over a field F is the field

of fractions of the polynomial ring F [X ]. Let K denote this function field.

Elements of K are rational-functions in X over the base field F . A typical

element f = f(X) ∈ K has the form f(X) = P (X)/Q(X) where P and Q are

polynomials in X with coefficients in F (notation: K = F (X)). For the rest

of this thesis, unless otherwise specified, “function field” will be taken to mean

“rational function field”. An element P (X) of F [X ] is written uniquely in the

form P (X) = a0 + a1X + a2X
2 + · · · + adX

d where ai ∈ F and ad 6= 0. The

positive integer d is called the degree of P and ad the leading coefficient of P .

If the leading coefficient of P is equal to 1 (in F ) then P is said to be monic.
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Function fields of more than one variable are the fields of fractions of multi-

variate polynomial rings (denoted K = F (X1, X2, . . . , Xn)), however they may

be thought of as univariate function fields in the following way: an element

f ∈ F (X1, . . . , Xn) has the form P (X1, . . . , Xn)/Q(X1, . . . , Xn). The polyno-

mials P and Q can be written in the form a0 + a1Xn + a2X
2
n + · · · + akX

k
n

where ai ∈ F (X1, . . . , Xn−1) for 0 ≤ i ≤ k. Conversely a rational function in

Xn with coefficients in F (X1, . . . , Xn−1) can clearly be written as an element

of F (X1, X2, . . . , Xn).

We therefore can conclude the following useful fact:

Let F be a field. Let X1, . . . , Xn be all the variables of a polynomial ring

over F . Denote by Ki (1 ≤ i ≤ n) the function field F (X1, . . . , Xi). Then if

2 ≤ k ≤ n:

Kk = Kk−1(Xk). (1.1)

This is useful from a programming perspective: if there exists an algorithm

that provides the solution to problems that are intrinsically linked to fields (e.g.

finding points on curves over a field), then to generalize to multivariate function

fields the problem reduces to finding a solution in the univariate case that is

dependent on there being a solution over the base field. If this is the case then

problems over F (X1, . . . , Xn) can be reduced to problems over F , for which

there are often easy or already well-established solutions. An example of this is

the conic solving algorithm (see chapter 5) in which the solution is generalized

inductively to the multivariate case after reducing the problem of finding points

over F (X) to finding points over F .
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1.2 Primes and factorization in F [T ]

When working with curves etc over univariate function fields, the polynomial

ring F [T ] plays a similar rôle to the integers in the rational case, and many useful

properties of Z have analogues in F [T ] (see [Ros]); one of the most notable is

the existence of prime elements and unique factorization. Unique factorization

follows from F [T ] being a Euclidean domain (and thus a principal ideal domain).

The unit group of F [T ] is simply F ∗. In Z, the unit group is {−1, 1} and

its finiteness is important in many algorithms. In order to be able to formulate

equivalent or analogous algorithms in the function field setting, we require in

many cases that F [T ] has a finite unit group. This means that F needs to be a

finite field. We therefore will see that a closer analogue to Z is Fq[T ] where Fq

denotes the finite field of q = pn (p prime) elements.

Before we can say that F [T ] is a unique-factorization-domain we must first

define what is meant by a prime element.

Definition. A prime element in F [T ] is a monic irreducible polynomial of positive

degree.

By irreducible we mean that a polynomial cannot be factorized into two or

more polynomials of smaller (positive) degree.

Choosing monic polynomials in the definition is for convenience - a prime is

actually unique up to multiplication by any element of the unit group F ∗ (in

the same way as 2 and −2 represent the same prime in Z). With the above

definition of a prime element we now conclude the following:

Every non-zero element P of F [T ] can be written uniquely in the form

P = αP e1
1 P e2

2 · · ·P ek

k (1.2)
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where α ∈ F ∗, Pi is monic and irreducible for all i, Pi 6= Pj for i 6= j and

each ei is a positive integer and k ≥ 0. More generally, if f ∈ F (T ), then

f = αP e1
1 , . . . , P ek

k (ei ∈ Z).

1.3 Valuations on F (T )

1.3.1 The ordp function

For every prime p in F (T ) we may define a function ordp : F (T )∗ −→ Z in the

following way:

We begin by writing a non-zero element f of F (T ) in the form

f = α · P
a1
1 P a2

2 · · ·P ar
r

Qb1
1 Q

b2
2 · · ·Qbs

s

(1.3)

where α ∈ F ∗ and the Pi and Qi are all distinct prime elements of F (T ). Then:

ordp(f) =























ai if p = Pi

−bi if p = Qi

0 otherwise

(1.4)

ordp has the following properties:

1) ordp(f) = 0 for all f ∈ F ∗

2) ordp(fg) = ordp(f) · ordp(g)

3) ordp(f + g) ≥ min{ordp(f), ordp(g)} with equality if ordp(f) 6= ordp(g).

The domain of ordp can be extended to include zero if we introduce the symbol

∞ with the property x < ∞ for all x ∈ Z. Then defining ordp(0) = ∞, the

function now satisfies the above properties over all of F (T ).
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1.3.2 The ord
∞

function

We can define another important valuation on F (T ) which is not associated to

any of the primes in F [T ]. This valuation indicates how a function f ∈ F (T )

behaves “at infinity” (regarding f as a function on P1(f)) we can define the

valuation, which we call ord∞ as follows:

Definition.

ord∞(P (T )/Q(T )) = deg(Q) − deg(P ) (1.5)

where P and Q are polynomials in F [T ].

It is a simple exercise to show that ord∞ satisfies the same conditions 1-3

above that are satisfied also by ordp.

It can be shown that calculating ord∞(f(T )) is the same as looking at how

f(1/T ) behaves at zero, i.e ordT (f(1/T )):

Proposition 1. Let f(T ) be an element of the function field F (T ). Then

ord∞(f(T )) = ordT (f(1/T )).

Proof. First we make the observation that for any non-zero polynomial P (T ) of

degree d, the polynomial T dP (1/T ) has non-zero constant term, since

P (T ) = a0 + a1T + · · · + adT
d ⇒ T dP (1/T ) = ad + ad−1T + · · · + a0T

d

i.e. evaluating P at 1/T and multiplying by T deg(P ) simply reverses the coeffi-

cients. From this we see that ordT (T dP (1/T )) = 0.

Any f ∈ F (T )∗ can be written as f(T ) = P (T )/Q(T ) where P and Q are

non-zero polynomials. It follows that

f(1/T ) = T deg(Q)−deg(P ) · P
∗(T )

Q∗(T )
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where P ∗ and Q∗ are the reverse-coefficient polynomials of P and Q respectively.

Hence

ordT (f(1/T )) = (deg(Q) − deg(P )) + ordT (P ∗) − ordT (Q∗).

Therefore ordT (f(1/T )) = (deg(Q) − deg(P )) = ord∞(f).

1.4 Completions of Fq(T )

In subsequent chapters it will become necessary to determine whether or not

certain curves over Fq(T ) contain any points. One method of showing that no

points exist on a particular curve is to prove that it is not locally solvable - that

is, it has no points over the completion of Fq(T ) at a valuation v = ordp or

v = ord∞. Some explanation on the completions of Fq(T ) and associated maps

is therefore necessary.

Notation: K = Fq(T ), R = Fq[T ].

Definition. The residue degree of a valuation v on K is deg(p) if v = ordp for a

monic irreducible p. If v = ord∞ then the residue degree of v is equal to 1.

If a valuation has residue degree d, then the corresponding residue field is

Fqd .

Proposition 2. Let v be a valuation on K with residue degree d. The comple-

tion of K at v is isomorphic to L = Fqd((U)). That is the formal Laurent series

field in one variable, U over Fqd . The embedding i : K →֒ L is given as follows:

• if x ∈ Fq then i(x) = x (considering Fq as a subfield of Fqd).

• if v = ordp for a monic irreducible p(T ) then i(T ) = U +α where α ∈ Fqd

is a root of p.
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• if v = ord∞ then i(T ) = U−1.

Moreover, when d > 1, L is also the completion of Fqd(T ) at the valuation

ordT−α.

Proof. Let L be the completion of K. L then has the following properties:

• K ⊆ L and K is dense in L

• L is complete with respect to a discrete valuation v, extending that on K

• L has valuation ring OL and maximal ideal mL

• the residue field OL/mL is Fqd (completion does not change the residue

field).

Consider the case d = 1. If v = ordT then the completion of K at v is clearly

isomorphic to Fq((U)) with the obvious embedding T 7→ U . If v = ordT−α for

some α ∈ Fq then the completion is still Fq((U)), this time with the embedding

T 7→ U + α so T − α maps to U .

If v = ord∞ then we reduce to the previous case after applying the map

Fq(T ) → Fq(U) via T 7→ U−1.

Now consider the case v = ordp for some monic irreducible polynomial p ∈

Fq[T ] of degree d. We can regard K as a subset of L via its embedding in

its completion, so v(T ) ≥ 0 ⇒ T ∈ OL. T then reduces to an element α of

OL/mL = Fqd . Hence p(T ) maps to p(α), but since v(p(T )) > 0, we have

p(α) = 0 in Fqd . Thus L contains a root α of p(T ). Note also that Fqd = Fq(α)

so:

K = Fq(T ) ⊆ Fqd(T ) ⊆ L. (1.6)

The restriction of v to Fqd(T ) is a valuation of that field in which v(T −α) > 0.

This can only be ordT−α. From the definition of completeness we see that L is
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also the completion of Fqd(T ) with respect to ordT−α. We are now in the case

d = 1 and the result is proved.

Corollary 3. Let C be a curve over K = Fq(T ) and v = ordp be a valuation

on K of residue degree d. Let C′ be the same curve over K ′ = Fqd(T ) (after

extending the base-field). Let α be a root of p in Fqd . Let v′ be the valuation

ordT−α on K ′. Then C is locally solvable at v if and only if C′ is locally solvable

at v′.

Proof. K and K ′ both have common completion L at v and v′ respectively,

therefore both statements mean the same thing, namely that C(L) 6= ∅.

1.4.1 Application to local-solvability

The above corollary is useful when implementing an algorithm to determine

certain local properties of a curve over a function field, in particular whether

it contains any points after a base change to the completion of its base field

(local-solvability). Instead of having to work with higher degree primes p we

can simply extend the “constant” field Fq to include a root α of p and work over

the residue field Fqdeg(p) , with reduction mod p now equivalent to evaluating

a polynomial f(T ) at f(α) as one does for the degree 1 case. In Magma we

therefore avoid having to create more complicated algebraic structures than is

necessary.
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Chapter 2

Models of curves of genus 1

Throughout this thesis, use is made of several different models for curves of

genus one. I will not here give a definition of the genus of a curve as it will

not be used at any point, but rather will give a brief description of the various

curves and models used.

Throughout the rest of the following chapter we will assume that the char-

acteristic of the field K is not 2.

2.1 Elliptic Curves and Weierstrass equations

Definition. An elliptic curve over a field K is a projective curve of genus one

that is smooth over K and contains a K-rational point O.

More correctly the elliptic curve is defined by the pair (E,O) where E is the

curve and O the specified point. It is a well known fact that the K-points of

an elliptic curve form a finitely generated abelian group with O as the identity

(the Mordell-Weil group of E).

The most familiar model of an elliptic curve is its embedding into P 2(K)
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where it is given by a Weierstrass equation. This model takes the following

form:

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.1)

where a1, a2, a3, a4, a6 ∈ K - the so-called a-invariants of E. In fact, since

char(K) 6= 2 we can assume that a1 = a3 = 0. Upon homogenization of the

Weierstrass equation with a third variable Z, it is clear that the projective curve

E always has a point in P2(K), where X = Z = 0 and Y = 1 regardless of what

K is. This point (0 : 1 : 0) is nearly always taken to be the identity O in the

Mordell-Weil group of E. If, in addition, K does not have characteristic 3 then

the equation of the curve can be given in the simpler form:

E : Y 2 = X3 + a4X + a6. (2.2)

The set of K-rational points of E is written as E(K). This notation is also

used to represent the Mordell-Weil group of E.

We will also come across curves of genus one that do not have a (known)

rational point. These are given by other models.

2.2 Y 2 = quartic

Similar in form to the Weierstrass equation of an elliptic curve are equations

of the form Y 2 = f(X) where f is a polynomial over a field K with degree 4.

Provided f has no repeated roots, these define curves of genus 1 over K. A

curve of genus 1 has such a model if and only if it has a K-rational divisor of

degree 2. The quartic f can also be written as a polynomial in one variable

[u : v] in P1, i.e. f(U, V ) with f homogeneous of degree 4 in U and V . The

equation Y 2 = f(U, V ) then defines a curve in weighted-projective space with
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Y , U and V having weights 2, 1 and 1 respectively.

The weighted version of the curve occurs during descent on elliptic curves

when deciding solvability of quadric intersections. This will be discussed further

in chapter 6.

2.2.1 I, J and ∆

A quartic of the form aX4 + bX3 + cX2 + dX + e over a field K has associated

to it elements of K known as the I and J invariants, and ∆ = 4I3 − J2, which

is associated to the discriminant (see [Cr1, p.89]). We can use the definitions

of I and J to extend this to homogeneous quartics and curves of the form

Y 2 = quartic in the obvious way:

Definition. Let f be a homogeneous quartic in U and V over K so

f = aU4 + bU3V + cU2V 2 + dUV 3 + eV 4. Then the I and J invariants of f are

defined as follows:

I = 12ae− 3bd+ c2,

J = 72ace+ 9bcd− 27ad2 − 27b2e− 2c3.

(2.3)

2.3 Intersections of quadric surfaces

Another model of a genus 1 curves occurs if and only if a curve has a K-

rational divisor of degree 4. If this is the case, the curve can be embedded into

3-dimensional projective space as an intersection of two quadric surfaces.

A quadric surface in P3 over a field K is a surface defined by a single homo-

geneous quadratic equation:

∑

1≤i,j≤4

aijXiXj = 0 (aij ∈ K). (2.4)
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Alternatively this can be written as XTMX = 0 where X is the column-vector

of the variables X1, . . . , X4 and M is the 4 × 4 symmetric matrix (aij) with

aij = aji. The quadric is said to be singular if its defining matrix is singular.

An intersection of two such quadric surfaces (provided the resulting curve is

smooth) defines a genus one curve in P3(K). A quadric intersection C given by

two symmetric matricesA and B is smooth if and only if disc(det(uA−vB)) 6= 0.

2.3.1 Pencil of quadrics

Any two quadrics over K, given by matrices A,B defines what is called a pencil

of quadrics in P3(K), provided A 6= cB for some c ∈ K. In terms of the matrices

A and B, what this means is the following: if A and B are the matrices defining

a quadric-intersection C, then the pencil of quadrics associated to C is given by

the matrix M(λ, µ) = λA− µB. Evaluating M at a point (λ, µ) in P1(K) gives

a quadric surface over K. It is clear that any distinct pair of quadrics in the

pencil define the same pencil, and hence the same curve C. We write (A,B) to

mean the pencil defined by the matrices A and B.

If C is smooth and A is non-singular, then the determinant of the matrix

defining the pencil has four distinct roots and can be written as follows:

det(uA+ vB) = a(u− ǫ1v)(u− ǫ2v)(u − ǫ3v)(u − ǫ4v) (2.5)

where a, ǫi ∈ K, a 6= 0. Therefore there are four singular quadrics in the

pencil given by the four roots [ǫi : 1] (not all necessarily defined over K) and

their matrices ǫiA+B all have rank 3. This then allows us to change variables

and write the equations defining the singular quadrics in terms of exactly 3 of

the 4 variables. The redundant variable will be different for each of the singular

quadrics in the pencil. In the case that A is singular, one of the four factors in

18



the above equation degenerates to v, corresponding to the root [1 : 0].

Example. Let C be the quadric intersection over F11 given by the following

equations:

x1
2 + 2x2

2 = 5x4
2

2x1
2 + x3

2 = 2x4
2

(2.6)

C is also represented by the pair of matrices

A =





















1 0 0 0

0 2 0 0

0 0 0 0

0 0 0 6





















and B =





















2 0 0 0

0 0 0 0

0 0 1 0

0 0 0 9





















. (2.7)

The pencil of quadrics defined by C is represented by the matrix M(λ, µ) =

λA − µB. This has determinant det(M) = 10λµ(λ − 7µ)(λ − 2µ) so the four

singular quadrics occur at (λ, µ) = (1 : 0), (0 : 1), (2 : 1), (7 : 1). The two

quadrics we used to define C come from the roots (1 : 0) and (0 : 1). The other

two are:

4x2
2 + 10x3

2 + 3x4
2 = 0

5x1
2 + 3x2

2 + 10x3
2 = 0

(2.8)

2.4 QI - quartic relationships

Quadric intersections and curves of the from Y 2 = quartic are closely related.

Each quadric intersection has an associated quartic f(x) = det(Ax−B) where A

and B are the defining matrices. The quartic may also be given in homogeneous

form, in which case it is det(uA− vB).

To transform Y 2 = aX4 + bX3 + cX2 + dX + e into a quadric intersection

we make the substitution Z = X2 (1). Then the equation becomes Y 2 =
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aZ2 + bXZ + cZ + dX + e (2). Homogenizing both (1) and (2) with a fourth

variable W , we obtain











X2 − ZW = 0

aZ2 + bXZ + cZW + dXW − Y 2 + eW 2 = 0.

(2.9)

Note that the first quadric above is singular - it does not involve the variable

Y and its associated matrix has rank 3 rather than 4. Therefore the associated

quartic det(uA− vB) has a K-rational root (u : v) = (1 : 0).

Conversely if a pencil of quadrics (A,B) has a K-rational root in the associated

quartic, then we may change the basis of the pencil to make this root (1 : 0),

so det(A) = 0. If in addition the pencil is nonsingular then A must have rank

3, so after a change of variables the equation of the associated quadric only

involves 3 of the 4 variables and can be projected down to P2 as a smooth conic.

Furthermore, if this conic has a K-rational point then it may be parametrized,

and hence all points on the quadric may be parametrized. Substituting this

parametrization into the second quadric and completing the square we recover

an equation of the form Y 2 = f(U, V ), where f is a homogeneous quartic.

Remark. Note that if K is a number field or function field and the quadric

intersection has points everywhere locally then so must the conic obtained from

the singular quadric. Then, by the Hasse local-global principal it must have

a K-rational point an can therefore be parametrized. So every curve of the

form Y 2 = f(X) (f a quartic) can be converted into a quadric intersection (as

shown above) but only those QIs with: a) points everywhere locally, and b) A

K-rational root of the associated quartic can be “converted back”.
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2.5 The Hasse bound

For genus 1 curves over finite fields, the following is a well known result:

Theorem 4. Let C be a projective curve of genus 1 over the finite field Fq.

Then #C(Fq) satisfies the following inequality:

|#C(Fq) − (q + 1)| ≤ 2
√
q.

This is known as Hasse’s theorem and is a standard result (see [Sil1, Ch.V]).

A corollary of the above is that a genus 1 curve over a finite field always has at

least one point.
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Chapter 3

Full 2-descent on elliptic

curves

3.1 Introduction

In this chapter we describe an algorithm for performing two descent on an elliptic

curveE overK = Fq(T ) when the curve has full 2-torsion. The algorithm will be

used to compute the Mordell-Weil group of E (as an abstract group E(K)tors⊕

Zr). The algorithm requires the following sub-algorithms: conic solving over

function fields (see chapter 5), local solvability of quartics over Fq(T ) (chapter

6) and an algorithm for searching for points on quadric-intersections over Fq(T )

(chapter 8).

The input for the algorithm will be an elliptic curve with full two-torsion

(defined either by its Weierstrass equation or the x-coordinates of its two-torsion

points), and a non-negative integer H which sets a height-bound on the point
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search. The algorithm at the very least returns lower and upper bounds on the

rank r. Increasing H may raise the returned lower bound on r, however there

are curves where the upper bound really is greater than the rank. This occurs

when some of the homogeneous spaces, which we describe in the next section,

are everywhere locally solvable but do not have a global point (this is the same

as saying that E has a non trivial element of order 2 in its Tate-Shafarevich

group).

So while the program described here may indeed succeed in finding the rank,

for some curves it cannot do so in principle. Higher descents would then be

needed, which we do not concern ourselves with here.

3.2 Preliminaries

Let E be an elliptic curve over Fq(T ) defined by the following equation:

E : Y 2 = (X − e1)(X − e2)(X − e3) (3.1)

with e1, e2, e3 ∈ Fq[T ].

3.2.1 The group K(S, 2)

Let K be a field. We let K∗/K∗2 denote the multiplicative group “K mod

squares“. Thus if K = Q, elements of Q∗/Q∗2 are represented by sets of distinct

prime numbers, together with -1, with multiplication modulo squares as the

group law; e.g.

2 · 5 · 11 × 7 · 11 · 31 = 2 · 5 · 7 · 31

The identity element is 1 which could be thought of as an “empty” set of primes.
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Things are similar when K = Fq(T ) - the primes are now monic irreducible

polynomials, and −1 is replaced by a primitive element of Fq. Only one such

element α is needed since {x2 : x ∈ Fq} ∪ {αx2 : x ∈ Fq} = Fq. An example of

the group law in K∗/K∗2 when K = F5(T ) is:

2 · T · (T + 3) · (T 2 + 3) × 2 · T · (T + 4) = (T + 3) · (T + 4) · (T 2 + 3).

We now define an important subgroup of the above group:

Definition. Let K be a field and S a finite set of valuations on K. We denote

by K(S, 2) the following group:

K(S, 2) =
{

x ∈ K∗/K∗2 : v(x) ≡ 0 mod 2 ∀v /∈ S
}

. (3.2)

It is important to note that when K = Fq(T ) the group K∗/K∗2 also con-

tains a non-square unit α and therefore K(S, 2) also contains α. This is only

a small problem over Fq(T ) since F∗
q/F

∗
q
2 is simply {1, α} (this is analogous to

including -1 in Q(S, 2)). Over Q(T ) however, every element of Q∗/Q∗2 is in

Q(T )(S, 2) - an infinite group. The following approach to 2 descent relies on

the finiteness of K(S, 2). Another point to note is that when K is a function

field there is the valuation ord∞. We do not require in K(S, 2) that ord∞(x) is

even, so the definition of K(S, 2) should more correctly read:

K(S, 2) =
{

x ∈ K∗/K∗2 : v(x) ≡ 0 mod 2 ∀v /∈ S ∪∞
}

. (3.3)

As an abstract group K(S, 2) is isomorphic to (Z/2Z)n where n = 1 + #S.

3.2.2 Homogeneous spaces

The existence of points on E depends on the existence of points on a number

of curves associated to E. Suppose there exists a point (X,Y ) ∈ E(K); it is
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a well known property of elliptic curves over global fields that X = x/z2 and

Y = y/z3 where x, y, z ∈ Fq[T ] and gcd(x, z) = gcd(y, z) = 1. Replacing X and

Y with these values in the equation of E and multiplying by z6 gives:

y2 = (x− e1z
2)(x − e2z

2)(x − e3z
2). (3.4)

Let p be a prime in Fq[T ] (a monic irreducible). Suppose p divides x − eiz
2

and x − ejz
2 (1 ≤ i, j ≤ 3, i 6= j). Then (x − ejz

2) − (x − eiz
2) = (ei − ej)z

2

is divisible by p and so is ei(x − ejz
2) − ej(x − eiz

2) = (ei − ej)x. Since

gcd(x, z) = 1 it follows that p divides ei − ej. Therefore we see that if p does

not divide (e1 − e2)(e2 − e3)(e3 − e1) then p divides at most one of x− eiz
2, so

ordp(x− eiz
2) is even (it is either zero or equal to ordp(y

2)).

We now see that for each i, x − eiz
2 can be written as diz

2
i where zi, di ∈

Fq[T ] and di is square-free and divides (e1 − e2)(e2 − e3)(e3 − e1). So we have

x − e1z
2 = d1z

2
1 , x − e2z

2 = d2z
2
2 and x − e3z

2 = d3z
2
3 . Substituting the first

two into the equation of E gives y2 = d1d2(z1z2)
2(x − e3z

2), and we see that

x − e3z
2 must in fact be equal to d1d2z

2
3 for some z3 ∈ Fq(T ). We therefore

have the following (after re-naming some of the variables):























(1) x− e1z
2
4 = d1z

2
1

(2) x− e2z
2
4 = d2z

2
2

(3) x− e3z
2
4 = d1d2z

2
3 .

(3.5)

Taking the differences (1)-(2) and (1)-(3) of the above, we arrive at:











d1Z1
2 − d2Z2

2 + (e1 − e2)Z4
2 = 0

d1Z1
2 − d1d2Z3

2 + (e1 − e3)Z4
2 = 0.

(3.6)

These equations define a curve Cd1,d2 in P3(K) for each pair d1, d2 square-

free dividing (e1 − e2)(e2 − e3)(e3 − e1). This condition on d1, d2 is the same as
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saying d1, d2 ∈ K(S, 2) where S is the set of bad places of E.

A point in E(K) must come from a point on Cd1,d2 for some d1, d2 pair. In

fact these curves are even more closely related to E than this as we see in the

following two theorems:

Theorem 5. Let E be an elliptic curve over a global field K of characteristic

not 2. Let E(K) denote the Mordell-Weil group of E. If S is the set of places

where E has bad reduction (including the place at infinity if K is a function

field) then there is an embedding φ : E(K)/2E(K) →֒ K(S, 2) ×K(S, 2) given

by

φ(x, y) =







































(x− e1, x− e2) if x /∈ {e1, e2}

((e1 − e2)(e1 − e3), e1 − e2) if x = e1

(e2 − e1, (e2 − e3)(e2 − e1)) if x = e2

(1, 1) if x = ∞.

(3.7)

S is easily computed. It is simply the set of places given by the prime factors

of (e1 − e2)(e2 − e3)(e3 − e1). In the function field case, if we did not include

ord∞ in S then we would be further restricted to places coming from primes of

even degree.

Theorem 6. A pair (d1, d2) ∈ K(S, 2) × K(S, 2) is an image of an element

in E(K)/2E(K) under the above embedding if and only if there is a solution

(z1, z2, z3) ∈ K to the following set of equations:











d1Z1
2 − d2Z2

2 = e2 − e1

d1Z1
2 − d1d2Z3

2 = e3 − e1.

(3.8)

Moreover if a solution (z1, z2, z3) exists then (d1, d2) is the image of the point

(d1z1
2 + e1, d1d2z1z2z3) ∈ E(K).
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If (z1, z2, z3) satisfy (3.8) then P = ψ(z1, z2, z3) = (d1z1
2 + e1, d1d2z1z2z3)

lies in E(K) and satisfies φ(P ) = (d1, d2).

Proof of these theorems are given in [Sil1, Ch.X, §1] in the case when K is

a number field. However there are no assumptions made about K that prevent

the proof from working analogously over Fq(T ).

The above pair of equations define a quadric intersection overK (see chapter

2). For each quadric intersection C arising from a pair (d1, d2) we must either

find a point on C or show that no points exist. Such curves have genus one and

may be everywhere-locally-solvable yet not globally solvable (the Hasse local-

global principle does not apply to genus one curves). It is therefore possible that

bad cases will be encountered, in which it cannot be shown that no points exist

on C yet a point may not exist. In such cases we will not be able to compute

the rank of E exactly without doing a further descent.

The quadric intersections described above are known as homogeneous spaces

for E. The next part of the algorithm is to decide whether or not each of them

can have points. We use two methods of showing that there are no points: conic

solving and local-solvability tests.

Remark

An improvement to the algorithm may be made by observing that not all pairs

(d1, d2) ∈ K(S, 2) ×K(S, 2) need to be checked. Assume as in 3.2.2 that x −

e1z
2 = d1z

2
1 , then if a prime p divides d1, ordp(x−e1z2) is odd. So p must divide

at least one of (x − e2z
2), (x − e3z

2) which implies (using the same argument

as in 3.2.2) that p divides (e1 − e2)(e1 − e3). Similarly if p divides d2 then p

also divides (e1 − e2)(e2 − e3). Therefore we need only check pairs (d1, d2) ∈

K(S1, 2)×K(S2, 2) where S1 is the set of places coming from the prime factors
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of (e1 − e2)(e1 − e3). S2 is similar with the prime factors of (e1 − e2)(e2 − e3).

This immediately reduces the amount of quadric intersections to analyse in

subsequent steps. Further refinement may be made by observing that if p divides

both d1 and d2, then it follows from the above that p must divide e1 − e2. Also

if p divides d1 but not d2 (resp. d2 but not d1) then p divides e1 − e3 (resp.

e2 − e3). If, therefore, d1 = ab, d2 = ac with b, c coprime then a | e1 − e2,

b | e1 − e3 and c | e2 − e3.

3.3 The upper bound on the rank

3.3.1 Elimination via conic solving

From now on we work over the field K = Fq(T ). This section requires an

algorithm for solving conics over function fields which we give in chapter 5.

Recall that in 3.2.2 we construct for each pair (d1, d2) ∈ K(S, 2) ×K(S, 2),

a quadric intersection over K. Homogenizing the defining equations we obtain











d1Z1
2 − d2Z2

2 + (e1 − e2)Z4
2 = 0

d1Z1
2 − d1d2Z3

2 + (e1 − e3)Z4
2 = 0.

(3.9)

The above two equations, considered individually involve only three out of the

four variables Zi and are therefore conics in P2(K). Denote by C1 the conic in

Z1, Z2, Z4 and C2 the conic in Z1, Z3, Z4. If the quadric intersection is solvable

then so must be both C1 and C2. It is therefore a logical first step to check

solvability of these using the algorithm described in chapter 5.

In fact we can do a lot better than this. The above equations also define a

pencil of quadrics (see 2.3.1) in which the associated quartic has all four roots
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in K. In this case the quartic is

f(λ, µ) = λ · µ · (λ− µ) ·
(

λ−
(

e1 − e3
e1 − e2

)

µ

)

· g (3.10)

where the constant g depends on d1, d2 and the ei. So there are two more

singular quadrics in the pencil of which we can check the conic solvability, cor-

responding to (λ : µ) = (1 : 1) and (λ : µ) = (e1 − e3 : e1 − e2). These conics

are:

C3 : d2Z2
2 − d1d2Z3

2 + (e2 − e3)Z4
2 = 0

C4 : (e2 − e3)d1Z1
2 + (e3 − e1)d2Z2

2 + (e1 − e2)d1d2Z3
2.

(3.11)

If any one of the four conics fails the solvability test we can eliminate

the pair (d1, d2) from consideration. Once this has been done for every pair

(d1, d2) ∈ K(S, 2)×K(S, 2) we test the local solvability of the remaining quadric-

intersections.

3.3.2 Elimination via local solvability

At this stage in our algorithm we have a set of pairs (d1, d2) ∈ K(S, 2)×K(S, 2),

each defining a quadric intersection Cd1,d2 (and hence a pencil of quadrics) over

K. All the singular quadrics in each pencil are solvable as conics. Instead of

working directly with the quadric intersections we convert them to equivalent

curves of the form Y 2 = f(U, V ) where f(U, V ) is a homogeneous quartic. This

is because it is a relatively simple matter to adapt an existing algorithm (see

[MSS]) for curves given by Y 2 = f(X) over Q to work over Fq(T ). This will

be discussed further in chapter 6. Since all conics in the pencil are solvable

and therefore parametrizable we can solve any one of the four and substitute

its parametrization into another. There is no obvious advantage to be gained

in choosing one of the twelve possible ways of doing this over another. The
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Magma implementation of this algorithm parametrizes C1 and substitutes into

C2.

3.3.3 The upper bound

Up to this point we have calculated the group K(S, 2), and for each element

(d1, d2) ∈ K(S, 2)×K(S, 2) defined a quadric intersection over K. After elimi-

nating some of these via the methods described in this section we are left with a

subgroup of pairs (d1, d2) whose associated quadric intersections are everywhere

locally solvable. This set actually forms a subgroup B of K(S, 2)×K(S, 2) con-

taining the image under φ of E(K)/2E(K). Hence #E(K)/2E(K) ≤ #B,

therefore r = rank(E) ≤ s where #B = 2s+2. This is our upper bound on r.

3.4 The lower bound on the rank

We now have an upper bound s on r. Our next aim is to find a lower bound.

This will be accomplished by explicitly finding points on the homogeneous spaces

Cd1,d2 . Often we do not have to search all 2s+2 curves for points: since B is itself

a group if Ca,b and Cc,d have points then so does Cab,cd (a, b, c, d ∈ K(S, 2)). So

we may be able to establish the existence of points on some curves even when

the search algorithm used does not find any.

3.4.1 Height bound

To search for points on quadric intersections over K we first choose a bound H

on the degree (or “height”) of such points. This immediately means that we

may not find any points on a curve either because none exist or because they
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lie outside the bound. Increasing H increases the likelihood of the algorithm

succeeding in finding a point but at the cost of run-time.

The search algorithm is discussed more fully in chapter 8 but the basic idea

is as follows:

a) Choose a height bound H on the points being searched for;

b) Construct a set of lattices over Fq[T ] (see chapter 7) such that each point on

C of degree ≤ H is contained in exactly one of these lattices;

c) Use polynomial lattice-basis reduction (chapter 7) to find short vectors in the

lattices.

A lattice is constructed for each point on C mod p for some prime p ∈ Fq[T ]

where deg(p) = 1 + ⌊ 2H
3 ⌋ therefore the number of lattices is approximately q

2H
3

by the Hasse Bound. The run-time therefore increases exponentially with H .

3.4.2 The lower bound

Once we have chosen H and the search algorithm has completed its run we

have a subgroup A of K(S, 2) ×K(S, 2) consisting of (d1, d2) whose associated

quadric intersections each have a global point (though we may not have found a

point on all of them). The lower bound on the rank of E is t, where #A = 2t+2.

3.5 The algorithm

This is a summary of the algorithm for performing 2 descent on an elliptic curve

E over K = Fq(T ) when E has full 2-torsion over K. We define an operation ⋆

on quadric-intersections as follows:

Cd1,d2 ⋆ Cd3,d4 = Cd1d3,d2d4 . (3.12)
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Algorithm 3.5.1: Full 2 descent on elliptic curves over Fq(T )

INPUT: e1, e2, e3 ∈ Fq[T ] all different, H: a non-negative integer

OUTPUT: A lower and upper bound on rank(E) where E is the

elliptic curve over Fq(T ) given by Y 2 = (X − e1)(X − e2)(X − e3)

1. S1:={∞} ∪ {primes dividing (e1 − e2)(e1 − e3)}

S2:={∞} ∪ {primes dividing (e1 − e2)(e2 − e3)}

K:=Fq(T )

SC:={C1,1} (the set of ELS homogeneous spaces)

XC:={ } (the set of not ELS homogeneous spaces)

PC:={ } (the set of homogeneous spaces with a global point)

SE:={ } (the set of found points on E);

2. FOR (d1, d2) ∈ K(S1, 2) ×K(S2, 2) DO;

3. C:=Cd1,d2;

4. IF C ∈ XC THEN CONTINUE;

5. END IF;

6. C1, . . . ,C4:= 4 singular quadrics in pencil associated to C;

7. IF all Ci are solvable THEN;

8. parametrize C1;

9. f:=quartic formed by substituting parametrization of C1 into C2;

10. ELSE XC:=XC ∪ {C};

11. XC:=XC ∪ {C ⋆D : D ∈ SC};

12. CONTINUE;

13. END IF;

14. IF f is not everywhere locally solvable THEN;
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15. XC:=XC ∪ {C ⋆D : D ∈ SC};

16. CONTINUE;

17. ELSE SC:=SC ∪ {C};

18. XC:=XC ∪ {C ⋆D : D ∈ XC};

19. END IF;

20. search for points of degree ≤ H on C;

21. IF C has a point Q THEN P:=ψ(Q) ∈ E(K);

22. SE:=SE ∪ {P};

23. PC:=PC ∪ {C} ∪ {C ⋆D : D ∈ PC};

24. END IF;

25. END FOR;

26. ru:=log2(#SC) − 2;

27. G:=subgroup of E(K) generated by SE;

28. r1:=#basis(G);

29. RETURN rl, ru;

3.6 Example

We give here a worked example of the 2-descent algorithm applied to an elliptic

curve over F59(T ).

3.6.1 Constructing the homogeneous spaces

Let K be the function field F59(T ). Let E be the following elliptic curve over

K:

Y 2 = (X − e1)(X − e2)(X − e3) (3.13)
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where

e1 = 36T + 49

e2 = 2T + 57

e3 = 11T 2 + 26T + 4.

(3.14)

The bad places of E are ∞ and the primes dividing (e1−e2)(e2−e3)(e3−e1).

These are:

{T + 17, T + 25, T + 31, T + 32, T + 36}. (3.15)

We also require a non-square element α of F59 in order to construct the sets

from which we derive the equations of the homogeneous spaces. In this case

α = 2 will suffice. We construct quadric intersections with equations:











d1Z
2
1 − d2Z

2
2 + (e1 − e2)Z

2
4 = 0

d1Z
2
1 − d1d2Z

2
3 + (e1 − e3)Z

2
4 = 0.

(3.16)

As demonstrated in the remark at the end of 3.2.2, we do not need to con-

struct one of these for each pair (d1, d2) ∈ K(S, 2)×K(S, 2) where S is the set

of bad places of E. It suffices to choose d1 ∈ K(S1, 2) and d2 ∈ K(S2, 2). In

this example, the groups K(S1, 2) and K(S2, 2) are generated by:

K(S1, 2) : {2, T + 17, T + 25, T + 31}

K(S2, 2) : {2, T + 31, T + 32, T + 56}.
(3.17)

Each of the above groups has sixteen elements, so there are 256 quadric inter-

sections to analyse. We now give worked examples of the analysis of two of

these.
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3.6.2 Analysis of the homogeneous spaces

The curve with (d1, d2) = (2, 1)

The quadric intersection Cd1,d2 in this case has the following equations:











(1) 2Z2
1 − Z2

2 + (34T + 51)Z2
4 = 0

(2) 2Z2
1 − 2Z2

3 + (48T 2 + 10T + 45)Z2
4 = 0.

(3.18)

Applying the conic solving algorithm (chapter 5) to equation (1) above shows

that there are no points on the conic and therefore none on the curve Cd1,d2 .

The curve with (d1, d2) = ((T + 17)(T + 35), 1)

This curve has equations:











(1) (T + 17)(T + 35)Z2
1 − Z2

2 + (34T + 51)Z2
4 = 0

(2) (T + 17)(T + 35)Z2
1 − (T + 17)(T + 35)Z2

3 + (48T 2 + 10T + 45)Z2
4 = 0.

(3.19)

Applying the conic solving algorithm we find that the conic defined by (1) has a

solution (56 : 56T+10 : 1) and the conic defined by (2) has a solution (55 : 8 : 1).

We then parametrize the conic (1) to get Z1 = q1(U, V ) and Z4 = q3(U, V ) (we

do not need Z2) where:

q1(U, V ) = 20U2 + (16T + 24)V 2

q3(U, V ) = 13U2 + (2T + 13)UV + (25T + 8)V 2.

(3.20)

Substituting this into (2) and multiplying by d1d2 gives

d2
1d

2
2Z

2
3 = d1d2(d1q

2
1 + (e1 − e3)q

2
3) (3.21)
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or, replacing d1d2Z
2
3 by Y 2 we have Y 2 = f(U, V ) where

f(U, V ) = (16T 4 + 46T 3 + 52T 2 + 21T + 3)U4

+(18T 5 + 36T 4 + 4T 3 + 13T 2 + 50T + 33)U3V

+(15T 6 + 19T 5 + 42T 4 + 14T 3 + 8T 2 + 2T + 33)U2V 2

+(21T 6 + 44T 5 + 48T 4 + 32T 3 + 27T 2 + 8T + 43)UV 3

+(48T 6 + 46T 5 + 29T 4 + 45T 3 + 18T 2 + 36T + 35)V 4.

(3.22)

This quartic can be shown to be everywhere locally solvable (ELS) using the

local solvability algorithm described in chapter 6.

3.6.3 Computing the rank

After analysing all 256 homogeneous spaces Cd1,d2 for solvability we are left with

16, corresponding to the subgroup B of K(S1, 2) ×K(S2, 2) given by the table

below. The fourth column of the table represents elements ofK(S1, 2)×K(S2, 2)

in the group F2
4×F2

4 with the ordering of the generators T+17, T+25, T+31, 2

for K(S1, 2) and T + 31, T + 32, T + 56, 2 for K(S2, 2).

We now need to search for points on these curves, using the algorithm of

chapter 8. Searching with height bound 0 yields points on 5 of them: #5,6,9,10

and 14. We map these back to points on E and label them P5, P6, P9, P10

and P14 respectively. P14 is the 2-torsion point (11T 2 + 26T + 4, 0) whereas the

others are all points of infinite order. They are:

P5 = (18T + 38, 10T 2 + 18T + 12)

P6 = (48T + 54, 51T 2 + 16T + 31)

P9 = (49T + 34, 8T 2 + 53T + 5)

P10 = (20T + 3, 10T 2 + 43T + 17).

(3.23)

We know of three other 2-torsion points on E (using (3.7) we see that
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these are P1, P4 and P15) so we have 8 points. This gives a lower bound

on rank(E) of 1 since ⌈log2(8) − 2⌉ = 1 but we can get a higher bound by

observing from the table that P5 and P6 are independent. In fact the subgroup

B of K(S1, 2) × K(S2, 2) is isomorphic to the subgroup of F2
4 × F2

4 gener-

ated by (1000, 0100), (0100, 0100), (1101, 0111) and (0010, 1110), corresponding

Figure 3.1: Table showing ELS homogeneous spaces.

# d1 d2 F2
4 × F2

4

1 1 1 (0000, 0000)

2 (T + 17)(T + 25) 1 (1100, 0000)

3 2(T + 31) 2(T + 31) (0011, 1001)

4 2(T + 17)(T + 25)(T + 31) 2(T + 31) (1111, 1001)

5 T + 17 T + 32 (1000, 0100)

6 T + 25 T + 32 (0100, 0100)

7 2(T + 17)(T + 31) 2(T + 31)(T + 32) (1011, 1101)

8 2(T + 25)(T + 31) 2(T + 31)(T + 32) (0111, 1101)

9 2(T + 17) 2(T + 56) (1001, 0011)

10 2(T + 25) 2(T + 56) (0101, 0011)

11 (T + 17)(T + 31) (T + 31)(T + 56) (1010, 1010)

12 (T + 25)(T + 31) (T + 31)(T + 56) (0110, 1010)

13 2 2(T + 32)(T + 56) (0001, 0111)

14 2(T + 17)(T + 25) 2(T + 32)(T + 56) (1101, 0111)

15 T + 31 (T + 31)(T + 32)(T + 56) (0010, 1110)

16 (T + 17)(T + 25)(T + 31) (T + 31)(T + 32)(T + 56) (1110, 1110)
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to P5, P6, P14 and P15 respectively. This raises the lower bound to 2. The upper

bound is log2(s) − 2 where s is the size of the subgroup of ELS homogeneous

spaces. So our upper bound is log2(16) − 2 = 2. Since the upper and lower

bounds match we conclude that E has rank 2, with P5 and P6 generating a

subgroup of finite index.
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Chapter 4

Descent via 2-isogeny

4.1 Introduction

The full 2-descent algorithm described in chapter 3 only works for elliptic curves

with full 2-torsion, i.e. those that can be written as

Y 2 = (X − e1)(X − e2)(X − e3). This section describes an alternative method

that may be employed when E has at least one non-trivial 2-torsion point.

The algorithm “descent via 2-isogeny” uses two elliptic curves: E itself and

an isogenous curve E′ with isogenies φ : E → E′ and φ′ : E′ → E between

them. The isogenies φ and φ′ are dual and of degree 2 (see [Sil1, pp. 84-90])

hence φ′ ◦φ : E → E is the multiplication-by-two map on E and φ◦φ′ : E′ → E′

is the multiplication-by-two map on E′. The aim of the algorithm is, like full

2-descent, to find the rank or rank-bounds by computing E(K)/2E(K) where

K = Fq(T ). This is done by first finding E(K)/φ′(E′(K)) and E′(K)/φ(E(K)).

From this we find rank bounds and possibly the rank of E(K).
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4.2 The isogenous curves

Let E be an elliptic curve over K = Fq(T ), with at least one non-trivial two-

torsion point. As before we assume that char(K) 6= 2 so we can write E as a

Weierstrass equation:

E : Y 2 = (X − e)(X2 + aX + b) (4.1)

with e, a, b ∈ Fq[T ]. By changing variables through (x, y) 7→ (x − e, y) we can

write E as the elliptic curve

Y 2 = X(X2 + cX + d) (4.2)

with two-torsion point (0, 0). The isogenous curve E ′, also defined over K, is

given by the equation

Y 2 = X(X2 + c′X + d′) (4.3)

where c, c′, d, d′ ∈ Fq[T ] and c′ = −2c, d′ = c2 − 4d and dd′ 6= 0. To calculate

E(K)/φ′(E′(K)) we use the following theorem:

Theorem 7. Let E be an elliptic curve over K = Fq(T ) given by an equation

of the form:

E : Y 2 = X(X2 + cX + d).

Then:

a) There is an isogenous curve:

E′ : Y 2 = X(X2 + c′X + d′)

where c′ = −2c and d′ − c2 − 4d; and dual 2-isogenies:

φ : E → E′

φ′ : E′ → E
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given by the formulae:

φ(x, y) =
(

x2+cx+d
x , x2y−dy

x2

)

φ′(x, y) =
(

x2+c′x+d′

4x , −x2y+d′y
8x2

)

. (4.4)

b) There is an embedding ψ of E(K)/φ′(E′(K)) into the (finite) subgroup of

K∗/K∗2 generated by the divisors of d and a non-square element of Fq.

The map ψ is given by:

ψ(x, y) =











x mod K∗2 if x 6= 0

d mod K∗2 if x = 0.

Proof. See [Cr3] and [Cr1, chapter 3].

The second part of the above theorem applies to E ′ as well as E just by

swapping E′ and E, φ and φ′, and d and d′.

To calculate E(K)/φ′(E′(K)) and E′(K)/φ(E(K)) we search for points on

homogeneous spaces - one for each factorization of d in the former case, and one

for each factorization of d′ in the latter.

4.3 The first descent

Let E be an elliptic curve over K = Fq(T ) of the form Y 2 = X(X2 + cX + d).

Similar to the full 2-descent, each factorization d = d1d2 with d1 square-free

gives rise to a homogeneous space Cd1 . We must therefore decide for each d1

whether Cd1 is everywhere locally solvable, and if so we must search for points

on Cd1 .
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4.3.1 Homogeneous spaces

Let Gd be the subgroup of K∗/K∗2 generated by the divisors of d and a non-

square α ∈ Fq. For example if K = F5(T ) and d = T (T + 3)2 then

Gd = {1, 2, T, 2T, T + 3, 2T + 1, T (T + 3), 2T (T + 3)}.

For each element d1 of Gd we define the homogeneous space Cd1 as follows:

Cd1 : U2 = d1V
4 + cV 2 + d2 (4.5)

where d2 = d/d1 and c is the same c from the equation of E. Since this equation

is of the form Y 2 = quartic (see 2.2) we can homogenize the RHS and apply

the local-solvability algorithm described in chapter 6. If Cd1 turns out to be

everywhere locally solvable, in order to search for points we can convert Cd1

into a quadric intersection according to 2.4 and apply the algorithm of Chapter

8.

If we find a point on Cd1 then we may map back to E via (u, v) 7→ (d1u
2, d1uv).

Note though that as for full 2-descent, these homogeneous spaces may be every-

where locally solvable and yet not posses a global point. A second descent (see

below) may be able to show the non-existence of global points in this case.

Eliminating homogeneous spaces via local solvability testing yields an upper

bound on the rank of E(K)/φ′(E′(K)). In fact the ELS curves form a subgroup

Hu of Gd. The same is carried out for E′ and we end up with a subgroup

H ′
u of Gd′ , of ELS homogeneous spaces for E. From this the upper bound

on the rank of E can be calculated since if #Hu = 2s and #H ′
u = 2s′

then

rank(E) ≤ s+ s′ − 2.
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4.3.2 Searching for points on the homogeneous spaces

To search for points on these homogeneous spaces we use the algorithm described

in chapter 8. This algorithm is written for curves that are the intersection of

two quadrics whereas our homogeneous spaces Cd1 have the form U2 = d1V
4 +

cV 2 + d2. However if we make the substitution W = V 2 into this equation, and

homogenize with a fourth variable X we obtain a quadric intersection:











U2 = d1W
2 + cV 2 + d2X

2

V 2 = WX.

(4.6)

The elements of Gd whose associated homogeneous spaces have a K-rational

point form a subgroup Hl of Gd. Therefore if we have found a point on Ca and

Cb for a, b ∈ Gd then the curve Cab also has a K-rational point, and we do not

need to apply the search algorithm. Doing the same for E ′ we get a subgroup

H ′
l of Gd′ . This then gives us a lower bound on the rank of E: if #Hl = 2t and

#H ′
l = 2t′ then rank(E) ≥ t+ t′ − 2.

4.4 The second descent

During the course of the first descent, we may encounter homogeneous spaces

that are everywhere locally solvable but have no points within the height bound

of the search algorithm. In such cases we can perform a second descent on these

curves, examining the descendants of each in order to a) find points on the first

descent curves, or b) prove that no points exist.

In this section we let C be a first descent homogeneous space for an elliptic

curve E defined over K = Fq(T ).
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4.4.1 Mapping C to a conic

A homogeneous space for E arising in the first descent is a curve C with equation:

U2 = d1V
4 + cV 2 + d2 (4.7)

with c, d1, d2 ∈ Fq[T ], d1d2 6= 0, c2 − 4d1d2 6= 0. At a glance, it can be seen

that this equation is actually a conic in U and V 2, so we make the substitutions

Y = U , X = V 2 and homogenize with a third variable Z to obtain the conic:

Y 2 = d1X
2 + cXZ + d2Z

2. (4.8)

This is a semi-diagonal conic (see 5.4.1) and we can find a point on it using

the conic-solving algorithm of chapter 5. In fact the curve (4.8) always has a

K-rational point by the Hasse principle, since C is everywhere locally solvable.

This does not immediately lead to a point on C however - this is the case if and

only if X/Z is a square. The map back to C given a solution to (4.8) is

(x : y : z) = (a2 : y : b2) 7→ (y, a/b) ∈ C. (4.9)

4.4.2 Constructing the descendants

Since we always have a K-rational solution to (4.8) we can parametrize all

solutions:

(λ : µ) 7→ (q1(λ, µ) : q2(λ, µ) : q3(λ, µ)) (4.10)

where q1, q2, q3 are homogeneous quadratic polynomials over Fq[T ]. Solutions

(x : y : z) to (4.8) only correspond to points on C when x/z is a square, so we

require that q1(λ,µ)
q3(λ,µ) is a square. This corresponds to a solution λ, µ, s, t ∈ Fq[T ]

to the equations:










q1(λ, µ) = d3s
2

q3(λ, µ) = d3t
2

(4.11)
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where d3 is a square-free divisor of the resultant of q1(λ, 1) and q2(λ, 1).

It can be seen immediately that the above equations define a quadric inter-

section Dd3 over K - one for each square-free divisor of Res(q1, q3) - and we

can deal with these in almost exactly the same way as the quadric intersections

arising in the full 2-descent. Firstly, by checking each one is solvable as a conic

(this time semi-diagonal) and if so, parametrizing one and substituting into the

other to obtain a curve Y 2 = quartic in order to check the local solvability using

the algorithm in chapter 6. To those that are everywhere locally solvable we

apply the point search algorithm of chapter 8. If all the descendants Dd3 are

shown to have no points then the curve C does not, and is therefore an example

of an everywhere locally solvable curve with no global point. If this is not the

case, and no points have been found then no new information about C has been

found by performing the second descent.

4.5 The algorithm

Descent via 2-isogeny can be summarised as follows: Firstly, the elliptic curve E

has a non-trivial 2-torsion point which we move to (0, 0) via a change of variables.

We then construct another elliptic curve E ′ isogenous to E via dual isogenies φ

and φ′ of degree 2. Next, for each square-free divisor of the coefficient d in the

equation of E, we construct a homogeneous space C of the form Y 2 = quartic

and check its local solvability. If it is everywhere locally solvable then we may

wish to perform a second descent. Otherwise we search for points on C, and

hence obtain lower and upper bounds on #E(K)/φ′(E′(K)). Repeating this

for E′ we obtain bounds on #E′(K)/φ(E(K)) and hence bounds on rank(E).

If the second descent is applied, for each homogeneous space C that is every-
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where locally solvable, we construct a set of descendants Dd3 and check their

local solvability and search for points, sharpening the lower and upper bounds

obtained through the first descent.

When using the second descent it must be decided whether to apply it a)

after a search for points on C has yielded nothing, or b) straight away once C is

established to be everywhere locally solvable. One is more likely to find points

on the second descent because if they exist they will have smaller height than on

C, however this approach risks wasting computer time on the second descent if

C has an easy to find point. In the case (a) above the search algorithm (chapter

8) is invoked twice so a height bound must be chosen twice. The default setting

in the Magma implementation is to set one bound used for both, but the user

can choose them independently if desired.

Here is the algorithm for performing descent via 2-isogeny on an elliptic

curve E over K = Fq(T ) when E has non-trivial 2-torsion over K. Similar to

the full 2-descent, we define an operation ⋆ on the homogeneous spaces of E as

follows:

Ca ⋆ Cb = Cab (4.12)

where Cx is the curve U2 = xV 4 + cV 2 + d/x.

Algorithm 4.5.1: Descent via 2-isogeny on elliptic curves over Fq(T )

INPUT: E: an elliptic curve over Fq(T ) with a non-trivial

2-torsion point, H: a non-negative integer

OUTPUT: A lower and upper bound on the rank of E

1. Transform E to an elliptic curve given by Y 2 = X(X2 + cX + d);

2. c′:= −2c, d′:= c2 − 4d
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E′:= the elliptic curve Y 2 = X(X2 + c′X + d′)

φ:= the 2-isogeny from E to E ′

φ′:= the dual isogeny from E ′ to E;

3. Gd:= the subgroup of K∗/K∗2 consisting of

the square-free divisors of d and a non-square α ∈ F∗
q

SC1:= { } - the set of ELS homogeneous spaces of E

PC1:= { } - the set of homogeneous spaces of E with a found point

PE1:= { } - the set of points found on E(K)/φ′(E′(K))

XC1:= { } - the set of not ELS homogeneous spaces of E;

4. Gd′:= the subgroup of K∗/K∗2 consisting of

α and the square-free divisors of d′

SC2:= { } - the set of ELS homogeneous spaces of E ′

PC2:= { } - the set of homogeneous spaces of E ′ with a found point

PE2:= { } - the set of points found on E ′(K)/φ(E(K));

XC2:= { } - the set of not ELS homogeneous spaces of E ′;

5. FOR d1 ∈ Gd DO;

6. C:= the curve U 2 = d1V
4 + cV 2 + d2 where d2 = d/d1;

7. IF C ∈ XC1 OR C ∈ SC1 THEN CONTINUE; END IF;

8. IF C is everywhere locally solvable THEN;

9. SC1:= SC1 ∪ {C} ∪ {C ⋆D : D ∈ SC1};

10. XC1:= XC1 ∪ {C ⋆D : D ∈ XC1};

11. C0:= the quadric intersection











U2 = d1W
2 + cV 2 + d2X

2

V 2 = WX

;

12. search for points on C0 up to height bound H;

13. IF a point on C0 is found THEN;
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14. map point to a point P in E(K)/φ′(E′(K));

15. PC1:= PC1 ∪ {C}, PE1:= PE1 ∪ {P};

16. END IF;

17. ELSE XC1:=XC1 ∪ {C} ∪ {C ⋆D : D ∈ SC1},

18. END IF;

19. END FOR;

20. FOR d1 ∈ Gd′ DO;

21. C:= the curve U 2 = d1V
4 + cV 2 + d2 where d2 = d/d1;

22. IF C ∈ XC2 THEN CONTINUE; END IF;

23. IF C is everywhere locally solvable THEN;

24. SC2:= SC2 ∪ {C} ∪ {C ⋆D : D ∈ SC2};

25. XC2:= XC2 ∪ {C ⋆D : D ∈ XC2};

26. C0:= the quadric intersection











U2 = d1W
2 + cV 2 + d2X

2

V 2 = WX

;

27. search for points on C0 up to height bound H;

28. IF a point on C0 is found THEN;

29. map point to a point P in E ′(K)/φ(E(K));

30. PC2:= PC2 ∪ {C}, PE2:= PE2 ∪ {P};

31. END IF;

32. ELSE XC2:=XC2 ∪ {C} ∪ {C ⋆D : D ∈ SC2};

33. END IF;

34. END FOR;

35. sl:= ⌈log2(#PC1)⌉, s′l:= ⌈log2(#PC2)⌉,

su:= log2(#SC1), s′u:= log2(#SC2);

36. PE:= PE1 ∪ {φ′(P ) : P ∈ PE2};
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37. rl:= #{basis of group generated by PE};

38. ru:= su + s′u − 2;

39. RETURN rl, ru;

Algorithm 4.5.2: Subroutine: second descent

INPUT: An ELS curve C over K with equation U 2 = d1V
4 + cV 2 + d2,

H a non-negative integer

OUTPUT: i ∈ −1, 0, 1 with i = −1 if C has no points,

i = 0 if no points are found in the search,

and i = 1 if a point is found; a point P on C if i = 1

1. C0:= the conic Y 2 = d1X
2 + cXZ + d2Z

2;

2. (X : Y : Z) = q1(λ, µ) : q2(λ, µ) : q3(λ, µ):= parametrization of C0;

3. R:= Res(q1(λ, 1), q3(λ, 1));

4. S:= {square-free divisors of R};

5. j:=0 (counter);

6. FOR d3 ∈ S DO;

7. D:= the quadric intersection











q1(λ, µ) := d3s
2 (1)

q3(λ, µ) := d3t
2 (2)

;

8. IF conics (1) and (2) are both solvable THEN;

9. parametrize (1) and substitute into (2);

10. D0:= the Y 2 = quartic curve resulting from this;

11. IF D0 is NOT ELS THEN;

12. j := j + 1;
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13. CONTINUE; END IF;

14. search for points on D with height bound H;

15. IF D has a point then map to a point P on C;

16. RETURN 1,P; END IF;

17. ELSE j := j + 1;

18. CONTINUE; END IF;

19. END FOR;

20. IF j = #S THEN;

21. RETURN -1; END IF;

22. RETURN 0;

The second descent sub-routine can be called either when C is shown to be

ELS or after additionally searching for points on C has returned nothing. If the

second descent returns 1 then C is added to PC, the point mapped to a point on

E and added to PE. If −1 is returned then C is removed from SC. No changes

are made if the second descent returns 0.

4.6 Example

Here we give an example of descent via 2-isogeny over F31(T ).

4.6.1 Construction of the homogeneous spaces

Let E be the elliptic curve over K = F31(T ) with equation:

Y 2 = X(X2 + (6T + 1)X + (3T + 6)). (4.13)

E has 2-torsion point (0, 0) and is in the required form so we do not need to

change variables here. Using the notation of the rest of this chapter, c = 6T +1
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and d = 3T + 6. The isogenous curve E ′ is given by the equation

Y 2 = X(X2 + (19T + 29)X + (5T 2 + 8)). (4.14)

Let c′ = −2c = 19T +29 and d′ = c2−4d = 5T 2 +8. We also need a square-free

element α of F31 - in this case we use α = 3. Since d = 3T + 6 = 3(T + 2) we

construct a homogeneous space Cd1 for each element d1 of the subgroup Gd of

K∗/K∗2 generated by the divisors of d. In this case Gd = {1, T +2, 3, 3(T +2)}.

For d1 ∈ Gd we have a homogeneous space given by the equation

U2 = d1V
4 + cV 2 + d2 (4.15)

where d1d2 = d. There are four such curves in this case.

Next we do the same for E′. d′ = 62(T 2 + 14) so the group Gd′ consists of

four elements: Gd′ = {1, 3, T 2 + 14, 3(T 2 + 14)}. We construct homogeneous

spaces Cd′

1
for each d′1 ∈ Gd′ . These have equation

U2 = d′1V
4 + c′V 2 + d′2 (4.16)

where d′1d
′
2 = d′. We now have 8 curves to analyse.

4.6.2 Analysis and rank computation

First consider the four curves Cd1 . Applying the local-solvability algorithm

(chapter 6) to each shows that all are ELS. Next we convert these into quadric

intersections (see 2.4) in order to search for points using the algorithm of chapter

8. A search with height bound 0 yields points on all four curves. Mapping back

to E, these points are (0, 0), (15, 30), (25T + 19, 19T + 7) and the point at

infinity. Doing the same for E′ we find that two of its homogeneous spaces are

ELS and both have points. Mapping these back to E ′ then to E via the dual
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isogeny from E′ to E yields no new points - these are just (0, 0) and the point

at infinity.

From the size of the subgroups of ELS curves we get an upper bound on the

rank of E. In this case the group sizes are 22 and 21 respectively so the upper

bound is 2 + 1 − 2 = 1. Since we have found points on all ELS homogeneous

spaces we can conclude that the rank of E is in fact 1. The second descent was

not needed. A non-torsion generator of E (mod 2E) is (15, 30).
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Chapter 5

Solving conics over function

fields

5.1 Introduction

The following chapter gives an overview of an algorithm for solving conics over

function fields. It is used frequently in the main descent algorithms to decide

solvability of certain homogeneous spaces. The algorithm, which is similar to

one of the classical algorithms for solving conics over Q was simultaneously and

independently being developed in 2004 by myself and Cremona, and van Hoeij.

A full description has been published as van Hoeij, Cremona - Solving conics

over function fields ([vHCr]), to which we refer for further details, giving here

only the main outline. The algorithm has been implemented in Maple by van

Hoeij and in Magma by Cremona and myself.

Throughout this chapter we let F denote a field of characteristic 6= 2.
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5.1.1 Definition

A conic over a field F is a smooth, projective curve C in P2(F ) defined by a

quadratic equation of the form:

aX2 + bY 2 + cZ2 + dXY + eY Z + fXZ = 0 (a, b, c, d, e, f ∈ F ). (5.1)

Such a curve can be represented by a 3 × 3 symmetric matrix M with entries

in F satisfying XTMX = 0 where X is a column vector of the variables X , Y

and Z. Using the notation of the above equation, M looks like:

M =













2a d f

d 2b e

f e 2c













. (5.2)

M is unique up to multiplication by a nonzero element of F . If the matrix M is

diagonal then the conic defined by M is called a diagonal conic. The condition

for C to be smooth is det(M) 6= 0.

5.2 Solution and parametrization: base cases

If a conic C has a point (x : y : z) ∈ P2(F ) then every point in C(F ) can be

easily found via parametrization. This is because a line (defined over F ) drawn

through a point P in C(F ) intersects the curve at precisely one other point (P

itself if the line is a tangent) in C(F ). Intersecting C with a general line through

P (represented by an element of P1(F ) giving its slope) gives a parametrization:

θ : P1 → P2

(u : v) 7→ (q1(u, v) : q2(u, v) : q3(u, v)).

(5.3)

The qi are homogeneous quadratics in u and v with no common factor. For

efficiency when using a conic parametrization in other algorithms, one must

54



choose the qi carefully (see [Sim1]).

5.2.1 Base cases: Q and Fq

Over the rational numbers, the problem of conic solving was solved by Legendre,

and a number of algorithms exist for finding solutions when they exist (see

[CrRu]). Over a finite field Fq (2 ∤ q), a simple pigeon-hole argument shows that

a solution always exists and it is easy to find a solution: by choosing random

elements of Fq for X and Y the quantity 1
c (aX2 + bY 2) is a square in Fq with

probability 1
2 .

5.3 Reduced conics

In all that follows all conics will be diagonal conics unless otherwise stated.

Let C be a conic over a function field F (T ) given by the equation

aX2 + bY 2 + cZ2 = 0 (5.4)

where a, b, c ∈ F (T ). C is said to be reduced if the following conditions hold:

(1) a, b, c ∈ F [T ];

(2) gcd(a, b) = gcd(b, c) = gcd(c, a) = 1;

(3) a, b, and c are square-free (ignoring squares in F ).

Condition (1) is achieved by multiplying a, b and c by the LCM of their denom-

inators. For (2) we note that the conic with coefficients a, b, c is equivalent to

the conic C
′ with coefficients a′ = a/g, b′ = b/g, c′ = cg if g divides both a and b

(since if (x : y : z) is a solution to C then (x : y : z/g) is a solution to C′). Also,

since deg(abc) > deg(a′b′c′) when deg(g) > 0, we can repeat this step a finite
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number of times with g = gcd(a, b), g = gcd(b, c) and g = gcd(c, a), until (2) is

satisfied. Finally, for (3) if say a = gh2, h /∈ F then replacing a with g gives

an equivalent conic C′ with (x : y : z) ∈ C ⇔ (hx : y : z) ∈ C′.

Cremona and Van Hoeij [vHCr] give an algorithm “ReduceConic” which

takes a diagonal conic C as input and returns a new conic C′ that is reduced,

together with λ, µ, ν ∈ K∗ such that (x : y : z) ∈ C′ ⇔ (λx : µy : νz) ∈ C.

5.4 The algorithm of Cremona and Van Hoeij

It is shown in [vHCr] that the existence of a point on a diagonal conic depends

on the existence of a so-called “solubility certificate”. A solubility certificate is a

set of conditions on the coefficients a, b and c that must be satisfied in order for

a solution to be permitted to exist. It is shown furthermore that the converse

is also true, and the existence of a solubility certificate implies that the conic is

solvable.

The algorithm first computes a solubility certificate of a reduced conic and

then, if a certificate exists runs a sub-algorithm “FindPoint” to produce a solu-

tion from it. As a preliminary the following lemma is needed:

Lemma 8. If a solution (x : y : z) ∈ P2(K) of equation (5.4) exists, then

laX
2 + lbY

2 + lcZ
2 = 0 (5.5)

where la, lb and lc are the leading coefficients of a, b and c respectively, has a

solution in P2(F ).

Proof. See [vHCr]

We will refer to the above equation/conic as the leading coefficient equa-

tion/conic associated to the conic defined by a, b and c.
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Before we define the solubility certificate we establish some more notation:

Lp := the residue field F [T ]/(p) for a monic irreducible p ∈ F [T ];

supp(f) := the set of all monic irreducibles dividing f ∈ F [T ].

Let fa, fb, and fc be the following polynomials over F [T ] in a new variable U :

fa := bU2 + c, fb := cU2 + a, fc := aU2 + b. (5.6)

We can now define a solubility certificate:

Definition. Let C be a reduced conic defined by aX2 + bY 2 + cZ2 = 0. A

solubility certificate for C is a list containing the following:

(1) For every p ∈ supp(a), a root αp of fa mod p in Lp;

(2) For every p ∈ supp(b), a root αp of fb mod p in Lp;

(3) For every p ∈ supp(c), a root αp of fc mod p in Lp;

(4) If deg(a) ≡ deg(b) ≡ deg(c) ≡ 0 (mod 2), either a solution or a solubility

certificate for the leading-coefficient equation associated to C.

Given a solubility certificate, it is shown in [vHCr] that a solution exists

satisfying the following conditions1: x, y, z ∈ F [T ] and

(1) (a) y ≡ αpz (mod p) for all p ∈ supp(a);

(b) z ≡ αpx (mod p) for all p ∈ supp(b);

(c) x ≡ αpy (mod p) for all p ∈ supp(c);

(2) (a) deg(x) ≤
⌈

1
2 deg(bc)

⌉

− 1;

1for simplicity we only treat here the case where deg(a), deg(b), deg(c) do not all have

the same parity. The other case is similar, using also the solution to the leading-coefficient

equation: see [vHCr] for details.
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(b) deg(y) ≤
⌈

1
2 deg(ac)

⌉

− 1;

(c) deg(z) ≤
⌈

1
2 deg(ab)

⌉

− 1;

Finding x, y, and z is now a problem in linear algebra over F : the number of

equations is deg(abc) and the number of unknown coefficients is deg(abc)+ 1 so

there is always a non trivial solution.

It can be seen from the above definition of a solubility certificate is that

there is sometimes a “bad” case when a solution of a conic over F is needed. If

F (T ) is say, Q(T1, . . . , Tn−1, T ) then in the worst case we would need to solve

a conic over Q(T1, . . . , Tn−1) then one over Q(T1, . . . , Tn−2) and so on until the

base case over Q is reached.

5.4.1 Non-diagonal conics

The algorithm in [vHCr] only considers diagonal conics. However a non-diagonal

conic may be transformed to an equivalent diagonal conic by completing the

square. As far as the 2-descent algorithm for elliptic curves is concerned, the

most general form of conic needed to be solved is the “semi-diagonal” one. A

semi-diagonal conic has equation Y 2 = aX2 + bXZ + cZ2. This may be solved

easily by completing the square (since char(K) 6= 2) to obtain

Y 2 = a

(

X +
b

2a
Z

)2

+

(

c

a
− b2

4a2

)

Z2 (5.7)

- a diagonal conic with coefficients a, −1 and c
a − b2

4a2 in the variables X ′ =

X + b
2aZ, Y ′ = Y and Z ′ = Z respectively.

5.4.2 Implementations in Magma

The programs for solving diagonal conics, semi-diagonal conics and the general

case have now all been implemented in Magma by myself and John Cremona
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[Cr2, conicsFF.m]. The more general cases reduce first to the diagonal case by

completing the square. These programs work for multivariate function fields

F (T1, . . . , Tn) using recursion, with base cases F = Q or F = Fq. A second

program ([Cr2, ternquadFT.m]) is an implementation of an alternative algo-

rithm for solving the non-diagonal case, using minimization and reduction of

the associated 3 × 3 matrix.
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Chapter 6

Local-solvability of quartics

over Fq(T )

6.1 Background and motivation

During the descent process it is usually necessary to decide whether or not two

quadratic equations in four variables have a common solution. In other words

we seek a way of proving that a quadric-intersection (QI) either has or does

not have any points. We do this by considering local solvability: if a QI has

a point over its base field (i.e a global solution) then it clearly has a solution

mod p for any prime p and by Hensel’s Lemma this lifts to a p-adic solution.

If this existence of a p-adic solution at every p occurs in a curve, it is said to

be everywhere locally solvable. The converse of the above is more useful to us

however: if a curve is not solvable locally at a prime p, then it has no global

solution. If the curve has arisen in the process of 2-descent, it can then be
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removed from consideration, along with the other curves in the same coset.

While proving that a quadric-intersection has no points is (in context) fairly

easy, showing that there is a point is somewhat harder. This is down to the

failure of local-global principle for curves of genus 1: A QI may be everywhere

locally solvable (ELS) but yet still not have a global solution. The only option

left for us currently is to show a QI has a point by explicitly finding one. This

is the subject of chapter 8 which presents an algorithm for searching for points

on QIs over function fields.

Although the problem is the local-solvability of quadric intersections, it can

be transformed fairly easily into the problem of deciding local-solvability of

quartics. This step is used because existing methods for quartics over Q can be

adapted to work for quartics over function fields, and the extra time taken in

converting a QI to a quartic is negligible.

Definition. A homogeneous quartic of the form

f(U, V ) = a0U
4 + a1U

3V + a2U
2V 2 + a3UV

3 + a4V
4

is said to be everywhere locally solvable if the corresponding curve defined by

Y 2 = f(U, V ) is non-singular and ELS.

Definition. A homogeneous quartic f(U, V ) over a field F , in the form given

above is said to be solvable if there exists a point (u : v) in P1 such that f(u, v)

is a square in F .

Remark. Local solvability is automatic at places of good reduction. This is

because the reduced curve is a genus 1 curve over a finite field and therefore has

a point by Hasse’s Theorem. This point lifts to a local point by Hensel’s Lemma.

We only need therefore check local solvability at places of bad reduction, i.e.

primes dividing the discriminant of f .
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6.1.1 From QIs to quartics

To begin with, it must be noted that in the broader view of the main descent

algorithm, the conversion from QI to quartic only needs to be carried out once

the QI has passed the conic solving stage. Therefore all QIs we deal with now

are solvable as pairs of conics and can be parametrized.

Let C be a quadric-intersection in P3 given by the following pair of equations:

C :











f1(W,X,Z) = 0

f2(X,Y, Z) = 0

(6.1)

where f1 and f2 are homogeneous quadrics in the variables indicated. Since

each only involves three of the four variables, they can be thought of as conics,

albeit conics in different ambient spaces.

Let C1 be the conic in P2 defined by f1 and C2 that defined by f2.

Step 1

Solve and parametrize C1 to obtain the following equations:

W = q1(U, V )

X = q2(U, V )

Z = q3(U, V )

(6.2)

where q1, q2 and q3 are homogeneous quadratics in the variables U and V .

Step 2

We now substitute q2 and q3 for X and Z respectively in f2:

f2
(

q2(U, V ), Y, q3(U, V )
)

= 0. (6.3)

Because of the nature of the quadric intersections we are interested in, the

only term involving Y in f2 is cY 2 where c is a non-zero constant. Therefore
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subtracting cY 2 from both sides of the equation and dividing by −c we end up

with

Y 2 = f(U, V ) (6.4)

where f is a homogeneous quartic in U and V . We can now examine the local-

solvability of f .

6.2 The Local solvability algorithm

The algorithm given in this section is a modification of one presented by Mer-

riman, Siksek and Smart [MSS] that tests local solvability of quartics over Q.

The basic steps of the algorithm may be applied to quartics over function fields

using the same arguments given in [MSS]. There are however a couple of differ-

ences. The quartics in [MSS] are in one variable, whereas we use homogeneous

two-variable quartics f(U, V ) (so the curve Y 2 = f(U, V ) is in fact in a weighted

projective space). Because of this first change, we need a different method to

stop the algorithm from recursing infinitely to that used in [MSS]. This is done

in section 6.2.1.

Once we have an equation of the form Y 2 = f(U, V ) where f is a homoge-

neous quartic over a function field Fq(T ), we can test it for local solvability at

a prime p using the algorithm described in this section. As in chapter 1, we

denote by kp the field Fq[T ]/(p). Recall that kp is isomorphic to Fqdeg(p) .

The first step is to clear denominators of f . This is done by multiplying by

the square of the LCM of the denominators of the coefficients of f . This square

term is then absorbed into the Y 2 term on the left-hand-side of the equation via

the change of variables Y ′ = g2Y . Once denominators have been cleared from

f , any remaining common square factors of the coefficients of f can be similarly
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absorbed into the Y 2 term. We assume from now on that these steps have been

performed and f now looks like

f(U, V ) = a0U
4 + a1U

3V + a2U
2V 2 + a3UV

3 + a4V
4 (6.5)

where ai ∈ Fq[T ] for all i and HCF({ai : 0 ≤ i ≤ 4}) is square-free. Let f̄(U, V )

denote the reduced quartic f mod p. The remainder of the algorithm runs as

follows:

Step 1

Test whether f is divisible by p. If this is the case then proceed to step 2.

Otherwise go to step 3.

Step 2

We now have f divisible by p but not by p2. Let f1 = 1
pf . We now examine the

roots of the polynomial f̄1 (the reduction of f1 mod p):

If f is locally solvable at p then so is the equation pY 2 = f1(U, V ). Reducing

this mod p we see that f̄1(U, V ) must have a root. So if f̄1 has no roots then f

is not locally solvable and we stop. Otherwise:

Step 2a

If f̄1 has a non-repeated root then f is locally solvable and we stop.

Otherwise f̄1 has either 1 or 2 repeated roots (ui : vi) (i = 1, 2). It

is then a case of checking whether the following is locally solvable:

f2 =











1
p2 f(pU + ǫiV, V ) if vi 6= 0

1
p2 f(U, pV ) if vi = 0

(6.6)
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where ǫi = ui/vi. This needs to be checked for each i if there are two

roots. It is necessary and sufficient that one of these new quartics

be locally solvable. To check this we recurse to step 1 with the new

function f2 instead of f .

Step 3

At this stage, f is not divisible by p. If the reduced polynomial f̄ is a square

then we have local solvability and stop.

If f̄ cannot be written in the form f̄ = āḡ2 where ḡ ∈ kp[U, V ] and ā ∈ kp then

f is locally solvable and we stop. Otherwise proceed to step 4.

Step 4

Now f̄ = āḡ2 with ā 6= 0 not a square. Therefore any local solution (y, [u : v])

to Y 2 = f(U, V ) must satisfy y ≡ 0 (mod p) and ḡ(u, v) ≡ 0 (mod p). If ḡ has

no roots in kp then f not locally solvable at p and we stop. Otherwise proceed

to step 5.

Step 5

Now ḡ has two roots (u1 : v1) and (u2 : v2). Write f = ag2 + ph where a and g

reduce to ā and ḡ respectively. If neither of (ui : vi), i = 1, 2 is a root of h̄ then

f is not locally solvable and we stop. Otherwise proceed to step 6.
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Step 6

It now remains to check whether either of the following two quartics fi is locally

solvable.

fi =











1
p2 f(pU + ǫiV ) if vi 6= 0

1
p2 f(U, pV ) if vi = 0

(6.7)

where ǫi = ui/vi. If one of these is locally solvable then so is f and we stop.

Otherwise f is not locally solvable and we stop. Therefore we recursively repeat

step 1 for each of the two fi.

6.2.1 Some computational remarks

The local-solvability algorithm contains several steps where the whole program

must be recursively called from the top. In a number of these cases it is possible

(depending on how certain polynomials factorize) that a recursive call must

be made on two input quartics to determine the result. Each such call of the

function may in turn split further as the algorithm is repeated worked through

(a split recursion). From a programming perspective we handle this as follows:

Within the program there is a function that runs through one call of the

algorithm until one of the following happens: 1) Local solvability is decided for

the particular quartic being tested at that point, or 2) A recursion occurs (split or

not). If a recursion occurs, the transformation matrix changing the variables U

and V is stored. This function, which we will here call R1 (for “one recursion”)

is then applied to the original quartic q being tested. The object returned by

R1 is a 3-tuple of the form (i,M, f) where i = 1 if q is locally solvable, i = −1

if not and i = 0 if we are undecided and therefore need a recursion. If i = 0

then there may be a split recursion, in which case we return a sequence of two

such 3-tuples. M is the cumulative transformation matrix, the matrix needed to
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transform q into f , the quartic to be tested for the next recursion (if necessary).

Note that if i 6= 0 we do not need M or f . The function R1 is then repeatedly

called on the sequence of 3-tuples. If i = 1 for any element of the sequence

then we have local solvability and stop. If i = −1 then that element remains

unchanged for every call of R1. If i = 0 the element is replaced by either one

or two “recursion” elements as described above. This is repeated until we have

i = 1 occurring anywhere, or i = −1 for all elements of the sequence, in which

case q is not locally solvable.

Avoiding infinite recursion

It is not clear from the above that this algorithm will stop. In fact it is possible

(and such cases can be constructed) for it to repeat an infinite number of times.

To avoid this we need to keep an eye on the cumulative transformation matrix

M .

First we note that if there exists u, v and y ∈ R = Fq[T ] such that y2 =

f(u, v) in R, we can assume that p does not divide both u and v; for if this were

the case then we can replace the solution (u : v : y) with (p−1u : p−1v : p−2y).

At each recursive call of the algorithm we have a 2 × 2 matrix M with entries

in R, and det(M) = pe for some e. When we make a recursive call, we are

checking whether a new equation Y 2
1 = f1(U1, V1) has a solution. If it does

have a solution (u1, v1), then from the definition of M , this solution satisfies the

equation:

M







u1

v1






=







u

v






(6.8)

. So if M ≡ 0 (mod p) then u ≡ v ≡ 0 (mod p) - a contradiction. Therefore

if during the algorithm M is identically zero modulo p, we do not have local
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solvability.

6.2.2 Example

This is a worked example of applying the local-solvability algorithm to a quartic.

Let f be the following quartic over F7(T ):

f = (3T 6 +T 5)U4 +(5T 5 +5T 3)U2V 2 +(2T 6 +5T 5+3T 4 +5T 3 +2T 2+2T )V 4.

(6.9)

This quartic has I and J invariants:

I = 2T 12 + T 11 + 4T 10 + 6T 9 + 5T 7,

J = 4T 17 + 2T 16 + 6T 15 + 4T 13 + T 12 + 3T 11 + 3T 10 + T 9,

and discriminant:

∆ = 4T 18(T+1)2(T+3)2(T+4)2(T+5)(T 3+3T 2+4)2(T 5+6T 4+5T 3+6T 2+T+1).

We only need to check local solvability at the “bad” places of f - the prime

factors of ∆ above. Here we check local solvability at p = T .

Firstly we note that the coefficients of f are all polynomials and have no

square common factors, so we are able to call the algorithm with f as given

above and p = T .

(1) Immediately we see that f is divisible by p so we proceed straight to step

2.

(2) Let f1 = 1
pf and f̄1 = f1 reduced mod p. Reduction mod T is equivalent to

evaluating the coefficients of f at T = 0 (recall the residue field Fq(T )/(p)

is isomorphic to Fqdeg(p)), so we obtain f̄1 = 2V 4, which has one repeated

root [1 : 0].
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(3) The repeated root of f̄1 is at infinity so we repeat step 1 with the new

function f2 = 1
p2 f(U, TV ). Re-name f2 = f . The matrix of the (cumula-

tive)transformation of variables is M =







1 0

0 T






and the new quartic

f = (3T 4 +T 3)U4 + (5T 5 +5T 3)U2V 2 + (2T 8 +5T 7 +3T 6 + 5T 5 + 2T 4 +

2T 3)V 4.

(4) Now f is divisible by p2, so we replace f by 1
T 2 f and start from step 1

again. This time f = (3T 2 + T )U4 + (5T 3 + 5T )U2V 2 + (2T 6 + 5T 5 +

3T 4 + 5T 3 + 2T 2 + 2T )V 4 and the matrix M is unchanged.

(5) f is divisible by p so we go to step 2 again. Dividing by p and reducing

mod p gives f̄1 = U4 +5U2V 2 +2V 4 which factorizes as f̄1 = (U2 +UV +

3V 2)(U2 + 6UV + 3V 2). So f̄1 has no roots in K. Hence f (and thus our

original f) is not locally solvable at p = T . We do not need to check the

other bad places of f now - the result at T is enough to show that f is

not everywhere locally solvable.
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Chapter 7

Polynomial lattices

This chapter introduces the notion of polynomial lattices and what is meant

by a reduced basis for such lattices. The first work in this field was done

by A. Lenstra in 1985 [Len]. Lenstra’s definition of a reduced basis appeared

independently in [MuSt] under the name “weak Popov form”. The paper gives

an algorithm for converting lattice basis-matrices over a polynomial ring into

weak Popov form, and it is these definitions and methods we describe in this

chapter.

7.1 Lattice-reduction for polynomial matrices -

weak Popov form

7.1.1 Weak Popov form

A key part of the point-searching algorithm is the reduction of polynomial ma-

trices to weak Popov form. A more thorough definition of weak Popov form is

given in [MuSt], but may basically be summarised as follows:
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Definition. A matrix with polynomial entries is said to be in weak Popov form if

the rightmost entries of maximum degree in each row all lie in different columns.

One could give an equally valid definition by replacing “rightmost” with

“leftmost” above. We use the former, as in [1].

Example.

M =













4t+ 7 4t+ 5 10t4 + 3t3 + 5t2 + 2t+ 4

4t4 + 3t3 + t2 + 10t+ 10 8 5

4t3 + 8t2 + 4t+ 7 9t+ 8 4t2 + 8t+ 4













.

(7.1)

The above matrix, over F11[t] is not in weak Popov form, since the rightmost

entries for rows 2 and 3 both lie in the first column. However, by applying a

finite sequence of elementary row operations we can reduce it to the following

matrix, which is in the required form:

N =













8t3 + 9t+ 4 5t3 + 10t2 + 3t+ 7 7t2 + 4t+ 8

6t3 + 8t2 + 3t+ 10 2t2 + 3t+ 8 7t3 + 3t2 + 7t+ 5

4t3 + 8t2 + 4t+ 7 9t+ 8 4t2 + 8t+ 4













. (7.2)

Since every elementary row operation can be thought of as (left) multiplication

by a matrix, we have N = TM . In this case, T is the following:

T =













1 8t+ 3 3t2 + 7t

0 1 10t

0 0 1













. (7.3)

Four row operations were used by our algorithm in this example.

The use of weak Popov form matrices in our algorithm relies on a certain

property of such matrices. This is a stronger version of a lemma in [MuSt]
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(lemma 8.1). First we establish some notation:

PM
i the ith pivot-element of the matrix M,

deg(r) the maximum of the degree of the elements of the row r,

F The base field of the polynomials - elements of M lie in F [t].

PM
i is the rightmost element of maximum degree in row i. We can now state

the key lemma:

Lemma 9. Let M be an m × n matrix in weak Popov form with no rows all

zero. Let ri (1 ≤ i ≤ m) denote the ith row of M . If r =
∑m

i=1 diri lies in the

F [t]-span of the rows ri then:

deg(r) = max
1≤i≤m

{deg(di) + deg(PM
i ) | di 6= 0}. (7.4)

To prove this lemma, we require the following two sub-lemmas:

Lemma 10. Let M be a 2 × n matrix in weak Popov form with no rows all

zero. Let r1 and r2 denote the rows of M . For di ∈ F [t] not all zero (i = 1, 2)

the following holds:

deg(d1r1 + d2r2) = max
i=1,2

{deg(di) + deg(ri) | di 6= 0}. (7.5)

Lemma 11. Let M be an m× n matrix in weak Popov form. Let di (2 ≤ i ≤

m) be m− 1 elements of F [t]. Then the 2 × n matrix consisting of the rows r1

and
∑m

i=2 diri is in weak Popov form, where ri are the rows of M .

Lemma 10 is simply Lemma 9 in the specific case m = 2.

Proof of Lemma 10

The statement clearly holds if either d1 or d2 is zero. Assume now that neither

is zero.
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Let r∗1 = d1r1, r
∗
2 = d2r2. Denote byM∗ the matrix with rows r∗1 and r∗2. M

∗

is in weak Popov form since multiplication by a non-zero element of F[t] does not

change the pivot index of a row. Without loss of generality deg(r∗1) ≥ deg(r∗2).

Let deg(r∗1) = d.

We wish to prove that deg(r∗1 + r∗2) = d. If deg(r∗2) < d then the element

of r∗2 in the same column as PM∗

1 has degree < d. Therefore there exists an

element of r∗1 + r∗2 of degree d, and deg(r∗1 + r∗2) ≥ d. If deg(r∗2) = d then let

I = max{IM∗

1 , IM∗

2 } where IM
i denotes the pivot index of the ith row of M .

The Ith element of r∗1 + r∗2 has degree d, therefore deg(r∗1 + r∗2) ≥ d.

But it is also true that deg(r∗1 + r∗2) ≤ d since:

deg(r∗1 + r∗2) = max{deg(ai + bi) : ai ∈ r∗1, bi ∈ r∗2}

≤ max

n
⋃

i=1

{deg(ai), deg(bi)} = max{deg(r∗1), deg(r∗2)} = d.

Therefore deg(r∗1 + r∗2) = d and the lemma is proved.

Proof of Lemma 11

Since multiplication of a row by a scalar (∈ F [t]) does not change the position

of its pivot element (its pivot index ) it is required to prove that if two rows have

pivot index I1 and I2 where I1 6= I2 then the pivot index of their sum is either

I1 or I2. The lemma then follows by induction.

Let r1 and r2 be the two rows. Without loss of generality we can assume

deg(r2) ≤ deg(r1) = d. We now consider two cases:

Case 1: deg(r2) < deg(r1)

Let r1 = [x1, . . . , xn], r2 = [y1, . . . , yn]. Let k = I1, so xk has degree d and is

a pivot element. Since deg(r2) < deg(r1) = d it follows that deg(xk + yk) = d.
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Now if i > k then deg(xi + yi) ≤ max{deg(xi), deg(yi)} < d; while if i < k then

deg(xi + yi) ≤ max{deg(xi), deg(yi)} ≤ d. Hence xk + yk is a pivot element.

Case 2: deg(r2) = deg(r1)

Let xk be the rightmost pivot element, so deg(xk) = d, then we have deg(xk +

yk) = d. Now if i > k then deg(xi + yi) ≤ max{deg(xi), deg(yi)} < d; while if

i < k then deg(xi + yi) ≤ max{deg(xi), deg(yi)} ≤ d. Hence xk + yk is a pivot

element.

We are now able to complete the proof of Lemma 9.

Proof of Lemma 9

Let r =
∑m

i=1 diri. Let k be an integer such that 1 ≤ k ≤ m and dk 6= 0.

Without loss of generality k = m. Let r∗ =
∑m−1

i=1 diri. If we assume for

induction that Lemma 9 holds for l × n matrices with l < m then

deg(r∗) = max{deg(di) + deg(PM
i ) | di 6= 0}.

Let M∗ be the matrix with first row r∗ and second row rm. By Lemma 9, M∗

is in weak Popov form. Hence by applying Lemma 10 to M ∗ it follows that

deg(r) = max{deg(r∗), deg(dm)+deg(rm)} = max{deg(r∗), deg(dm)+deg(PM
m )}

= max
1≤i≤m

{deg(di) + deg(PM
i ) | di 6= 0}. �

7.1.2 Algorithm for transforming matrices to weak Popov

form

A more detailed account of the weak Popov form algorithm than is necessary

here is given in [MuSt]. The key point is that a matrix with polynomial entries
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can be transformed into weak Popov form by application of a finite number of

elementary row operations. An elementary row operation is one of the following:

(i) swapping two rows,

(ii) adding a scalar (polynomial) multiple of one row to another.

The first type is not needed because swapping two rows clearly makes no differ-

ence to whether a matrix is in weak Popov form or not. Only the second type

of row operation is required. Such row operations can be accomplished by (left)

multiplication by a unimodular transformation matrix as follows:

Let M be an m× n matrix with entries in the ring R. The matrix obtained

by adding x times the ith row to the jth row of M (i 6= j) is TM where tj,i = x,

all diagonal entries are 1 and all other entries zero. The determinant of such

matrices is always 1.

The algorithm proceeds as follows (omitting details of how to decide which

row operation to use at each step):

Algorithm 7.1.1: Weak Popov Form

INPUT: M: an m× n matrix defined over F [t].

OUTPUT: N,T where N is an m× n matrix in weak Popov form and N = TM.

1. N:= copy(M);

2. T:= In×n (identity matrix);

3. WHILE N is not in weak Popov form DO

4. U:= unimodular matrix of appropriate row operation;

5. N:= UN; T:= UT;

6. END WHILE;

7. RETURN N,T;
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This algorithm has been fully implemented in Magma .

7.2 Polynomial Lattices

Since the main part of the search for points on quadric intersections (both over

Z and over Fq[T ]) involves the construction and analysis of many lattices, it is

important to first establish what we mean by a lattice.

7.2.1 Lattices over Z

A lattice in Zn is a (free) Z-submodule of Zn. More generally a lattice in Rn is

a discrete Z-submodule of Rn. The rank of a lattice L is the minimal number of

generators of L. If a set of vectors B = {b1, . . . ,br} are Z-linearly independent

and generate L, then L has rank r and B is said to be a basis of L. If r = n

then L is said to have full rank. Associated to the lattice basis B is its basis

matrix. This is the r × n matrix whose rows are the basis vectors b1, . . . ,br.

A lattice L2 is called a sublattice of a lattice L1 (notation: L2 ⊆ L1) if L2 is

a free Z-submodule of L1.

When working with lattices in Zn to find points on quadric-intersections it

is necessary to perform LLL-reduction on the lattice basis. The reduced basis

has special properties which allow us to search for points by looking at “short”

vectors in the lattice.

7.2.2 Lattices over F [T ]

Just as we may define a lattice in Rn we may also formulate an equivalent

definition of a lattice in Kn where K is a function field (the field-of-fractions
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of a polynomial ring F [T ] where F is a field). In this case the polynomial ring

F [T ], which we denote by R, plays the role of Z.

As in the real case we can think of Kn as an R-module. We define a lattice

as follows:

A lattice in F (T )n (resp. F [T ]n) is a free F [T ]-submodule of F (T )n (resp.

F [T ]n).

Rank, basis and sublattice are defined analogously to the Z case.

There is no direct analogue of LLL-reduction in this case. However, for

sub-lattices of Rn (i.e. lattices whose basis matrix has polynomial entries) the

basis-matrix can be transformed into weak Popov form. When searching for

points on quadric-intersections, reducing a lattice basis to weak Popov form

gives it the necessary properties for a short-vector point search. This will be

explained in more detail later, in section 8.6.
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Chapter 8

Searching for points on an

intersection of two quadrics

This chapter will describe a method used for searching for points (up to a certain

degree bound) on quadric intersections over function fields. The method is in

two main stages. Firstly, for each point P on the curve modulo some irreducible

p, the construction of a lattice in which lie all points congruent to P mod p.

Secondly, these lattices are reduced to weak Popov form, and using Lemma 1

we search for small vectors in the lattice.

8.1 Lattice methods over Q

The algorithm described in this chapter comes from various similar methods

applied to curves over Q, that can be adapted to work for curves over function

fields by using the notion of lattice basis reduction described in the previous

chapter.
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The basic idea is, given a curve C in P3 and a prime p such that C has

good-reduction at p, to list all points P̃ on C mod p and for each P̃ to construct

a lattice containing all points on C congruent to P̃ mod p. We then search for

short vectors in the lattice to find points on C of height up to a bound H . This

was first suggested to John Cremona by Roger Heath-Brown in 1999 [H-B].

Let x be a lift of P̃ to Z4 and e1, . . . , e4 be the unit vectors of Z4. The

various lattice-methods formulated so far are as follows:

The mod p lattice

The set of all points in Z4 that reduce to x mod p forms a lattice of index p3 with

basis {x, pe2, pe3, pe4}. This lattice is not useful as we would need p > cH4/3

for some constant c, giving a run-time of O(H4/3).

The mod p2 lattice

This method was used by Tom Womack in his thesis [Wom].

Lift x to a solution mod p2. The set of all points in Z4 that reduce to x mod p2

forms a lattice of index p5 with basis {x, pu, p2e3, p
2e4} where u = (0, 1, u3, u4)

is a solution to C mod p. All points in this lattice are solutions mod p2. This

method has a run time of O(H4/5).

Heath-Brown’s method

Lift x in all possible ways to solutions y mod p2. There are exactly p of these

lifts for each x so we get p lattices for each x. The next step is to lift each y to a

solution mod p4. Then the set of all points in Z4 that reduce to y mod p3 forms

a lattice of index p10 with basis {x, p2u, p4e3, p
4e4} where u = (0, 1, u3, u4) is a

solution to C mod p2. All points in this lattice are solutions to C mod p4. Here
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we need p > cH2/5 but there are O(p2) lattices rather than O(p) so the run

time is O(H4/5).

Watkins’ method

Watkins constructs a lattice of index p6 which he claims [Wat] to be precisely

of the set of lifts of x that are solutions to C mod p3. This is not true, however

we only need that the lattice contains all such solutions which it indeed does.

Using this lattice gives a run time of O(H2/3).

Watkins calls this method the “Elkies ANTS-IV Algorithm”, referring to

a paper by Elkies [Elk]. Elkies’ method uses real approximations rather than

p-adic ones.

Long’s method

Rachel Long’s approach [Lon] is to construct a lattice for each mod p2 solution

like Heath-Brown, but in this case the lattices have index p12 and consist of

solutions to C mod p6 that are congruent mod p2 to one of the mod p2 solutions.

We need p > cH1/3 here but there are O(p2) lattices as in Heath-Brown’s

method so the run time is O(H2/3). Replacing p2 by p in Long’s algorithm

constructs the same lattice as that given by Watkins.

8.2 The method of undetermined coefficients

The following is a fairly “brute-force” method of finding points on curves over

function fields up to a certain height bound, but it will always work in theory.

The basic idea is as follows:

Suppose we have a projective curve C defined over a function field F (T ).
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After choosing a suitable model for C we have a set of equations defining C:






































f1(X1, . . . , Xm) = 0

f2(X1, . . . , Xm) = 0

...

fn(X1, . . . , Xm) = 0

(8.1)

where fi are homogeneous of equal degree.

We define the degree of a point P ∈ C(F (T )) as follows: deg(P ) is the

maximum of the degrees of the polynomials gi(T ) where P is written as (g1(T ) :

. . . : gm(T )) and g1, . . . , gm are coprime.

Suppose we are searching for points (x1 : . . . : xm) ∈ C(F (T )) of degree

no greater than d. Then we may assume that such points have coordinates in

F[T ] since C is a projective curve. We introduce m(d+ 1) new variables aij for

1 ≤ i ≤ m, 0 ≤ j ≤ d and make the substitution:

X =





d
∑

j=0

a1jT
j,

d
∑

j=0

a2jT
j , . . . ,

d
∑

j=0

amjT
j



 . (8.2)

Substituting this into the polynomials in (8.1) we get a set of polynomials

F1(T ), . . . , Fn(T ) where Fi(T ) = fi(X). For X to satisfy (8.1) these poly-

nomials must all be identically zero so their coefficients must all be zero. If S

is the set of all coefficients of F1, . . . , Fn then S is a set of polynomials si in the

variables aij . Setting these all to zero now gives us a set of equations defining

a variety V over the field F :







































s1(a11, . . . , a1d, a21, . . . , a2d, . . . , am1, . . . , amd) = 0

s2(a11, . . . , a1d, a21, . . . , a2d, . . . , am1, . . . , amd) = 0

...

sk(a11, . . . , a1d, a21, . . . , a2d, . . . , am1, . . . , amd) = 0

(8.3)
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where k = #S. All one has to do now is find points on V. V will in general have

positive dimension and consist of points, curves, surfaces etc. The irreducible

components of dimension 0 will map to degree d points on C, dimension 1

components to degree d − 1 points etc. The various methods of finding the

components of V all involve tedious computation using Groebner bases, and

most approaches via computer stall in an explosion of variables and equations

around the d = 5 mark. Thankfully, the only occasions we need to use this

method are for d = 1, 2 and these are described in 8.7. In this case F is a finite

field so Magma can be asked straight for the points on V.

One advantage of this method is that it does not assume anything about C

beforehand.

8.3 Quadric Intersections

Definition. Let K be a field. A quadric surface over K is a surface in P3(K)

given by an equation in the following form:

aW 2 +bX2+cY 2+dZ2 +eWX+fWY +gWZ+hXY +iXZ+jY Z = 0 (8.4)

with the coefficients a to j in K.

If V is the vector of variables [W,X, Y, Z] then provided K has characteristic

6= 2, the above equation can be written as VMV T = 0 where M is the following

symmetric matrix:

M =





















2a e f g

e 2b h i

f h 2c j

g i j 2d





















. (8.5)
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Note that this matrix is far from unique, even up to scalar multiplication. For

example, it is sometimes equally convenient to write it as an upper-triangular

matrix over K.

Definition. A Quadric Intersection over a field K is a curve in P3(K) given by

a pair of independent equations in the same form as (8.4), or equivalently by

two symmetric matrices with entries in K.

Definition. A quadric intersection C is said to have good reduction at a prime p

if the associated quartic given by det(uA − vB) has no repeated roots mod p,

where A and B are the matrices defining C.

8.4 Finding all solutions mod p

First we establish the following notation:

R : the polynomial ring Fq[t] where 2 ∤ q,

K : Fq(t) - the field-of-fractions of R,

p : an irreducible in R of degree ≥ 2,

p : the prime ideal of R generated by p,

kp : the quotient-ring R/p.

Let C be a quadric intersection in P3(K) with defining polynomials Fa and Fb,

that has good reduction at p. Let F̃a and F̃b denote the polynomials derived

from Fa and Fb by reducing the coefficients mod p. Let C̃ denote the reduced

curve in P3(kp).

Note that since we are working with rings over finite fields, the quotient-ring

kp is itself a finite field of size qdeg(p). It follows that C̃ has a finite number of

points.
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Points on C̃ can be grouped into four types: (0 : 0 : 0 : 1), (0 : 0 : 1 : ⋆),

(0 : 1 : ⋆ : ⋆) and (1 : ⋆ : ⋆ : ⋆) where ⋆ denotes an element of kp. For the first

type, it is a trivial matter to check whether (0 : 0 : 0 : 1) lies on C̃.

For points of the second type we introduce a new variable u and evaluate F̃a and

F̃b at (0 : 0 : 1 : u). This gives two quadratic polynomials in u and points on C̃

of the second type correspond to common roots of these polynomials. A similar

method is used for points of the third type, except this time two variables u

and v are needed, and we solve two simultaneous quadratics in u and v, with

solutions corresponding to points on C̃.

For points of the fourth type, we cannot extrapolate this method further since

we would have three variables but only two equations. Instead we fix the second

coordinate to a particular value in kp and proceed as for points of the third type.

This must be repeated for every element of kp, of which there are qdeg(p).

The computer algebra package Magma has a built in function for finding all

points on a variety defined over a finite field. However, for quadric intersections

at least, the above method is much faster. The following is a summary of this

method, notation as stated above:

Algorithm 8.4.1: Points mod p

INPUT: C: A quadric intersection over Fq(t), p: an irreducible in Fq[t]

OUTPUT: A list of points on C mod p

1. C̃:= Reduce C mod p;

F̃a, F̃b:= Defining polynomials of C̃;

S:= empty-set;

2. IF F̃a(0, 0, 0, 1) = 0 AND F̃b(0, 0, 0, 1) = 0 THEN
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3. S:= S ∪ {(0 : 0 : 0 : 1)};

4. END IF;

5. IF F̃a(0, 0, 1, X) = 0, F̃b(0, 0, 1, X) = 0 has solutions x1, x2 THEN

6. S:= S ∪ {(0 : 0 : 1 : x1), (0 : 0 : 1 : x2)};

7. END IF;

8. IF F̃a(0, 1, X, Y ) = 0, F̃b(0, 1, X, Y ) = 0 has solutions (x1, y1), (x2, y2), (x3, y3), (x4, y4) THEN

9. append S:= S ∪ {(0 : 1 : x1 : y1), (0 : 1 : x2 : y2), (0 : 1 : x3 : y3), (0 : 1 : x4 : y4)};

10. END IF;

11. FOR x in kp DO

12. IF F̃a(1, x, Y, Z) = 0, F̃b(1, x, Y, Z) = 0 has solutions (y1, z1), (y2, z2), (y3, z3), (y4, z4) THEN

13. S:= S ∪ {(1 : x : y1 : z1), (1 : x : y2 : z2), (1 : x : y3 : z3), (1 : x : y4 : z4)};

14. END IF;

15. END FOR;

16. RETURN S;

8.5 Constructing the lattice

For each point P on C mod p our aim is to construct a lattice in R4 such that

all points on C that reduce to P mod p lie in the lattice. The lattice will be

constructed so as to be defined by a matrix in the following form:




















1 ⋆ ⋆ ⋆

0 p p⋆ p⋆

0 0 p2 p2⋆

0 0 0 p3





















where ⋆ denotes an element of R. The rows of the matrix form the basis of the

lattice.
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The preliminary step is to choose a prime p that is large enough (has large

enough degree). The choice of p will b discussed later in 8.6.1.

8.5.1 Step 1

We now have chosen a prime p such that C has good reduction at p. Let Fa = 0

and Fb = 0 be the equations defining the quadric intersection C. Let F be the

column vector of the defining polynomials Fa and Fb. Let ∇F be the Jacobian

matrix of F so:

∇F =







∂Fa

∂W · · · ∂Fa

∂Z

∂Fb

∂W · · · ∂Fb

∂Z






. (8.6)

Let C̃ be the reduced curve C mod p, and P̃ be a point on C̃ that we have

found using the algorithm “Points mod p” described in 8.4. ∇F(P̃ ) has rank 2

since C̃ is smooth at P̃ . After permuting variables if necessary we may assume

that P̃ may be lifted to x ∈ R4, x = (1, x2, x3, x4).

Since p is a prime where C has good reduction, we may assume that the

submatrix of ∇F consisting of the second, third and fourth columns, has rank

2. After a second permutation of variables if necessary we may now assume that

the matrix:

M(X) =







∂Fa

∂Y
∂Fa

∂Z

∂Fb

∂Y
∂Fb

∂Z






(8.7)

is non-singular mod p at P̃ .

8.5.2 Step 2

Next we lift x to a point mod p3, so F(x) ≡ 0 (mod p3).

Since C̃ is non-singular at P̃ , by Hensel’s Lemma we can lift P̃ to a point

mod pk for k ≥ 1. First we lift x to a point mod p2: Set x′ = x + p(0, 0, a, b)
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where






a

b






= −M(x)−1







Fa(x)/p

Fb(x)/p






mod p (8.8)

so now F(x′) ≡ 0 mod p2. Then set x′′ = x′ + p2(0, 0, c, d) where







c

d






= −M(x′)−1







Fa(x′)/p2

Fb(x
′)/p2






mod p (8.9)

so F(x′′) ≡ 0 mod p3.

The above works by examining the Taylor expansion of F:

F(x′) = F(x + p(0, 0, a, b))

≡ F(bx) + ∇F(x)· (0, 0, a, b) mod p2

≡ F(x) + pM(x)







a

b







≡ 0 mod p2.

Similarly F(x′′) ≡ 0 mod p3.

8.5.3 Step 3

We adjust our notation so x′′ is now simply called x = (1, x2, x3, x4). Then

F(x) ≡ 0 mod p3.

Let e1, e2, e3, e4 be the four unit vectors of R4. Let L1 = 〈x, pe2, pe3, pe4〉

be the lattice of all lifts of P̃ . Next we construct a lattice L2 of index p5 in R4

that is a sublattice of L1 consisting precisely of the vectors y ∈ L1 such that

F(y) ≡ 0 mod p2.

Set u1 = 0, u2 = 1 and







u3

u4






≡ −M(x)−1







∂F

∂X (x)

∂F

∂X (x)






mod p2, so that
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∇F(x) · u ≡ 0 mod p2, and let L2 be the lattice with basis:

L2 = 〈x, pu, p2e3, p
2e4〉. (8.10)

Lemma 12. The primitive vectors in L2 are precisely the primitive vectors y ∈

L1 such that F(y) ≡ 0 mod p2. By primitive we mean that not all coordinates

are divisible by p.

Proof. Let y = λx + pt ∈ L1 with t = (0, t2, t3, t4), ti ∈ R, λ ∈ R, λ /∈ pR

(primitivity). Then

F(y) ≡ F(λx) + ∇F(λx) · pt mod p2

≡ λ2F(x) + λp∇F(x) · t mod p2

≡ 0 + λp∇F(x) · t mod p2.

(8.11)

So F(y) ≡ 0 mod p2 ⇔ ∇F(x) · t ≡ 0 mod p ⇔ t = t2u mod p⇔ y ∈ L2

Higher order Taylor expansions

We will need more terms of the Taylor expansion of F to carry out the next

step. We use the following fact:

F(x + h) = F(x) + ∇F(x) · h + H(x)(h) +· · · (8.12)

where H(x)(h) = 1
2







hTHa(x)h

hTHb(x)h






and Ha is the Hessian of Fa given by Ha =

(

∂2Fa

∂Xi∂Xj

)

(similarly for Hb). Note that when deg(F ) = 2 as is the case here,

we have 1
2h

TH(x)h = F (h).

8.5.4 Step 4

The final step is to construct a lattice L3 ⊂ R4 of index p6 such that every

primitive lift of P̃ that is a solution to C mod p3 lies in L3. This time however
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the lattice does not consist precisely of such points, it only contains them all.

Write H(x)(u) = 1
2







uTHa(x)u

uTHb(x)u






. In our case, since deg(Fa) = deg(Fb) = 2

we have H(x)(u) = F(u). Let







a

b






≡M(x)−1H(x)(u) mod p. Then we claim

that







a

b






6≡







0

0






mod p. For if this were not the case then it would follow

that F(u) ≡ 0 mod p, and hence F(λx + µu) ≡ 0 mod p ∀λ, µ which would

mean that C̃ contains a line (since x and u are independent) and this cannot

occur, since we have good reduction at p.

After making our last available permutation of variables if necessary, we

assume that a 6≡ 0 mod p. Set µ ≡ a−1b mod p and let L3 be the following

lattice:

L3 = 〈x, pu, p2u′, p3e4〉 (8.13)

where u′ = (0, 0, 1, µ). This is a lattice of index p6 in R4. We now show that

every mod p3 lift of P̃ lies in L3:

Proposition 13. Every primitive w ∈ L1 satisfying F(w) ≡ 0 mod p3 lies in

L3.

Proof. Such a w is clearly in L2 so w = λx + pγu + p2v where v = (0, 0, c, d),

λ, γ, c, d ∈ R and p ∤ λ. We need to show that d ≡ µc mod p, that is ad ≡ bc

mod p.

We have

0 ≡ F(w)

≡ F(λx) + ∇F(λx) · (pγu + p2v) + H(λx)(pγu + p2v) mod p3

≡ p2λ∇F(x) · v + p2γ2H(x)(u)

(8.14)
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using F(x) ≡ 0 mod p3 and ∇F(x) · u ≡ 0 mod p2 and the fact that ∇F is

homogeneous of degree 1, and H is constant.

It follows that:

λ∇F(x) · v + γ2H(x)(u) ≡ 0 mod p

⇒ λM(x)







c

d






+ γ2M(x)







a

b






≡







0

0







⇒ λ







c

d






+ γ2







a

b






≡







0

0







⇒ λ(d− µc) ≡ −γ2(b− µa) ≡ 0

⇒ d− µc ≡ 0 mod p.

(8.15)

Let M3 be the 4 × 4 matrix whose rows consist of the basis vectors of L3

as given in (8.13). In order to apply Lemma 9, this matrix will need to be

converted to weak Popov form. Since this transformation is carried out through

multiplication by a unimodular matrix, the resulting weak Popov form matrix

defines the same lattice. We will need to use the following fact:

Proposition 14. Let M be an n×n matrix over F (t) where F is a field. If M

is in weak Popov form and det(M) = D then

deg(D) =

n
∑

i=1

deg(PM
i )

where PM
i denotes the ith pivot-element of M .

Proof. Since the determinant of an n × n matrix is a sum of n! terms each

consisting of a product of n matrix entries no two of which share a row or

column, it is clear that one term must be the product of the pivots. All other

terms must contain at least one entry to the right of the pivot in its row and
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will therefore have strictly smaller degree than the pivot-product. The result

follows.

8.6 Using the lattice

8.6.1 Properties of the lattice basis

We now have, for each point P on C (mod p), a lattice LP defined by a matrix

MP in weak Popov form, containing all points on C that are congruent to P

mod p. In the description that follows we omit the subscript P from L and M

as the method will be applied to each lattice independently.

The rows of M are the basis of L. Let bi (1 ≤ i ≤ 4) denote the rows of

M and di := deg(bi) denote the degree of the ith pivot element of M . After

permuting the rows we can assume that d1 ≤ d2 ≤ d3 ≤ d4. By proposition 14

we have:

d1 + d2 + d3 + d4 = 6 deg(p). (8.16)

We wish to find all points on C ∩ L whose degree is no greater than a desired

bound, denoted by H . Let v =
∑4

i=1 aibi be a vector in the lattice. By lemma

9:

deg(v) = max
1≤i≤4

{deg(ai) + di}. (8.17)

So for v to have degree ≤ H we only need to consider, for each i, scalars ai

whose degree is no greater then H − di. In particular if one or more of the rows

of M have degree greater then H then these rows are redundant. With less

rows to consider, the algorithm for finding points on C in each lattice is faster,

however this is achieved by choosing p to be of a higher degree, which increases

the number of lattices that need to be analysed. For the algorithm described
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below we choose p so that d4 > H . This is the default setting in the Magma

implementation, although one can, if desired, change the parameter H0 (the

degree of p) to be a different value.

Choice of p

Given a quadric-intersection C the first step towards finding all points on C of

degree ≤ H is to find all points on the reduced-mod-p curve C̃, as described

in 1.2.2. Since constructing the lattice LP from each such point P takes time

O(1) the timing of the overall algorithm is dependent on our choice of p itself.

Two factors need to be taken into consideration. Firstly and most importantly

is the degree of p, as this directly determines both how many lattices need to be

constructed and how long each takes to analyse. Secondly, once the degree of

p has been decided, a further refinement can be made by choosing p such that

the reduced curve C̃ has as few points as possible.

Using the notation established in 1.2.2, C̃ is a curve of genus one over a

finite field of size qdeg(p), so by Hasse’s Theorem the number of points on C̃

is O(qdeg(p)). The number of lattices that have to be constructed therefore

increases exponentially with the degree of p.

Proposition 15. Let H be a positive integer. Let L, M , bi and di be as

described in 1.2.4, with d1 ≤ d2 ≤ d3 ≤ d4. If deg(p) > 2H
3 then every vector in

L of degree less than or equal to H is contained in the span of b1, b2 and b3.

Proof. Let L′ denote the span of b1, b2 and b3.

If deg(p) > 2H
3 then 6 deg(p) > 4H . It follows from (1.8) that

∑4
i=1 di > 4H .

Since d4 ≥ di for i < 4, it follows that d4 ≥ 1
4

∑4
i=1 di, hence d4 > H .

By Lemma 9, since d4 > H , any vector in L that is not in L′ has degree

92



greater than H , therefore every vector in L of degree at most H lies in L′.

The lower bound of 2H
3 on deg(p) cannot be improved on, for while it is

possible to have d4 > H if deg(p) is smaller, this cannot be guaranteed. For

example if deg(p) = 2H
3 then the di can all equal H .

The above proposition allows us to choose p so that we only need to search

for points on C in the span of three vectors in the lattice, which improves the

running-time of the program considerably (more on this later).

8.6.2 The search algorithm

We now have a lattice L ⊂ Fq[t]
4 of index p6 together with a matrix M , in

weak Popov form whose rows b1, . . . ,b4 are the basis vectors of L. All that

remains is to search for vectors in L of bounded degree that are points on the

quadric-intersection C. We assume now that p has been chosen so that b4 has

degree greater than H .

The method used to find points on C depends now on whether M has one,

two or three “good” rows. A “good” row is one whose degree is ≤ H . In L,

only a linear combination of the good rows can have degree ≤ H by Lemma 1.

One good row

If there is only one good row, then all that needs to be checked is whether this

row, as an element of P3(Fq(t)) is a point on C. Since C is a projective curve,

scalar multiplication (by an element of Fq[t]) does not change the point.
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Two good rows

In this case a candidate for a point on C has the form ub1 + vb2 where u and v

are elements of Fq[t]. Substituting this general point into the equations defining

C we get

F (ub1 + vb2) = 0 (8.18)

where F is one of the two defining polynomials of C. Since scaling u and v by

the same element of Fq(t) does not change ub1 + vb2 as a point in projective

space, the above equation is a homogeneous quadratic in the variable [u : v]

and can be easily solved. To find points on C we therefore look for common

solutions to Fa(ub1 + vb2) = 0 and Fb(ub1 + vb2) = 0. Note that here we have

not placed any restrictions on the degrees of u and v, so this method may find

points outside the degree bound H .

Three good rows

Similar to the two-good-rows case, a candidate for a point on C has the form

ub1+vb2 +wb3 where u and v lie in Fq[t]. However, we can now proceed in two

different ways. One method is to continue in a similar way to the previous case,

resulting in two quadratic polynomials in [u : v : w] defining the intersection of

two conics in P2(Fq[t]). One can then either ask Magma for the points directly

(since this has dimension zero) or solve the equations using the conic-solving

(see below) methods described in chapter 5. As in the previous case, we may

find points outside the desired degree bound.

An alternative way of proceeding is to put restrictions on the degrees of the

polynomials u, v, and w. We write these as u = u0 + u1t + · · · + uH−d1t
H−d1

and similarly for v and w. The coefficients ui, vi and wi represent elements
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of Fq. For the purposes of Magma they are variables in a multivariate poly-

nomial ring over Fq. Substituting the general point ub1 + vb2 + wb3 into the

equations for C yields two polynomials in t with coefficients that are polynomi-

als in Fq[u0, . . . , uH−d1 , v0 . . . , vH−d2 , w0, . . . , wH−d3 ] - a polynomial ring with

3+3H−(d1+d2+d3) variables. For the general point to lie on C we require that

these coefficients equal zero. Equating all of these polynomials to zero results

in a set of equations defining a variety over Fq. Since this is a variety over a

finite field one can then ask Magma for its points. Substituting these back into

u, v and w gives points on C.

This method can also be used when there are four good rows (though this

case only arises if H0 (the degree of p) is chosen manually to be ≤ 2H
3 ).

The three-good-rows case via conic parametrization

Since we can solve and parametrize conics over function fields (see chapter 5),

the case where M has three rows of degree ≤ H can be handled in the following

way.

Let P (u, v, w) = ub1 + vb2 + wb3 (u, v, w ∈ Fq[t]) be a general point of

L in the span of the first three basis vectors (rows of M). If there is a point

(u0 : v0 : w0) ∈ P2(Fq(T )) such that P (u0, v0, w0) lies on C then u0,v0 and w0

provide a solution to the following pair of equations:










Fa(P (u, v, w)) = 0

Fb(P (u, v, w)) = 0.

(8.19)

The above two equations define a pair of conics in P2(Fq(t)). Let Ca and Cb

denote the conics defined by Fa(P ) and Fb(P ) respectively. If neither conic has

any points then the lattice can give rise to no points on C. Otherwise we solve

and parametrize the first (though either will do) conic. Solving Fa(P (u, v, w)) =
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0 and parametrizing we obtain three quadratics qi(X,Y ) (i = 1, 2, 3) such that

(q1(x, y) : q2(x, y) : q3(x, y)) is a point on Ca for any (x : y) on the projective

line over Fq(T ).

To obtain a point on C we require a point to lie on both Ca and Cb. To find

such points we substitute the parametrization (q1 : q2 : q3) into the polynomial

defining Cb. This then gives Fb(P (q1, q2, q3)), which is a homogeneous quartic

in the two variables X,Y . It is then simply a matter of finding the roots (if any)

of the quartic. If the quartic has a root (x : y) then P (q1(x, y), q2(x, y), q3(x, y))

is a point on the quadric-intersection C.

8.7 Special treatment of the cases H = 0 and

H = 1

Since the first step of the method described in this chapter is to reduce the curve

C mod p, it soon becomes obvious that in the case H = 0, the “best” degree

for p to have as 0. Since we cannot reduce by a constant in Fq[t] a separate

treatment is required. Some particular features of Magma also dictate that we

must also treat H = 1 as a special case.

A couple of options are available: the first would be to increase the degree

of p to 2 and then continue as for the H ≥ 2 cases. This will be faster than if

we were searching for points of degree up to 2 say, since the number of “good”

rows in each lattice-basis-matrix will usually be smaller.

Alternatively we define a general point as P = (w : x : y : z) for points

of degree 0, and P = (w0 + w1t : x0 + x1t : y0 + y1t : z0 + z1t) for points of

degree ≤ 1. Substituting this into the polynomials defining C we obtain two
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polynomials Fa(P ) and Fb(P ). These can be viewed as polynomials in t over

the multivariate polynomial ring whose variables are the coefficients w, x, y,

z etc. Setting all coefficients of powers of t to zero gives a set of equations

defining a variety over Fq. The points of this variety then yield points on C

after substitution into the general point P .
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Chapter 9

Possible directions for

further work

9.1 When E has no 2-torsion

The two main algorithms give an explicit descent method for calculating rank-

bounds on elliptic curves but only work when the curves have full 2-torsion

defined over the base-field K = Fq(T ). An obvious next step to take would be

to seek methods that apply to all elliptic curves over K. One possible approach

would be to extend K to an algebraic function field L over which E has a two

torsion point and try to adapt the methods given in this thesis to work over

such fields.
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9.2 More general function fields

This thesis has been only concerned with function fields of the type Fq(T ).

It would be a logical step to seek methods for calculating the Mordell Weil

group of elliptic curves over more general function fields, e.g. Q(T ), C(T ) or

algebraic function fields. Over Q(T ) one immediately encounters the problem

that Q(T )(S, 2) is infinite, and over C(T ) the problem is that every homogeneous

space constructed using the methods given in this thesis always has local points

since C is algebraically closed. Kuwata [Kuw] has shown how certain elliptic

curves (constructed from K3-surfaces) over C(T ) or Q̄(T ) can be handled.

9.3 Generators for the Mordell-Weil group

This thesis has shown how the Mordell Weil group and the rank of an elliptic

curve over K = Fq(T ) may be calculated as an abstract group, but though we

explicitly find independent points on E these do not necessarily generate E(K),

only a subgroup of finite index. This problem of saturation is another possible

extension of the work carried out here.
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Appendix A

Tables of collected run-time

data

The first table below gives the CPU time taken to find all points of degree

≤ 5 on quadric intersections over base-fields Fp(T ) for various p. The quadric

intersections all arise from the following equations over Z(T ):











6Z1
2 + 6T 2Z2

2 + (T + 6)Z4
2 = 0

(6T 2 + 6)Z1
2 + (T 4 + T 2)Z3

2 + TZ4
2 = 0.

(A.1)

Each quadric intersection over Fp(T ) is formed by mapping the coefficients into

Fp(T ) in the obvious way. In the case p = 5 the curve is singular.

The second table gives the time taken to calculate the rank of the following

elliptic curve over F31(T ) using descent via two isogeny with varying height

bound H :

Y 2 = (X + 14T + 16)(X2 + (17T + 4)X + 18). (A.2)
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Figure A.1: Timing for point search with varying base field

p CPU time (seconds)

3 2.53

7 91.44

11 536.57

13 1079.48

17 3550.73

19 5058.24

23 12005.47

29 30507.32

31 40735.68

37 73334.18

41 111500.05

43 150164.44

Figure A.2: Timing for descent via 2-isogeny with varying H .

H CPU time (seconds)

2 0.82

3 1.98

4 10.26

5 18.54

6 1340.04

7 19759.06
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