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Universal Fourier expansions of modular forms 

Loic Merel 

Introduct ion  

Let X be the set of matrices ( :  b d ) E M 2 ( Z ) s u c l l t h a t a > b > _ _ O a n d d > c > O .  Let 

us consider the following series in C[M~(Z)I[[q]]: 
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The aim of this paper is to establish that this series produces (in a sense that will 
be made precise in a moment) Fourier expansions at infinity of modular forms of in- 
tegral weight _> 2 for congruence subgroups of SLy(Z). This justifies the terminology 
"universal Fourier expansions of modular forms". Here and in what follows "Fourier 
expansion" will always mean "Fourier expansion at infinity". 

Let k be an integer > 2. Let N be an integer > 0. Let Cj,_2[X,Y] be the complex 
vector space of homogeneous polynomials in two variables and degree k - 2. Let F0(N) 

(resp. r l (N) )  be the group of matrixes ( :  d ) E S L 2 ( Z ) s u c h  that NIc (resp. N[e, 

N[(a-  1)). Let X be a Dirichlet character modulo N. We denote by Sk(N) (resp. 
Sk(N,x)) the complex vector space of cusp forms of weight k for rl(/v) (resp. for 
F0(N) with multiplicative character X, see section 2.5). 

Let Ck-2[X, Y][(Z/NZ) 2] be the vector space of linear combinations of elements of 
(Z/NZ) ~ with coefficients in Ck_~[X, Y]. If r is a linear map Ck-2[X, Y][(Z/NZ) 2] ~ C 

and g =  ( :  d )  E M~(Z), we denote by r the linear map Ch_,[X, Y][(Z/NZ) ~] C 

defined by the formula 

r Y)[u, v]) = r + bY, cX + dY)[au + ev, bu + dr]), 
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P E Ct~-2[X,Y], (u,v) �9 (Z/NZ) 2. We denote by EN the set of elements (u,v) of 
(Z/NZ) 2 satisfying the relation Zu + Zv = Z/NZ .  

Let us denote by PN = UdIN(Z/dZ)*. By convention when d = 1, (Z/dZ)* has one 
element. Let C[PN]k be the quotient vector space of C[PN] modulo the vector space 
generated by the elements of the form [a] - ( -1)k[ -a ]  = 0, a E (Z/dZ)*, diN. If 
a �9 Z / N Z ,  diN and a invertible modulo d, we denote by [a]a the image of [a (mod d)] 
in C[PN]~. 

Let b : Ck-2[X,Y][EN] ~ C[PN]k be the C-bilinear map which associates to 
P(X,  Y)[u, v] the element P(1, 0)[v-1](~,/v) - P(0, 1)[--u-1](.,N), where by abuse of no- 
tations v -1 is the inverse modulo (u, N) of v and (u, N) is the greater common divisor 
of u and N, i.e. the order of the sugroup of Z / N Z  generated by u. 

T h e o r e m  1 Let r be a linear map Ck-2[X, Y][(Z/NZ) 2] -~ C verifying the following 
equalities 

r + r = r + r + r 2 = r - r = o, 

wherea = (01 O1) ,  r = (01 - -11)and J = ( 0  1 _01) , and f(P[u,v])  = 0 if 

(u ,v )  ~ E ~ ,  P �9 Ck-2[X,Y]. Let z �9 C k _ : [ X , Y ] [ E N ]  such that b(~) = O. Then 

r X )q detM 

MEX 

is the Fourier expansion of an element f of Sk( N). Furthermore all modular forms of 
such type can be produced by this method. 

Let X be a Dirichlet character Z / N Z  ~ C. Let us suppose that ~b satisfies the 
additional condition 

r Av]) = X(A)r v]) 

((A,u,v) �9 (Z/NZ) 3, P �9 Ck-~[X,Y]). Then f belongs to Sk(N,x) .  

If z does not satisfy the relation b(z) = 0, the series obtained should be, except for the 
constant term, the Fourier expa~nsion of a holomorphic modular form of weight k for 
FI(N)  (see the remark in the section 3.2). This theorem can be refined to obtain only 
newforms (see sections 2.6 and 3.2). 

We outline now the plan of the paper as well as the plan of the proof of the the- 
orem 1. We recall in the first part the theory introduced by Mania and developed 
by Shokurov of modular symbols of arbitrary weight for subgroups of finite index of 
SLz(Z) ([4], [12], [11], [14], [13]). This theory can be related to the Eichler-Shimura 
theory connected with the cohomotogy of subgroups of finite index of SL2(Z). The 
Eichler-Shimura theory imbeds modular forms in a space of modular symbols; The 
Manin-Shokurov theory constructs pairings between modular symbols and modular 
forms. We construct a complex vector space (of modular symbols) Adk(N), which 
is a quotient of Ck_2[X,Y][EN] (see section 1.3). We denote by [P,z] the image of 
P[z] �9 Ck-2[X,Y][EN] in A~ik(N). There is a bilinear pairing of complex vector spaces 
between .~dk(N) and Sk(N) (~ Sk(N) (where Sk(N) is the space of antiholomorphic 
cusp forms), see section 1.5. This pairing is given as follows: 

/0 /0 ( f l  + f 2 , [ P , x ] ) ~  f lg(z)P(z,1)dz T f lg(z)P(~,l)d2,  
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where fl E Sk(N), f~ E Sk(N), g is any element in SL2(Z) such that r(g) = z and 

fig(z) = (cz + d)-kf(gz)  and f]~(Z) = (c~ + d)-kf(gz).  

We denote by Sk(N) the image in .hAk(N) of the kernel of b. By a theorem of Shokurov, 
when restricted to Sk(N),  the pairing defined above is nondegenerate (see section 1.5). 
We complete the theory of Shokurov by making explicit the relation between the mod- 
ular symbols and the cohomology of SL2(Z). Moreover the action of the complex 
conjugation on modular curves defines an itlvolution ~* on A4k(N). This involution is 
studied in the section 1.6. In fact all the results in the first part of the paper are valid 
if Ft(N) is replaced by any subgroup of finite index of SL2(Z). 

The second part is devoted to the study of Hecke theory on A~k(N) (Hecke op- 
erators, Atkin-Lehner operators, old and new parts, degeneracy maps). We describe 
only here our main result. The Hecke opera.tors operate by duality on Sk(N). In 
fact this action extends naturally to A4j,(N). Let n be an integer > 0. We denote 
by M2(Z),~ the set of matrices of Ms(Z) of determinant n. We say that an element 
~-~M uMM E C[M2(Z),~] satisfies the condition (C,) if for all K �9 M2(Z)n/SL2(Z), we 
have in C[PI(Q)] 

UM([Moc]- [M0]) = [ c r  [0]. 
M E K  

We denote by Tn the Hecke operator on AAk(N). Our main result about Hecke operators 
is as follows. 

T h e o r e m  2 Let P[u,v] E Ck_2[X,Y}[EN]. Let ~M uMM �9 C[M~(Z)n] satisfying the 
condition (C,~). Then we have (the sum is taken with respect to the matrizes M = 

T,,([P,(u,v)]) = ~-~ uM[P(aX + bY, cX + dY),(au + cv, bu + dr)I, 
M 

where the sum is restricted to the matrices M such that (au + cv, bu + dv) �9 EN (if n 
and N are coprimes this restriction is unnecessary). 

We remark that the condition (Co) depends neither on the level N nor on the weight 
k. This theorem can be understood as a formula on linear forms on modular forms 
without knowing anything about modular symbols (see the pairing defined above). We 
give an analogous formula for the action of Atkin-Lehner operators on A~Ik(N) (see 
section 2.4). Let Pdn be the set of matrices of 9:' of determinant n. Then 

E "  
MeX~ 

satisfies the condition (C,~) (see the section 3.1). The theorem 2 extends some results 
obtained in my thesis for the weight 2 (see [8], [7], [9]). It extends also a result in [16] 
concerning only the modular forms for the flfll modular group SL2(Z). We shall add 
that other elements of C[M2(Z),] satisfy the condition (Cn) (see part 3). 

For z �9 Ck-2[X,Y][E~v] satisfying b(x) = 0 we can consider its image re(z) in 
Sk(N). A complex linear form r on Ck-2[X,Y][EN] satisfying the conditions of the 
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theorem 1 factorizes through a linear form on AA~(N), which induces a linear form 
r on Sk(N). We obtain a linear form a ( r  on the Hecke algebra (i.e. the C- 
algebra generated by the necke operators Tn and Tn,,~ of Endc(Sk(N)) for n > 1) 
which associates to T the complex number era(Tin(z)). We then use the following 

OO n fact: if a is a linear map from the Hecke algebra to C, then ~n=z a(Tn)q is the 
Fourier expansion of an element of Sk(N). We apply this principle for ct = a ( r  to 
obtain the theorem 1. 

As an application of the theorem 1, we give a conditional method to construct bases 
of Sh(N) (see section 3.3). 

In the course of the completion of this work, I was generously invited several times 
to the Institut fiir experimentelle Mathematik. I would like to thank this institution 
for its nice hospitality. 

1 The theory of Manin-Shokurov 

1.1 T h e  a l g e b r a i c  d e s c r i p t i o n  o f  m o d u l a r  s y m b o l s  

Let F be a subgroup of finite index of SL2(Z) and k an integer > 2. Ik k is odd, we 

imp~176176176176 J =  (O1 _ 01) ~F(~176  

is empty). 
First we consider the torsion free abelian group Ad generated by the expressions 

{a,~} ((a,fl)  e rZ(Q) ~) with the following relations 

{~,~} + (~,7} + {7,~} : 0 ((~,~,7) e r'l(O)3). 

So we have {a,/~} = -{/3, a} and {a,a} = O. We consider now the complex vector 
space 

Aak = Ck_2[X,Y] | ?~4, 

where Ck-2 [X, Y] is the space of complex homogeneous polynomials in two variables of 

d e g r e e k - 2 .  We define a linear action of g = (ac bd) EGL:~(Q)~ 

and P | {a,fl} E Adk by the rules 

Pig(X, Y) = P(dX - bY, - c X  + aY) 

and 

(P|  {~,~})lg = Pio | {g~,g~}. 

For (g, h) E GL2(Q) 2, we have (Pla)lh = Plhg. Let AAk(F) be the quotient vector space 
of Adk obtained by imposing the relations Zl= = z (z E Adk, 7 E F). We will denote 
by P{a,~} the image of P @ {a,fl} E A4~ in .AAk(F). The elements of AAk(F) will be 
called modular symbols of weight k for F. 

Remark .- We can replace the field C in this construction by any ring. In particular, 
the space .A,/k(r ) carries a natural integral structure. The subgroup ~"k-2[X, Y] @ AA 
of A4~ is stable by the action of GL2(Q) N M2(Z). It makes sense to consider its image 
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A4k(F,Z) in A4k(F). The complex vector space A4k(F) is canonically isomorphic to 
~ k ( r ,  z)  | c .  

1.2 The Manin symbols 

Let g E SL2(Z) and P E Ck-2[X,Y]. We introduce the Manin symbol [P,g] E A4~(r) 
by the formula 

[P, g] = PiAg0, goo}. 

(01 ~ 1) (0:1) We recall the notations of the introduction: a = ,7- = and J = 

01) ( O  1 O1) .  Thesematr icesver i f y~Z=J,  J 2 =  (0  

Proposition 1 Let g G SL2(Z) and P e Ck-2[X,Y]. The Manin symbol [P,g] depends 
only on the class Fg and on P. When g runs through SL2(Z) and when P runs through 
C~_2[X, Y], the Manin symbols generate Adk(F). Furthermore they verify the following 
equalities: 

[P,g] + [Pl~-,,ga] = 0, 

IF, g] + [PI-- ' ,  gr] + [PI--~, gr~] = 0 

and 
[P, g] = [PIJ, -g]. 

Proof.- The first assertion is a consequence of the construction of Adk(F). To prove the 
second assertion, we make use of a theorem of Manin which asserts that the elements 
{g0,gcr for g E SLy(Z) generate 2,4 (This is known as "Manin's trick" [4], proposition 
1.6. The proof of that assertion relies on continued fractions expansion). It follows 
quickly that the Manin symbols generate .Mk(F). To prove the first two equalities we 
remark the following relations in pl(Q):  oo = a0 = a2oo and oo = v l  = r20. We have 

[P,g] § [Pl,-,,ga] = Pla{gO, goo} + (Pi,-,)lg,{gaO,gaoo} 

= ptg{go, goo} + Pbg..-l{goo,gO} 
= 0 

and 

[P,g] + [Pl~-',g~] + [Pl~ -2,g~2] 

= Pig{gO,goo} § (Pj~-,)lg~{gvO,g~'oo} + (Pl~-,)la,,{gr20,gr2oo} 

= PIg({gO, goo} Jr {gl, g0i -b  {goo,gl} 

= 0. 

The third equality follows from the fact that the matrix J operates trivially on pI(Q).  

Remark .- The Manin symbols can be written as complex linear combinations of 
Manin symbols of type [P,g], where P is a monomial of the form XqY  k-~-q (q E 
{0,1 ..... k - 2}). Since these monomials are in finite number and since F\SL2(Z)  is 
finite, A4k(r) is generated by a finite number of elements. So it is a finite dimensional 
complex vector space. 



64 

1.3 Comparison with the theory of Shokurov 

We recall the theory of Shokurov (see [12], [11], [14], [13], especially the lemma- 
definition 1.2 in the last paper). We use here the notations of Shokurov. Let ~ be 
the Poincar~ ha]f-plane. Let Ar  be the compactification of the Riemann surface F\-5. 
Let II be the set of cusps of Ar .  Shokurov considers a certain locMly constant sheaf, 
which he denotes (RIr  ~, on the modular curve Ar  (where w = k - 2, see [13]). 
This sheaf is the usual sheaf on the modular curve A r  constructed from the space of 
modular forms of weight k for F; But there is no need to describe it here. 

Let (a,/~) E (pl(Q))2 and (n ,m)  E (Zk-z) 2. The modular symbol of Shokurov 
{a,/3, n, m}r  (which we will call provisionnally Shokurov symbol) lies in the homology 
group HI(Ar ,  II; (RIr which is a Q-vector space. The Shokurov symbols enjoy 
the following properties (see lemma-definition 1.2 of [13]): 

�9 The Shokurov symbol {a,/~, n, m}r  depends only on the polynomial [I~--Z~(mX + 
miY)  E Ck-2[X,Y], where n = (nl ,n2, . . . ,nk-2) and m = (rnl ,mi, . . . ,mk_2).  

�9 They generate the Q-vector space HI(Ar,  H; (RIr  

�9 They satisfy the following relations 

{ a , Z , n , m } r  + {j3 ,7 ,n ,m}r  + {7, a , n , m } r  = 0, 

(~,~,~) ~ rl(Q) s, (n,m) ~ (zk-2) 2. 

(a  bd) ~ r, ,ve hay e �9 F o r T =  c 

{7c~,7/3, d n -  c m , - b n  + am}r = {a,fl ,  n ,m}r ,  

(~,Z) c rl(Q) 2, (~,m) c (zk-2) ~. 

Our present goal is to prove that the Shokurov symbols can be identified with our 
modular symbols. Because of the first property satisfied by the Shokurov symbols, we 
can denote by {a,1f ,P} the symbol {a,fl,  n ,m}r ,  where P = I-I'~=l(niX + rniY) e 
Zk-2[X,Y]. The last two properties can be rewritten 

{a,/3, P} + {/3,7, P } + { 7 , a , P }  = 0 

and 

We deduce from these properties that there exists a surjective homomorphism of com- 
plex vector spaces: 

sl : A4k(F) ~ It~(Ar, II; (RIr  w) @Q C 

which associates P{a,/3} to {a , f l ,P}  | 1, for P of the form I-lk-21n.X lli=l ~ , + raiY) E 
Zk-2[X,Y], where n --- (nl,n2, ...,nk-~) E Z k-2 and ra = (ml ,m2 .... ,rn/~-2) E Z t~-2. 

Proposition 2 The linear map sl is an isomorphism of complez vector spaces. 
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Proof .- For j �9 r\SL~(Z), and q �9 {0, 1, ..., k - 2}, Shokurov denotes by ~(j,q) (and 
calls marked class) the element sl([XqYk-2-q]) of HI(Ar,  II; (RIr  '~) @Q C, where 
g is any element of the class j .  

After extending the scalars from Q to C, the theorem 2.3 of [13] asserts that the 
kernel of the linear map 

Ck_~[X,Y][r\SL2(Z)] --. Ha(At, n; (R~r ~) OQ C 

which associates to P[rg] the element sl([P, g]) is generated by the elements s~([P, g])+ 
sl([Pl~-~, gaD, sl([P, g]) + sa ([PI~-~, gr]) + sx ([PI~-2, gr2]) and sl([P, g]) - sl([Pij, -g] ) ,  
where P is a monomial, i.e. sl([P,g]) is a marked class. It is a consequence of the 
proposition 1 that this linear map factorizes through 

ck_2[x,y][r\szdz)] - ,  . ~ k ( r )  ~, Hi(At ,  II; (RIr  '~ | C, 

where the first linear map associates to P[Fg] the Manin symbol [P,g]. By considering 
the kernels of these linear maps, we obtain that sl is injective. 

Let Ck_2[X,Y][F\SL2(Z)]k be the quotient vector space of Ck_2[X,Y][rkSL2(Z)] 
obtained by imposing the relations P[j] = PIj[j(J)], j �9 r \SL2(Z) ,  P �9 ek-2[X,Y]. 
We define a linear action on the right of SL2(Z) on Ck-2[X, Y][r\SL2(Z)]k by the rule 

(P[rg])7 = PI,-' [rgT], 

P �9 C~_2[x,Y],  (g,7) �9 SL2(Z) 2. 
We denote by C~_2[X,Y][F\SL~(Z)]~ (resp. C~_~[X, YI[FkSLdZ)]~) the set of 

elements of C~-2[X, Y][F\SL~(Z)]~ invariant under the action of a (resp. r) .  

P r o p o s i t i o n  3 We have the following ezact sequences of complez vector spaces 

o -~ Ck_2[X,Y][r\SL2(Z)]~ x C~_2[X,Y][r\SL~(Z)]~ s 

C~_2[X,Y][r\SL2(Z)]~ ~ . ~ ( r )  --. 0, 

if k > 2, and 

o --. c -~ Ck-2[X,Y][r\SL2(Z)]~ x Ch_2[X,Y][r\SL2(Z)]~ s 

Ck_2[X,Y][r\SL2(Z)]k ~ ~ k ( r )  --. 0, 

if k = 2, where m~ is the map which associates to P[Fg] the Manin symbol [P,g], 
i associates to (a, b) the element a + b, in the last ezact sequence the linear map 
associates to X the element (E,eI~N X[z], E , eE~  A[z]). 

Proof .- By a theorem of Shokurov (see theorem 2.3 of [13], this result has already been 
used in the proof of the proposition 2), the kernel of mk is equal to the sum of the 
complex vector spaces Ck-2[X,Y][P\SL2(Z)]~ and Ck_2[X, YI[r\sL2(Z)]~. The sur- 
jectivity of mk is proved by the proposition 1. It remains to prove that the intersection 
of Ck_2[X,Y][r\sz2(Z)]~ and C~_z[X,Y][r\SL2(Z)]~ is equal to {0} if k > 2 and is 
equal to the image of �9 if k = 2. Let ~er \s~2(z)PJ[J]  e Ck_r Ylir\SL2(Z)]~ n 
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C,_2[X,Y][r\SL2(Z)] L We have P.q~ = P(j~) and PJI~ = PO*) for all j �9 r \ s L 2 ( z ) .  
Since ~r and r generate SLy(Z) (see [10]), we have P(jg) = Pj = PJIg for a l l j  �9 F\SL2(Z) 
and all g �9 SL2(Z). This implies that Pj is a constant polynomial, i.e. P = 0 or k = 2. 
If k = 2, then Pj is a complex number independent of j (SLz(Z) operates transitively 
on F\SL2(Z)).  So )~jcr\sL,(Z) PJ[J] is in the image of e. This proves the proposition. 

1.4 T h e  b o u n d a r y  m o d u l a r  s y m b o l s  

Let B be the abelian group generated by the elements {a} (a �9 FI(Q)). Let B~ be 
the complex vector space Ch-2[X, Y] | B. We define a linear action of g �9 GL2(Q) on 
P | {a,fl} �9 Bu by the formula 

(P @ {a})lg = Pig | {ga}. 

We define Bk(F) as the complex vector space quotient of B~ obtained by imposing the 
relations 

(P | {~})1~ : P | {~}, 

for 7 �9 F. 
For a e [,I(Q) and (n,m) E (Zk-~) ~, Shokurov introduces the boundary symbol 

{a,n, rn}r which is an element of the Q-vector space H0(II;(RIr This symbol 

.k-2<n.v ( a  b ) � 9  we depends only on a and on 11i=1 ~ ,-- + miY) �9 Ck-~[X,Y]. For 7 -- c 

have 
{Ta, d n -  cm,-bn + am}r = {a,n,m}r. 

These symbols generate the Q-vector space tt0(II; (RIr See the lemma-definition 
1.2 of [13] for all these properties. We will denote by {a, r I~-~(niZ + relY)} the 
boundary symbol {a, n, m}r. 

Let R~ be the equivalence relation in C[['\Q~] which identifies the element [F ( ~u ) 

(~ with (i~)k[I" v ] ('~ �9 Q -  {0}). We denote by c[rxQ~lk the finite dimensional com- 

plex vector space c[r\Q2]/Rk. If h is even, this vector space is canonically isomorphic 
to r In any event its dimension is equal to IrXr~(Q)l, i.e. the number of 
cusps of the modular curve Ar.  

Because of the properties satisfied by the boundary symbols of Shokurov there is 
an unique surjective linear map: 

s~ : Bk(r) --, tt0(I1;(RIr '~) | 

which associates to P{a} the boundary symbol {a ,P}  | 1 for P a polynomial of 
the form k-2 rIi=l (n~X + m~Y) �9 Ck-2[X,Y], where n -= (nl,n2,...,nl,-2) �9 Z k-~ and 
rn = (rnl,rn2, ...,rnk_2) �9 Z k-2. 

We consider now the complex linear map 

~ , :  Bk(r)--, C[r\Q2]k, 

" ( ")] of C[F\Q2]k. The fact that # is which associates to P{~} the element P(u,v)[r u 
\ 73 / 

well defined is a part of the following proposition. 
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Proposition 4 The linear maps s2 and p are isomorphisms of complex vector spaces. 

Proof .- Because of the way we constructed Bk(F), we can decompose it as a direct sum 

where c[ runs through a set of representatives of F \PI (Q)  and Bk(F)~ is the subspace 
of Bk(F) generated by the elements P{a}  (P E Ck-2[X,Y]). For a E pI(Q),  we have 
a surjective linear map 

O~ : Ck-2 [x ,Y]  - ,  ~ k ( r ) .  
P H P{a}.  

Its kernel is generated by the polynomials of the form P - PIg~, where ga E F verifies 
the equality g ~  = c~. If we write c~ = ; ((u,v)  E Z2), we find (P - Pla,)(u,v) = O. 
This proves that p is well defined. Since the kernel of r contains the kernel of a linear 
form, its image is at most of dimension 1. The dimension of Bk(F) is at most I r \ r l (Q)l .  
Since the dimension of H0(II; (RIr  ~) | C is exactly ]F\PI(Q)I (see [13], theorem 
3.4), the map s2 must be bijective, and the dimension of Bk(r) must be Ir\r~(Q)l. We 
deduce that the image of each map r is of dimension 1. So the linear map p must be 
bijective. 

Shokurov considers the canonical boundary map: 

0 : Ht (Ar ,  II; (RIr  ~) | C ~ H0(II; (RIr  ~) @Q C. 

We have ([13], lemma-definition 1.2) 

O( { a , ~ , n , m }  | 1) = { f l , n ,m}  | 1 - {a ,n ,  rn} @ 1. 

The kernel of 0 is canonically isomorphic to HI(Ar;(RI~b.Q) ~) | C. By abuse of 
notations, we still denote by 0 the linear map A4k(F) ---, Yk(F) obtained from 0 by the 
identifications made. We denote by Sk(F ) the kernel of 0 in A4k(F). We have 

O(P{a, f l})  = P{/3} - P{a}.  

P r o p o s i t i o n  5 We have the exact sequences 

0 -~ s ~ ( r )  -~ ~ k ( r )  ~ , k ( r )  -~ 0, 

if  k > 2, and 

0 --, sk(r)  ~ ,~k(r )  L ~ ( r )  • c -~ 0, 

if  k = 2, where the linear form 0 associates to A{a} the complex number A. 

Proof . -  Let us prove that (9 i s s u r j e c t i v e i f k  > 2. Let fl = ~ E pl(Q).  Let A E C. 
ut 

Let a = ~ E pl (Q)  such that c~ ~/3.  Let P E Ck-~[X,Y] such that P(u ,v )  = A and 
P(u' ,v ' )  = 0 (since k > 2 such a polynomial exists). We have in c[r\Q2]~ 

o a(P{a,~})  = P (u ,v ) [ r~ ] -  P(u' ,v ')[ra] = ,~[r~]. 
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So a is surjective. 
If k = 2, the map 0 is well defined and the image of 0 is contained in the kernel 

of 0. The image of 0 and the kernel of 0 are both generated by elements of the type 
{fl} - {a}. Since 0 is surjective we deduce the validity of the second exact sequence. 

We give now a formula for the boundary of Manin symbols. 

Proposition 6 Let P E Ck-2[X,Y] and g C SL2(Z). We have in C[F\Q~]~ 

#o  O([P,g])= P(1,0)[Fg ( 1 0 ) ] -  P(0, l ) [ rg  ( ~  1)]. 

wesotg_-(:  )Weh ve 
0 ( [ P , g ] )  = 

and 

1.5 Pa i r ings  w i t h  m o d u l a r  fo rms  

from the Poincar~ half plane to C. For g =  ( a  b ) s  Let f be a map 

z E -~, we recall the usual notations 

fl~(Z) = (cz + d)-kf(gz)(detg)~ 

and 
k ft,(z) = (c~ + d)- f(gz)(detg)~, 

where the horizontal bar above complex numbers denotes the complex conjugation. We 
denote by Sk(F) (resp. Sk(F)) the complex vector space of holomorphic (resp. antiholo- 
morphic) cusp forms of weight k for the group I'. There is a caaoaicai isomorphism of 
real vector spaces between Sk(F) and Sk(F) which associates to f the antiholomorphic 
modular form z ~ f(z); we denote by ] this antiholomorphic modular form. 

Shokurov defines a pairing ([13], lemma-definitiotl 1.2) 

(sk(r) ~ sk(r)) • rh(Ar, rl;(RIr ~') ~ C 

given by the formula 

( / l+h ,K~,a ,n ,  m I r ) ~  ] .  /l(z) H(n ,~+m~ld .+ ]~  f2(~)H(n~e+m,)de 
i=1 i=1 
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(fx E Sh(F), f2 �9 Sk(F)), where the path is, except for the extremities, contained in 
the upper half-plane. Using the identifications of section 1.3, we deduce from this a 
pairing of complex vector spaces 

(S~(F) (9 s~(r))  x ~ k ( r )  - .  c 

given by the rule 

(f l  + f2, P{a,f l})  ~ <  f l  + f2, P{a,15} >= L ~ f l (z )P(z ,  1) dz + L ~ f~(z)P(2,1) d~. 

fl e Sk(I~), f2 �9 ~k(P), (o~,~) �9 pl(Q)2, p �9 Ck-z[X,Y]. In general, the pairing 
< .,. > is degenerate. But we have the following theorem, which is essentially a 
restatement of the theorem 0.2 of [14]. 

Theorem 3 The bilinear pairing < .,. > is nondegenemte if restricted to a pairing 

(s~(r )  (9 s~(r))  x s~( r )  --. C. 

Proof .- Shokurov proves([14], theorem 0.2) that the bilinear pairing between (Sk(F) (9 
Sk(F)) and HI(Ar;  (RI$.Q) ~) @Q C is nondegenerate. The theorem 3 is deduced from 
the identification between HI(Ar;  (RI$.Q) ~) | C and 8k(F). 

Remark .- 1) Let fl E Sk(F) and f2 E S~(F). Let g E SL2(Z) and P �9 Ck-2[X,Y]. 
We have 

f/ 5 < fl +f2,[P,g] > :  fllg(z)P(z, 1)dz+ f ,  lo(Z)P(2,1)dz. 

So we find the formula given in the introduction. 
2) The pairing < .,. > is degenerate in general. The space of elements rn �9 A4k(F) 

such that < f,  rn > :  0 for all f �9 (SI,(F) (9 St,(F)) is the space of Eisenstein elements. 
By a theorem of Shokurov, it admits a basis in Adk(F, Z) ([13], theorem 4.3 and corollary 
4.4, see the remark in the section 1.1 for the meaning of A4k(F,Z)). It would be 
interesting to find expressions in terms of Manin symbols of elements of such a basis. 

3) The dimension of A4k(F) is equal to twice the dimension of Sk(F) plus the 
dimension of the space of Eisenstein series of weight k for F. Using the exact sequences 
appearing in the proposition 3, one can find the dimension of these spaces of modular 
forms. 

1.6 The action of the complex conjugation 

In this section we suppose that the matrix r/ = (O1  ~)  normalizes the group T. 

Proposition 7 The map , which associates to f E Sk(F) (9 Sk(F) the function z ~-* 
f ( - ~ )  = f ( ~ )  = fin(2) = f}~(5) is a complez linear involution of $k(F) (9 Sk(r) which 
ezehanaes Sk(F) and Sk(r i. 

The involution L* on A4k(F) given by the rule 
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(P  E Ck-2[X ,Y] ,  (a,13) E p l (Q)e ) / s  adjoint to L with respect to the pairing < ., .  > of  
section 1.5. Moreover ~" acts as follows on Manin symbols 

, * ( [P ,g] )  = - [P j~ ,~go-~] .  

Proof .- Let f E Sk(F). Let 3' E F. We have, since r/-17r/E F, 

$(f) l~ = f[~'-,i ---- f],7,7--'~'='i-~"~.y,~ = rio = ' ( f ) "  

So ~(f) is an antiholomorphic modular from. The analogous result with respect to 
f 6 sh( r )  can be proved similarly. 

Since r/normalizes F, the definition of e* is compatible with the construction of 
.K4k(F). Let f �9 SI,(F), P E C~-2[X,Y]  and (~,/~) �9 FI(Q) ~. We have 

< K I ) , P { a , ~ }  > = I ( - e ) P ( L 1 ) d ~  

= - f -a f ( z )P( - z ,1 )dz  
= < f,-Pl,~{r/a,r//3} > 

= < f , d ( P { a , f l } )  > . 

The same equalities hold with respect to f E Sk(F). 
Finally we prove the formula with respect to the Manin symbols. We have 

d ( [ P , g ] )  = d(Pl,{gO,goo}) 
= -(Pi,)l~{~gO,~goo} 

= -Pl,~-,g,~{OgO-17/0, og0-1~/c~} 

= - (P l ,~ ) l , - , , v { r / g r / - lO ,  r / g r / - ' oo }  

= -[PI~, ~g0-']- 

Let Sa( r )  + (resp. Sk ( r ) - )  be the subspace of Sk([') constituted by the elements of 
Sk(P) invariant (resp. antiinvariant) under the action of t*. We have a direct sum 

sk(r)  = sk(r)  + �9 & ( r ) - .  

P r o p o s i t i o n  8 The bilinerar pairings induced by the pairing < .,. > on 

s~(r)  x s~ (r )+  ~ c and s~(r)  x s ~ ( r ) -  -~ c 

respectively are nondegenerate. 

Proof .- Let (S/~(F) ~ Sk(F)) + be the subsp~tce of Sk(F) �9 Sk(F) invariant under the 
action of ~. The pairing < .,. > restricted to (Sk(F) �9 Sk(F)) + x Sk(F) + ---* C is 
nondegenerate. Since the map 

s k ( r )  -~ ( s k ( r )  $ s k ( r ) )  + 

f ~ f + K f )  
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is an isomorphism, we deduce the proposition from the equality 

< f -{- t(f),z >=< f,z > -F < f,t*(x,) >= 2 < f,~ > 

( f  �9 sh(r) ,  �9 �9 Sk(F)+). The assertion concerning Sk(F)- can be proved in a similar 
way. 

1.7 Connection with the cohomology of SL2(Z) 

The complex vector space Ck-2[X,Y][F\SL2(Z)]k is endowed with an action on the 
right of SL2(Z) given by the formula 

(p[rg])7 = Pl~[rgT]. 

Proposition 9 We have an isomorphism of complex vector spaces 

HI(SL2(Z),  Ck-2[X, YJ[F\SLz(Z)]) -~ Mk(Y). 

Proof .- We note M = Ck_2[X,Y][F\SL2(Z)]. Let M ~ (resp. M r) be the subspace 
of M constituted by elements of M fixed under the action of a (resp. r). In view 
of the exact sequences of the proposition 5, we only have to prove that there is an 
isomorphism of complex vector spaces 

HI(SL2(Z), Ck-2[X, Y][F\SL2(Z)]) "" M / ( M  a + MY). 

We recall that Z I ( S L 2 ( Z ) , M )  (resp. B I ( S L ~ ( Z ) , M ) )  is the complex vector space 
of functions r : SL2(Z) ~ M such that r = r + r (g,h) �9 SL2(Z) 2 
(resp. such that there exists rn E M with r = rn - rag, g �9 SL2(Z)). We have 
HI(SL~(Z), M) = Zl(SL2(Z), M ) / B I ( S L 2 ( Z ) ,  M) .  

Since SL2(Z) is the free product of the groups generated respectively by a and by 
v, the map 

ZI(SL2(Z),M) ~ k e r ( l + a + t r  2 + a  a) x k e r ( l + ~ ' + r  2) 
r ~ (r162  

is an isomorphism of complex vector spaces (ker(1 + (7 + ~2 + as) and ker(1 + r + v 2) 
denote the kernels in M of the multiplications on the right by (1 + a + a s + a 3) and 
(1 + v + r 2) respectively). Since M is a complex vector space and since q4 = rs = 1, 
we h a v e k e r ( l + a + a  2 + a  a) = M ( 1 - a )  and k e r ( l + r + r  2 )=  M ( 1 - v ) .  We have 
an  obvious isomorphism between M / M  a and M(1 - a) (resp. between M / M  y and 
M(1 - v)). So there is an isomorphism of complex vector spaces A : Z t ( S L , ( Z ) , M )  
M / M "  • M / M  r. Since SL2(Z) is generated by a and r ,  B I ( S L 2 ( Z ) , M )  is the set of 
functions r : SL2(Z) ~ M such that there exists m �9 M with r = m(1 - a) and 
r = m(1 - r). The image by A of B I ( S L 2 ( Z ) , M )  C ZI(SL2(Z), M) is the diagonal 
image of M in M / M  ~ x M / M  y. The map 

M / M  e x M / M  "~ ---, M / ( M  ~" + M") 
(rnl + M" , rn2+  M r) ~ m l - m ~ +  MV + M " 
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is surjective. We only have to prove that its kernel is precisely A(BI(SL2(Z),M)) in 
order to prove the proposition. Let (a,b) E M 2 such that a - b E M ~ + M r. There 
exists(a ~,b I) E M  a x M  ~ s u c h t h a t a - b = a  ~-b ' .  So we h a v e a - a  I = b - b  ~=c.  We 
h a v e a + M  a = c + M  # a n d b + M  r = e + M  ~. S o ( a + M r  r ) belongs to the 
diagonal image of M in M / M  r • M / M  ~" and the proposition has been proved. 

The space sk(r)  (9 sk(r)  is imbedded, by the theory of Eichler-Shimura combined 
with the Shapiro lemma, in HI(SL2(Z),Ck_z[X,Y][F\SL2(g)]). This theory can be 
extended to include, not only cups forms, but also Eisenstein series. This point of view 
has been adopted by Wang ([15]). 

1.8 S o m e  c o m m e n t s  on  t h e  t h e  w h o l e  sp ace  o f  m o d u l a r  f o r m s  

This paper is concerned mainly with cusp forms and does not fully take c~re of the 
Eisenstein series. The vector space A4k(r ) does not correspond to the full space of 
holomorphic modular forms of weight k for r just as ,Sk(F) corresponds sk(r).  To 
summarize this one might say that the space of cusp forms is reflected in A,4k(F ) with 
multiplicity two and the space of Eisenstein series with multiplicity one. We explain 
informally in this section how to construct a more complete theory. 

Let us consider the torsion free abelian group .A4 generated by the expressions {a,~} 
((a,fl) E (pl(Q))2) with the relations 

(~,~} - ( % ~ }  + ( % ~ }  - ( ~ , 6 }  = 0,  

(a, jg, 7, 6 all in FI(Q)). We set ~ o  = {~-~A~,~{a,fl) e . ~ / ~ A ~ , ~  = 0}; It is a 
subs._ ou p of ~ of Z-corank 1. Let us notice that in A4 we do not have the relation 

{a, a} = 0. There is an obvious exact sequence 

o --, z [ e ~ ( Q ) ]  ~ . ,~  ~ ~ --, o,  

where the injection associates to [a] the element {a,a} and the surjection associates 

to the element {a,~} of A~ the element {a,fl} of A4. 
We continue the construction just as in section 1.1. We use the notations A~tk = 

Ck-2[X,Y] | 2~t and A~4~ = Ck-2[X,Y] @ AA ~ There is a linear action of GL2(Q) on 

�9 'Qk and ASt~ given by the formula (P@{a,fl})lg = Pla@{ga,g~}. So we may consider 
the quotient groups 2~4h(F ) andf.jX~(r) obtained by quotienting A:4 k and .h~ by the 

action of F. We denote by P{a,  fl} the image in AAk(F) of the element P| {a, ~} of.A4k. 
When k > 2, there is actually a canonical isomorphism between AAk(F) and AA~(F); 
When k = 2, AA~ can be identified with a subspace of .A~4k(F) of codimension one. 
Moreover one has the exact sequence 

0 -* B~(r) -~ ~ ( r )  -~ ~ k ( r )  -~ o 

deduced from the previous exact sequence. Notice that the dimension of the complex 
vector space A4~(F) is twice the dimension of the full space of holomorphic modular 
forms of weight k for F. 
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N 
We introduce the Manin symbol [P,g~] E A:Ik(F) as the image of P | {g0,goo} in 

2vik(F), where P E Ch_~[X,Y] and g E SL2(Z). For A = ~huh[h] E Z[SL2(Z)], we 

denote by [P, g] �9 A the linear combination of Manin symbols )-'~h uh[P]h -1 , gh] (see the 
notations of section 1.2). We use the notation 

0=( 0 11)(o 
We have following relations for all Martin symbols in M~(F): 

[P, g] �9 0 = o 

and 
[P,g] - [P,g] �9 (J) = O. 

Let us consider again the vector space Ck_~[X,Y][F\SL2(Z)]k of the section 1.3. Let 
us denote by C~_~[X,Y][rkSL2(Z)]~, the image of Ck_2[X,Y][FkSL~(Z)]k under the 
action of the right of 0 (there is a unique action of Z[SL2(Z)] on Ck-2[X, Y][r\sL~(Z)]~ 
which extends by Z-linearity the action of SL2(Z) defined in the section 1.3). We expect 
then to have an exact sequence of complex vector spaces: 

0 --* C ~ _ 2 [ X , Y ] [ r \ S L ~ ( Z ) ] ~  --, C~_~[X, Y ] [ r \ S L ~ ( Z ) ] k  --* ~Qk(r) --, 0, 

where the injection is~the inclusion and the surjection associates to the class of P[g] 
the Manin symbol [P, g]. 

We consider now the generalisation of the theorem 2 to A~tk(F), when F = FI(N).  

In that case the Manin symbols can be written under the form [P,z], where P E 
Ck-2[X,Y] and z E EN (see the section 2.2). Let n be an integer > 0. There is an 
obvious action of Hecke operators T~ on AAk(N) which extends the action on .halts(F). 
This action is given by the formula 

T,~(P{a,fl}) = ~_, Pl6{~a,613}, 
$ER 

where R is a set of representatives of FI(N)\A,~ ; An is the set of matrixes ( :  b / E  

M2(Z)n such that N[c and N[(a - 1). Let ~MUM[M] e Z[M2(Z),~] satisfying the 
following condition (C,)  : For all class K E M~(Z)~/SL2(Z), we have the relations 
~MeK UM[MO0] = [CO] and ~]~MeK uM[MO] = [0]  in Z[PI(Q)]. This condition is 
stronger than the condition (C,~) given in the introduction. 

We have then the following formula for the action of Hecke operators on Manin 
symbols 

Tn[P, (u, v)] = ~ UM[P(aX + bY, cX + dY),  (au + cv, bu + dr)I, 
M 

where the sum is taken with respect t o t h e  matrixes M =  ( :  bd)and restricted to 

the terms for which (au+cv, bu+dv) belongs to EN, P E Ck-2[X, Y] and (u,v) e Ely. 
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This formula can be proved easily by extending the techniques used in the sections 2.1 
and 2.3. We indicate a family of elements of Z[M2(Z),,] satisfying the condition (C',~) 
in the section 3.4. 

Moreover we expect the existence of a nondegenerate pairing between A:4k(F) ~ and 
Mk(I') (9 Mk(P), where Mk(F) (resp. Mk(F)) is the space of holomorphic (resp. anti- 
holomorphic) modular forms of weight k for F and the existence of an alternate bilinear 
pairing A:I~ x A4~ ") -~ C. The first of these pairings should extend the pairing 
considered in the section 1.6. To make the picture complete one expects a nondegener- 
ate self-pairing extending the Petersson scalar product on Mk(F). When F = SL2(Z), 
such a pairing has been constructed by Zagier ([17]). 

2 H e c k e  t h e o r y  o n  m o d u l a r  s y m b o l s  

2.1 The general principle for the action of linear operators 

We keep in this section the notations of the first part. Let A C GL2(Q) such that 
FA = AF and such that F\A is finite. 

Let R be a set of representatives of F\A. There is a well defined linear map 

Ta : A4k(r) ~ A4k(r) 

which associates to P{a,fl} the element ~6eR P]6{ $a, Sf~}- This map does not depend 
on the choice of R. 

Forg  = ( :  ~ ) E  M , ( Q ) , w e n o t e 0  = (d__ c - : ) = g - l d e t g a n d , ~  = {gG 

GL2(Q)/~ �9 A}. 
Let r be a map 

ASL2(Z) - ,  SLy(Z) 

satisfying the following three conditions (more properly the conditions are satisfied by 
the pair (A, r 

1. For all 7 E ASL2(Z), and g G SL2(Z) we have Fr ) = Fr 

2. For all 7 6 ASL2(Z), we have 7r -1 6/~ (or equivalently r 6 A). 

3. The map F\A ~ ASL~(Z)/SL2(Z) which associates to F6 the element $SL2(Z) 
is injective (it is necessarily surjective). 

Let ~] UMM 6 C[M2(Z)]. We will say that ~ uMM satisfies the condition (Ca) if and 
only if, for all K 6 ASL2(Z)/SL2(Z) we have the following equality in C[PI(Q)]: 

UM([Moo]- [M0]) = [co1- [0]. 
MEK 

Theorem 4 Let P e Ch-2[X,Y] and g E SL2(Z). Let ~ u M M  e C[M2(Z)] satisfying 
the condition (Ca). We have in 3dk(r) 

Ta([P,g]) = ~ UM[Pl~,r 
M,gMGASL2(Z) 
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Proof .- We start from the right side of tile equality. Let S be a set of representatives 
of g-IZXSL2(Z)/SL~(Z). We have 

uM[Pl~f, r 
M,gMEASL'J(Z) 

= ~_, ~ uMPrr162162 co} 
mE5 ME,SLa (Z) 

= ~_, ~ UMPlr162 ~b(gss-'M)co} 
JES MEeSL2(Z) 

= ~ ~ uMPlr162162176176 �9 
JES ME~SL2 (Z) 

The last equality is a consequence of the property 1 satisfied by ~b. Since s and M have 
the same determinant we have s-lM.[/i = J. We make use now of the condition (C4) 
and of the properties of modular symbols to obtain the equalities: 

~ ,  uM[Pl~,r = ~ Pi,h(o,p{r162 
M,gMEs *ES 

= ~ Pl,b(g.),~s{r ,r 

Because of the property 2 satisfied by r r  belongs to A. Because of the property 
3 satisfied by r for s ~ s' we have FC(gs)~j ~ Fr We deduce that ~b(ga).i~ 
runs through a set of representatives of F \ A  when s runs through S. This concludes 
the proof of the theorem. 

We denote by T~. the linear operator on Sk(F) (resp. sk( r ) )  defined by the rule 

f ~ y~(det~)~-lf l6 
SER 

(resp. 

~(det~), &).  
SER 

This operator is independant of the choice of the set of representatives R of F \ A  made 
at the beginning of the section. 

P r o p o s i t i o n  10 The operators T~ and Ta are adjoint with respect to the bilinear 
pairing < .,. > defined in the section 1.5. 

Proo,.-Let (a,f~)E FI(Q) ' and P E Ct,_,[X,Y]. Let f E  Sk(F). For g =  ( :  b )  E 

GL2(Q), we use the otation j(g,z) = (cz + d). We have 

< r i ( I ) ,  P{~,~} > = T;,(/)P(~, 1) d.  

= ~ - ~ f  (detS)k-'f($z)j(6, z)-kP(z, 1)dz 
5-RJ. 
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We make now the change of variables u = 6z. We obtain 

[$~ det~ k-i u " ~,6- iu)-kP(6-Zu,  < T i ( f ) ' P { a ' f l } >  = ~-'~a, ( ) f(  )3( 1) d6- iu  
SER ua 

= ~ ~:0(deth) ,_ l  f (u ) j ($ ,u ) ' (de t6) - 'P($u ,  l ) ( ~ 2 d e t 5  du 

SER J S a  

= < f ,  Ta(P{a ,Z} )  > �9 

The similar equality holds for f E Sk(F). This proves the proposition. 

P r o p o s i t i o n  11 The operator TA maps ,Sk(F) into itself. 

Proof .- Let T~ be the endomorphism of Bk(F) which associates to P{a} the element 

PI6{6a} �9 
SER 

It does not depend on the choice of R. The proposition follows from the equality 

Oo Ta = T~ oa. 

Remark .- 1) If A C M2(Z), then TA maps A.tk(r,Z) into itself. As we will see in 
the section 2.3, the Hecke operators preserve the integral structure of Adk(r). (: 0) 

2) If 77 = normalizes r and A (see section 1.6) then we have 

Ta o , = L o T a .  

In particular this applies to Hecke operators. 

2.2 M a n i n  s y m b o l s  for  r z ( N )  

Let N be an integer > 0. From now, we apply the results previously obtained to r = 
DI(N). We use thereafter the notations Adk(N) = Adk(Fz(N)), Sk(N) = Sk(I ' I(N)),  

( O  1 0 )normal izes  FI(N)  Bk(N) = Ba(r l (N))  ... We remark that the matrix r /=  1 

(see section 1.6). The surjection 

: SL2(Z) --, E ~  C (Z /NZ)  2 

defines a bijection between FI(N)\SL2(Z)  and E/v. Let A be a section of v. Let z 6 E.~. 
The Manin symbol [P,A(z)] depends only on r l (N)A(z)  and P (see proposition 1). So 
it depends only on P and z. By abuse of notations we denote it by [P,z]. We define 

action of M =  ( a  o )  EM2(Z) o n z = ( u , v ) E ( Z / N Z )  2 by the formula 
/ 

a n  
\ C a /  

z M =  (au + cv, bu § dr). 
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proposition 7, we have 

Propos i t ion  12 Let z = (u,v) E EN and P E C~-2[X,Y]. We have 

e*([P, z]) = -[PI~, x,7] = - [ P ( - X ,  Y) ,  ( -u ,  v)]. 

b~ E SL2(Z)such that ~ ' ( g ) - - z .  By application of  the 
{g] 

We have 

'*([P. ~]) = '*([P, g]) = - I R i s , , 0 , - : ]  �9 

((o :) , ~ ( , g , - ~ )  = ,~ ) = ( - , , , v ) .  
--C 

The proposition follows. 
There is a bijection between F \ ( Q  2 - { 0 } ) / Q ~  and PN (see the introduction for the 

definitionofPN) w h i c h a s s o c i a t e s t o F z ( N ) ( : ) Q * + t h e e l e m e n t u  (mod (v,N)) e 

(Z/(v, N)Z)* C P/v. This bijection defines an isomorphism of complex vector spaces 
between c[r~(lv)\Q~]~ and C[PN]k. The image of 0([P,z]) (P e Ck-2[X,Y], z e E~') 
by this isomorphism is equal to b~[P, x]) (see the introduction). 

2.3 Hecke operators 

We use the notations already introduced, especially those of section 2.2. Let n be an 

integer_>l. Let An be the set ~ matrices ( ac bd) EM~(Z) '~  

that NIc and N[(a - 1). We have FI(N)A. = A.FI(N) = A,. The set r l (N)\A.  
is finite. We denote by T~ the Hecke operator T ~  on .Adk(N) (see section 1.1). We 
remark that 77An = A~,7. So the Hecke operators commute with the involution L* 
defined in the section 1.6. 

We denote by M2(Z),~ the set of matrices of M2(Z) of determinant n. We recall 
(see the introduction) that ~ M  uMM e C[M2(Z),] satisfies the condition (C,,) if for 
all classes K E M2(Z)n/SL2(Z) we have the following equality in C[PZ(Q)]: 

UM([Moo]- [M0]) = [oo]-  [0]. 
M E K  

We prove now the theorem 2. 

Proof.. We will prove this theorem as a special case of the theorem 4. The set/~nSL2(Z) 

is the set of matrices ( :  d )  of Mz(Z)of determinant n such that (c, d, N)are  globally 
% -  

coprime (i.e. cZ/NZ + dZ /NZ  = Z/NZ). Let Cn be a map 

A . S L ~ ( Z ) - ~  SLy(Z) 

s u c h t h a t v ( r  bd))) = (c,d) E EN. In particular we have r(r  = (O, 1)M. 

L e m m a  1 The map Cn and the set A n satisfy the conditions I., Z. and 3. of the 
section 2.1. 
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P r o o f . - L e t  ( :  b ) E ~ x n a n d g  E SL2(7.), we have 

This equality proves that  the pair  (A,~, ~bn)_satisfies the property 1. 
An element g E ~nSL2(Z)  belongs to A ,  if and only if (0,1)g = (0,1) in E/v. Let 

g =  ( :  d )  E ;XnSL2(Z). We have (0,1)g = (0 ,1 ) r  so (O, 1)gUn(g)-I = 

(0, 1). We deduce that  gUn(g) -1 belongs to ~x,. So we have the property 2. 

L e t ( 6 , ~ , ) = ( ( a  b ) ( a '  b ' )  e ' d d r ) E  A~such  that  

da'-b' e -ba' ,ab' ) 
~'6 -1 = " " SLy(Z). dcl-d% -be' +ad' E 

n n 

Because of the definition of A ,  we have n = d = d' (mod N).  So we have Nla":~ d''. 
The matrices 5, F and 6t$ -1 are all trigonal matrices modulo N.  Since the upper left 
entry of 6 and 6 ~ are both 1 modulo N,  the upper left entry o f ~ 6  -1 must be 1 modulo 
N. So 5~6 -1 belongs to FI (N) .  We deduce that  the set A,~ satisfies the property 3. 

Let g E SL2(Z) such that  r (g )  = z. We have gM E ~ , S L 2 ( Z )  if and only if z M  
belongs to E/v. 

Since ~~.MItMM satisfies the condition (C, )  it satisfies the condition ( C a . )  of the 
section 2.1. By application of the theorem 4, we obtain the theorem 2. 

2.4 Atkin-Lehner operators 

Let N '  be a positive integer dividing N such that  N and N / N  ~ are coprimes. Let 

be the set of matrices ( a  , ~ ) E  M2(Z), of determinant N' ,  such that  A~v, NIc, Nrla, 

N'ld , N ' l ( b -  1), (N/N')I(a - 1~. We have FI(N)A~v, = A~v, F I (N  ) = A~v,. We have 

The operator  Tz~, (see section 2.1) is an Atkin-Lehner operator. It will be denoted 
by W/v,. 

Theorem 5 Let z E E/v and P E Ck-2[X,Y].  Let g E SL2(Z) such that 7c(g) = z. 
Let ~;~M UMM E C[M2(Z)/v,] satisfying the condition (C/v,). We have 

WN,([P, z]) = ~ uM[PII~, e/v,(gM)], 
M,zM=(o,o) (rood/v') 

where e/v,(gM) is the unique element of E/v congruent to (1,O)gM modulo N ~ and 
congruent to (0, 1)gM = z M  modulo N / N  ~. 

Proof .- We will apply the theorem 4 for A = A~v,. The set ;X~,SL2(Z) is the set 
[ / \  

(:  o, eterm . nt Nqc and N'ld (we have 

necessarily a Z / N Z  + bZ/NZ = Z /NZ) .  
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Let 60 6 A~V,. We consider the map 

r : s SZ~(Z) -~ SLy(Z) 
6og ~ g. 

Since ~x~v, = 60FI(N), the pz.ir (A~v, ,r satisfies the conditions 1 and 2. Let 6 = 

6 A'N' artd g = c' d' 6 SL2(Z), such that gg = k c a ' + d e '  cb' + da ~ ] 6 

/i~r We have the congruences 

(~ 
('o : ) -  

We obtain the congruences 

6g=  ( d do') (modN ' )  

( a' + bc' * ) (mod N/N') .  
6g = dc' d'd 

dd' - d (mod N/N')  

dd =- 0 (mod N/N')  

c' = 0 (modN ' )  

d' = 1 (mod N'). 

Since d is prime to N/N' ,  we have g 6 FI(N). This implies that the pair (A~r162162 
satisfies the condition 3 of the section 2.1. 

We remark that r(r = eN,(gM). By application of the theorem 4, the 
theorem 5 follows. 

2.5 Modular  forms with characters 

Let n be an integer prime to N. Let D,*= ( ~  Onl. Let A, , ,  be the set of matrices 

( a  bj~ 6 DnSL2(Z)such that N[c and N l ( a -  1). We have FI(N)An,,  = An,,FI(N). 
\ C a ]  
By definition the operator T,*,,* is the operator Ta,,~ in the sense of the section 2.1. 
The group FI(N) operates transitively by multiplication on the right on An,,,. 

P ropos i t ion  13 Let z = (u,v) e EN and P 6 Ck-2[X,Y]. We have 

T.,.([P, z]) = [PIP., zD.] = nk-~[P, (nu, nv)]. 

Proo/.- Let g 6 SL2(Z) such that r(g) = z. Let 7 6 A .... We can write 7 = D.To with 

70=  ( :  b d ) 6 F 0 ( N  ). W e h a v e d _ = n  (modN).  Sowehave~t(Tog)=(du,  dv)= 

zDn. The proposition is proved by the following equalities 

T,*,.([P,z]) = Pim.~og{D.7ogO, D.7ogC~} 
= PiD.Yog{7ogO,7ogoO} 
= [ P j v o , = D , , ]  
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Let X be a Dirichlet character Z / N Z  --* C. We say that f E Sk(N) (resp..r  E 
S~(N)) belongs to Sk(N, X) (resp. Sk(N, X))i f  we have fit = x(d) f  (resp. fl+ = x(d) f )  

for all T =  ( :  ; ) E  F0(N). This condition is equivalent to ~, , , , ( f )= n~-2x(n) f  for 

all n > 0 inversible modulo N, where T~,,n is the operator dual to T,,,,, in the sense of 
the section 2.1. 

We define .AAk(N, X) as the quotient vector space of .h4k(N) by the equivalence 
relation which identify x(n)z and n2-kT,, ,(z)  for all n > 0 inversible modulo N and 
all z E A4t,(N). Equivalently AAt,(N,x ) is the quotient vector space of .h4k(N) by the 
equivalence relation which identify the Manin symbol [P, ()~u, Av)] (()% u, v) E (Z/NZ) s, 
P E CI,-2[X,Y])in . ~ k ( N , x )  to X(A)[P,(u,v)]. 

We denote by Bk(N,x)  the image of 0 in /3k(N) and Sk(N,x)  the kernel of 0 in 
AAk(N,x ). We can state the following refinement of the theorem 3. 

Proposition 14 The pairing 

(Sk(N,x)  @ Sk(N,x))  x Sk(N,x)  ~ C 

deduced from the pairing < .,. > of the section 1.5 is nondegenerate. 

2.6 T h e  n e w  a n d  old p a r t s  of Mk(N)  

We do not give the detailed proofs of some statements in this section, since these 
statements parallel the classical theory of old and newforms (see for instance [3]). Let 

N ' b e a p o s i t i v e  divisor of N. Let t b e a d i v i s o r o f N / N ' .  T h e m a t r i x T =  (~ ~)  

satisfies T-1F~(N) C FI(N')T -1. So there are well defined linear maps 

~t : . ' ~ k ( N )  - ,  ~ k ( N ' )  

P(X,Y){a ,3}  ~ P(X, tY){ta,t3} = Pr 

and 

,t' : . ~ ( N ' )  --, . ~ k ( N )  

P{a,3}  ~ ~Pf~{Ta ,  Tfl}, 

where 3' runs through a set of representatives of FI(N)\Ft(N' )T .  We have et o e~ = 
multiplication by a nonzero scalar. The linear maps et and e~ are respectively surjective 
and injective. 

The intersection of the kernels of et when N I runs through all the positive divisors 
of N and t runs through all the divisors of N/N '  is by definition the new part AAh(N) '~ 
of M~(N). The space generated by the images of e~ when N I runs through all the 
positive divisors of N and t runs through all the divisors of N / N  ~ is by definition the 
old part A4k(N) ~ of Mk(N). We have a direct sum 

~ ( N )  = M ~ ( N )  '~ + . '~k(N) ~ 
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This decomposition respects the decomposition of Sk(N) in old and new part, i.e. 
�9 btk(N)" (resp. 2~4k(N) ~ is orthogonal to the old (resp. new) part of Sk(N), when 
one considers the bilinear pairing < .,. >. 

The two following propositions are not, properly speaking, applications of the gen- 
eral principle of the section 2.1. Nevertheless we use the same techniques to prove 
them. 

Proposition 15 Let z e EN. Let P E Ck_2[X,Y]. Let ~_,MUMM e C[M2(Z)t] 
satisfying the condition ( Ct ). We have in ./~th( N ) 

et([e, zl) = ~ uM[PIK4, ~zM], 

where the sum is restricted to the matrices M such that z M  �9 tEN, and where the 
mult@lication by ~ is well defined from EN to EN,. 

Proo f . -Le t  g �9 SL2(Z)such that r (g)  = z. We use the notation T = ( ~  ~ ) .  
g 

Let M e M2(Z)t such that z M  �9 tEN. Then we have r ( T - l g M )  = ~zM.  So two 
matrices M and M ~ of M2(Z)t satisfying z M  �9 tEN and z M  I �9 tEN are in the same 
class modulo multiplication on the right by an element of SL2(Z). If y �9 tEN and 
h �9 SL2(Z) then we have yh e tEN. So the sum in the formula in the proposition is 
taken with respect to all elements belonging to only one class of M2(Z)t/SL2(Z). We 
prove now the validity of the formula. We begin with the right side of the equality: 

~ uM[PI1~, l z M ]  = ~-~ UMPIT_~oM~{T-l gMO, T- lgMoo}  

= ~-~uMPca{T- lgMO,T- lgMo~}.  

We use the condition (Ct) and the fact that the sum is taken over only one class of 
M2(Z)t/SL2(Z). We have 

UMPI~'~{T-lg MO,T- lgM~ = Pl~.g{T-'gO, T - l g ~ }  

= el~,g{tgO,tgoo} 

= ~ , ( [ e ,  ~]) .  

The proposition is proved. 

Proposition 16 Let g G SL2(Z). Let H be a system of representatives in FI(N ' )  of 
FI(N)\Fx(N')g.  Let ~ M  uMM E Z[M2(Z)t] satisfying the condition (Ct), We have 

hEH M 

I t  O)SL2(Z) .  where the second sum is restricted to the matrices M such that hM G 0 1 
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Proof .- First we remark that, given h E H, the set of matrices M E M2(Z)t such 

( t O1) sL2(Z) is exactly a class of M2(Z)t/SL2(Z). We use the notation that hM E 0 

T =  (tO 01) .Wehave  

,1-0 
~_,uM[PI~,r((O 1)  hM)] 

hEH M 

The proposition is proved. 

hEH M 

hEH M 

hEH 

= ei([P, Tr(g)] ). 

To determine the new part of Adk(N) it is useful to consider the following propo- 
sition (which is a counterpart of a classical statement in the theory of modular forms, 
see [3]). 

P r o p o s i t i o n  17 Let z E AAk(N). This element belongs to .AAk(N)" if and only if z 
and W1vz belong to the kernel of el : A4k(N) ~ ./Vtk(N/t) for all divisors t of N. 

3 Fami l i e s  of  e l e m e n t s  sa t i s fy ing  t h e  c o n d i t i o n  (Ca) 

Let S (re,p S')be the set of m tr cos ("  y, E M2(Z) of determinant > 0 and 

satisfying one at least of the following three conditions 

�9 �9 > ly l ,  ~ '  > Iv' l ,  y y '  > 0 

I p �9 y =  O, [y'[ < ~ 

�9 y ' - -  O, ly[ < 

(resp. one of the following two conditions 

�9 y - -  o ,  ly' l  - ~- 

�9 y'= o, lyl = ~). 
Let n be an integer > O. Let ,Sn (resp. 8~) be the set of elements of,5 (resp. S ')  of 

determinant n. 

P r o p o s i t i o n  18 The element 

1 
M + :2 M~c$, M 

M E $ \  

of C[M2(Z),~] satisfies the condition (Cn). 
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Proof .- We use several lemmas. 

L e m a n 2  Thesetofe lements  ( d ~ )  E M,(Z) (resp. ( ~  0 ) ) ,  w i t h d > O  and 

- ~  < b < ~ is a set of representatives of M2(Z), /  SL2(Z). The same assertion holds 
if we replace the condition - ~  < b < ~ by - d  < b < ~. These elements are the only 

y~ E S,~ tJ S~ such that y' = 0 (resp. y = 0). 

P r o o f . - W e  prove the lemma with respect to the set of matrices ( 0  d ~ )  E M2(Z) 

with d > 0 and - ~  < b <__ ~. The other situations can be dealt with similarly. Let 
g �9 M2(Z),,. Since S/;2(Z) operates transitively on p l (Q) ,  there exists 7 �9 $/;~(Z) 

such that  gToo= oo. So thereexis ts  an element g '=  ( :  ~ 1 4 9  ) such that  

g ' o o = o o .  So we have c = 0. We can multiply by (O1 _ 01) t o o b t M n a > 0 .  Two 

matrices of M2(Z) of the type 0 and 0 n , with d > 0 and ff > 0 are 

congruent modulo ,,r if and only if d = d' and ff~- b' (mod d). This proves the 
first statement of the l eman .  

The second statement follows immediately from the definition of the sets S,~ and 
s ' . .  

Lemrna 3 Let g = y~ �9 Sn such that yr y~ 0 (resp. y y~ 0). There ezists 

( ) () an unique element go = zo -Yo z Y~ z~o E S,~ n gSLz(Z) such that e(y') y, = Z~o 

( r e sp .  ~ ' = (Yo) y~ ) where e(y') (resp. e(y~o)) is the sign of (resp. Y~o}; We 

have goo = goO (resp. gO = gooo). 

Proof.- We prove the lemma with respect to the hypothesis y~ r 0. The other assertion 
can be proved similarly. We consider two cases. 

~t 
First we suppose that ~r is not integral. Let q be the unique integer such that  

Iq + ~rl < 1 and (qy' + z ' )  > 0. Since ly'l < z ' ,  we have e(y')q < 0. The matrix 

-q ' (Y '  ' ( ' ) )  SL,(Z)  and have Y O belongs to we 

go = g u = �9 ' ) ~ ( y ' )  ~ , , -(qy'  + (Y)Y ] 
I 

The nondiagonal entries of this matrix are nonzero. Since IYl < z, we have (qm - 
y)e(y') > I - ~(Y')Zl = z. Because of the construction of q we have I(qY' + z')((Y')l < 
~(y')y'. We have (qy' + z')e(y')(-e(y')x) = -(qy'  + z ' )z  < 0. We have proved that  go 
belongs to S,~. This proves the existence of the matrix. We now prove the unicity. Let 
go �9 M2(Z) satisfying the conditions of the lemma. Let 3' �9 S/;2(Z) such that g7 = go. 

Wehaveg 'rO=g~176176 S ~ 1 7 6 1 7 6 1 7 6 1 7 6  ( -q~-e Oe)'with 
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q E Z and e E {1 , -1} .  We have 

;) go = g - e  = _(qyl + z,)e ey' " 

Z s Since ~ is not integral, we have qyi+z~ ~ O. So we have ey I > 0 and e = e(yl). We have 

also I(qy'+z')~l < ey', that  implies Iq+~[  < 1. Moreover the inequality ez(qy 'Tz ' )e  > 0 
implies qy~ + =t > 0. So we have proved the unicity of q and consequently of go. 

I I 

Now we consider the second case: ~ is integral. We first prove the existence 

property. We find that  the matrix g ( -_q:  ~ ) , w i t h q = - ~ - , a n d e = e ( y ' ) , i s e q u a l t o  

~y, . We only have to prove that Ixl < ~r~, i.e. that Izy'I < ~-. Since y'I ~' and 

]Y'I < :~', we have ]~] > 2. Since zz '  + yy' -=- n, we have 0 < x x '  < n, except perhaps 
if y = 0. If y ~ 0, we obtain the inequalities 

I~y'l < 51~ I< ~- 

I f y  = 0, we have ]Y'I < �89 (because g C $ , )  and the inequality 

I~y'l < ~ l~ ' l  _ < 2 

So the existence is proved. To prove the unicity we proceed as in the first case. 

L e r a m a  4 Let d be an even positive divisor of n. The elements of the set 

belongs to the same class modulo SL2(Z). Moreover these sets form a partition of 8~ 
which respects the classes modulo SL:(Z)  when d runs through the positive even divisors 
ofn. 

Proof .- The first assertion is proved by straightforward calculations. The second as- 
sertion is obtained by comparing with the definition of S~n and by using the lemma 
2. 

L e m m a  5 We have 
S ,  SL2(Z) N S:SL~(Z)  = 0. 

Proof .. Let g = y, E 8 ,  M S~SL2(Z). We can not have yl = 0 because of 

the lemma 2. Since g E 8 ,  and y~ ~ 0, we use the lemma 3 to prove the existence of 
/ \ 

( ~o -Yo ) e 8 ,  M gSL2(Z) = 8 ,  N S~SL2(Z) with ]y~] < y'. By an element go = -Y~ z0 / 

i E repeated use of the lemma 3 we obtain a sequence of matrices g~ = y~ zm 

8,~ n 8~S/,2(Z) with decreasing ly,~l. For some m we must have y,~ = O. So we obtain 
a contradiction. 
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We turn now to the p roofof  the proposition. The equation det ( zyl -Y,)~ =~'~ll- 

yy' = n has only a finite number of integral solutions with z z '  > 0 and yy' > O. So the 
set Sn is finite. Let K s M2(Z)n/SL2(Z). 

If K C S~nS/)2(Z), then the lemma 4 tells us that there exists a unique positive 
divisor d of n such that  

We have in C[el(Ql]  

( [ M o o ] -  [M0]) = 
M E K n S ~  

d d d o), 

a ~ [_d,]  
Io l- + I l- + I l- t0] + 2n -[0] 

2 ( [ ~ ] -  [0]). 

If K C S,~SL2(Z), we have in C[~I(Q)] (the sums are taken with respect to the 

matrices M = yl ) 

MEKnS~,  ME n MEKnS,,, 

Because of the lemma 3, all the terms cancel each other except those corresponding to 
y~ = 0 or y = 0. We obtain 

MEKNS,~ M E K  n,y = MEKNSn,y=O 

We now use the lemma 2 and we obtain that the last member is equal to [oo] - [0]. The 
proposition is proved. 

This result is very close to one obtained in [8], where the element appearing in 
the proposition 18 is called the Manin-Heilbronn element for n odd (if n is even it is 
called the Manin-Heilbronn element symmetrized by the complex conjugation). The 
phenomenon underlying the proposition 18 was discovered by Heilbronn in a work 
about continued fractions ([2]) and it was later used by Manin in the theory of modular 
symbols ([4], [5], [6]). 

Let us remark that  the lemmas 2 and 3 enable us to construct systematically the 
set Sn. The set S"  is given directly by the lemma 4. 

In [8], using a result of Heilbronn we gave an estimate for the cardinality of Sn: We 
have the following asymptotic formula when n ~ oo 

12 log 2 
IS,[ ",~ ~ -  a l (n)  log n, 

where al(n) is the sum of the positive divisors of n. 
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We can now introduce another universal expansion of modular forms, which seems 
for practical purposes (i.e. explicit construction of bases of spaces of modular forms), 
to be more useful than the series considered in the introduction. 

We call the following series in C[M~(Z)][[q]] the Manin-Heilbronn ezpansion: 

MqdetM + 1 'K~ MqdetM 
MES 2 ~ES' 

+ ~ ,)+('o 
+ 7 )+ ( ' 0  

3.2 The  f a m i l y  r e l a t e d  t o  F(2) 

Let n be an odd integer > 0. Let 

02)+1(2 0 11)+~(2 0 "-11)+~(11 02)+1(~ 1 02))qi 
03)+(3 0 ~)+(11 03)+(3 0 "11)+(__11 03))q'+... 

Un = y, E M2(Z)/  

and 

V . = {  ~, z 

P r o p o s i t i o n  19 The element 

zz  ~ + y ? / =  n, z E (1 + 4Z), z and z '  odd, 

y and y' even,z > lYI,~' > lY'I} 

z z '  + yy' = n, z E (1 + 4Z), z and a:' odd, 

y and y' even, y > I~I,Y' > I~'1}. 

MEU,~ MEV. 

satisfies the condition ( Cn ). 

See [7] for the proof. These elements 0,~ are somewhat more canonical than the Manin- 
Heilbronn elements. Let us mention that  they satisfy the following relations in Z[Mz(Z)] 
([7]) 

0,,0,,, = O,,,v 

if n and n '  are coprimes odd integers, and 

(: 0)0,., 0.. = OpOp~-i - p  P 

i f p  is an odd prime number and q an integer _> 2. 
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3.3 T h e  set  X 

Let n be an integer > 0. 

P r o p o s i t i o n  20 The element 

satisfies the condition ( C .  ). 

Proof .. The proof is similar to the proof of the proposition 18. Let 

b '~ 

0 < b < d is a set of representatives o] M~(Z) . /SL2(Z) .  These elements are the only 

e l e m e n t s ( :  ~ ) E Xn such that T = O (resp. l~ = O). 

Proof .- The proof of this lemma is similar to the proof of the lemma 2. 

an unique element go = co do E 2(. n gSL2(Z) such that = do 

( : ) =  ( : : ) ) "  We have g~176 = goO (resp. gO = go~176 ). 

Proof .- We prove the assertion corresponding to c r 0. We prove first the existence 
of go. Let m be the smallest integer _> d/c. We have m >__ 2. We have ma - b > a > 0 
and e > mc - d >__ 0 by construction of m. So the matrix 

:) 
g - 1  = \ m e -  d 

belongs to ~'n and the existence is proved. Now we consider the problem of the unicity. 
We have 

We use the notation m = aQd-bcQ. We have 
n 

:). 
Since go belongs to X, ,  we must have c > me - d _> O. We deduce that m must be the 
smallest integer >_ d/e. The unicity is proved. 
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L e m m a  8 The set Xn is finite. 

Proof  .- We have to prove that  the set of quadruples (a, b, e, d) E Z 4 solutions of the 
equation n = ad - be, with a > b >_ 0 and d > c __. 0, is finite. We have the inequality 
n = ad - be > ad - (a - 1)(d - 1) = a + d - 1. Therefore the four numbers a,,b, c and 
d are all positive and smaller than n. 

We finish now the proof of the proposition 20. Let K E M 2 ( Z ) , J S L 2 ( Z ) .  We have 

in C[pl(Q)] (the sums are taken with respect to the matrices M = ( :  b ) )  

~ [M~]-[MO]= ~ [~1- ~ [1. 
MEKnYr MEKnX~ MEKNXn 

Because of the lemma 7, all the terms destroy each other except those corresponding 
t o e = 0 o r b = 0 .  We obtain 

MEKnXn MEKnXn,c=O MEK Xn,d=O 

We now use the lemma 6 and we obtain that the last member is equal to [c~] - [0]. The 
proposition is proved. 

Remark  .- The linear combination of matrices appearing in the proposition 20, 
satisfies a stronger condition than the condition (Cn): for all K E M2(Z) ,~ /SL2(Z)  we 
have in Z[Q~. \Q2] 

This is an easy consequence of the lemmas used in the proof of the proposition 20. 

3.4 An additional family 

Let n be an integer > 0. Let us mention an other family of elements of Z[Mz(Z),~] 
satisfying the condition (C,~), and even the condition (Cn) of the section 1.8. 

Proposition 21 The element  

of  Z[Mz(Z),,] satisfies the condition ( Cn). 

The proof of this proposition is based on the same kind of arguments than those 
used in the proofs of the propositions 18, 19 and 20. We leave this to the reader. 

Remark  .- The same proposition holds if we exchange simultaneously the signs of b 
and e in the two sums of the proposition 21. 
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I fwese t  A =  { ( :  ~ ) E M 2 ( Z ) / a > b > O , d > - e > 0 } , a n d B =  { ( :  b )  E 

M2(Z)/b > a > 0 , - c  > d > 0} then we obtain an other universal Fourier expansion: 

E MqdetM_ ~ Mq detM 

MEA MEI3 

2 0 0 1 ) +  (._1 1 ~))q~ 
( ( 0  1) + (10 2 )  + (20 1 ) - ( 1 1  11 

+(30 2 1 ) - ( 1  1 2 1 ) + ( 1  1 03))qZ+... 

It would be interesting to find other elements satisfying the condition (Cn). It 
seems that Zagier has recently found such elements closely related to the trace formula 
of Hecke operators. 

4 C o n s t r u c t i o n  of modu la r  forms 

4.1 M o d u l a r  fo rms  as l inear  maps  on t he  Hecke  a l g e b r a  

Let M be any of the following vector spaces: Sk(N), Sk(N,x) ,  any of the previous ones 
but extending spaces of cusp forms to spaces of holomorphie modular forms (i.e. includ- 
ing Eisenstein series), any of the previous ones but restricting to spaces of newforms, 
any of the previous ones but considering antiholomorphic modular forms instead. 

Let T be the corresponding Hecke algebra, i.e. the complex commutative subalgebra 
of Endc(M) generated by the Hecke operators T,~ and T,~,n (see section 2.3 and 2.5, n 
is an integer > 0) which we will denote simply by Tn and Tn,n. 

The statement and the proof of the following theorem is modeled on [1], page 306. 

T h e o r e m  6 Let a be a linear map T --* C. Then 

O0 

is, except for the constant coefficient, the Fourier expansion of an element of M. 

Proof .- We denote by an the linear form on M which associates to a modular form its 
n-th Fourier coefficient. We have a ,  = al o T,~. 

Lemm a  9 The bilinear pairing of complex vector spaces 

M X T  --* C 
( f ,T )  ~ a , (T f )  

is nondegenerate. 
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Proof .- Let T 6 T. Suppose that for all f E M we have a l ( T f )  = 0. We have then for 
a l ln  _> 1 

0 = a l ( T T n f )  = a l ( T n T f )  = a , ( T f ) .  

So we have T f  = 0 for all f s M. We deduce the equality T = 0. 
Conversely, let f �9 M. Suppose that for all T �9 T, we have a l ( T f )  = O. Then for 

all n > 1, we have 
a l ( T , f )  = a , ( f )  = O. 

So we have f = 0. 

We turn now to the proof of the theorem. It follows from the lemma that there 
exists f �9 M such that a(T) = a l ( T f )  (T  �9 T). Then we have the equalities 

oo 

n = l  n = l  n = l  

The later expression is the Fourier expansion of f. This concludes the proof of the 
theorem. 

4.2  P r o o f  o f  t h e  m a i n  t h e o r e m  

We prove now the theorem 1 by putting together all the parts of this paper. We write 

~EEN 

We consider rn(z) = ~-~6~sN[P~,A] E A~k(N). The equality b(z) = 0 is equivalent to 
rn(z) 6 SI,(N) (proposition 6 combined with the fact that Sk(N)  is the kernel of 8). 
Because of the relations 

r + r = r + r + r 2 = r - ~lJ = 0, 

the linear map 4' factorizes through a linear map on A4k(N) (see proposition 3), which 
induces a linear map 4',~ on 31,(N). It is a consequence of the theorem 3 and the propo- 
sition 10 that the Hecke algebra on Sk(N)  is canonically isomorphic to the complex 
algebra generated by the operators T, on Sk(N). The map 

T ~ C 
T ~ Cm(Trn(z)) 

is a linear map on the Hecke algebra. We use the theorem 2 and the proposition 20 to 
establish the following equalities 

4,,~(T,m(z)) = ~ 4',~( ~ IRwin, AM]) 
A6E N M6X. 

= ~ 4( ~ P~b~[AM]) 
A6EN MEX. 

= ~_r elM(Z)" 
ME;(., 
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Because of the property r = 0, if z ~ EAr, we do not have to make the restriction 
~M E EN. By application of the theorem 6 ,we obtain that 

oo 

n = l  n = l  MEXn 

= ~ r d"u 

MEX 

is the Fourier expansion of an element of Sk(N). 
Let A be an element of Sh(N) such that for all f E Sk(N), we have hi(f)  =< f , A  > 

(We can take the element A1 of section 3.3). 
Let f E Sk(N). Let e l  be the unique linear form Sk(N) ---* C such that d~l(y ) =< 

f , y  > for all y E Sk(N). By considering the linear form r equal to r composed with 
the canonical surjection from the kernel of b to Sk(N) and by choosing an element 
z �9 Ck_2[X,Y][(Z/NZ) 2] such that b(z) = 0 and of image A in Sk(N) as parameters, 
we obtain the following Fourier expansion of f 

oo 

This proves that all modular forms can be obtained by this method. 
If ~b satisfies the additional condition 

r ~v] = X(~)r v]) 

((A,u,v) �9 (Z/NZ) s, P �9 Ck-2[X,Y]), then f belongs to $~(N,X). This follows from 
the proposition 14 and the theorem 6. 

Remark .- 1) We will outline now the proof of the statement following the theorem 
1 in the introduction. The Hecke operators operate on BI,(N) (see the operator Ta 0 of 
the section 2.1). One can construct an isomorphism of complex vector spaces between 
the space of Eisenstein series of weight k for FI(N) and O(.,~k(N)) C Bk(N). Moreover 
this isomorphism is compatible with the action of Hecke operators. This can be seen 
through the Eichler-Simura isomorphism. Since we have the exact sequence 

o -~ S k ( N )  -~ ~ k ( ~ )  -~ ~k( lV) ,  

the Hecke algebra for 2~41,(N) is isomorphic to the Hecke algebra for the space Ss,(N)$ 
Eisenstein series. By application of the theorem 6 we should then prove the following 
result. If the element z in the theorem 1 does not verify b(z) = O, then the series 

MEX 

is, except for the constant term, the Fourier expansion at infinity of a modular form of 
weight k for Fx(N) which is not necessarily parabolic. 

2) If z belongs to the new part of .balk(N), then the Fourier expansion is the Fourier 
expansion of a newform. This follows from an application of the theorem 6. 
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3) As noticed in the introduction, we can replace the series connected to Pg by the 
Manin-Heilbronn series: With the hypotheses of the theorem 1, the series 

1 Y~ r + 2 M~S' (~[M(z)qdetM 
MES 

is the Fourier expansion of an element of S~(N). The possibility of producing modular 
forms using the sets S and S '  was already noticed by Manin (see [4] and [6]). 

4 .3  C o n s t r u c t i o n  o f  b a s e s  o f  S~(N) 

.Proposition 22 Let (r  be a basis of the complex vector space Hornc( S~,( N)+,C) 
(~esp. t tomc(Sk(N)- ,C) ) .  Let A e Sk(N) + (resp. S k ( N ) - )  such that TA = Sk(N) + 
(resp. TA = Sk (N) - ) .  Then, for i e I, the modular form fl of Fourier expansion 

f i  r '~ 
rt:l 

runs through a basis of Sk(N) when i runs through I. 

Proof. The fact that fi (i �9 I )  is a modular form is a consequence of the theorem 
6 and of the theorem 3. We suppose that tile family of modular forms (f i ) ie!  is 
linearly dependant, i.e. there exists a family of complex numbers ()q)ieI such that  
Y~ie.r ~ifl  = 0. We set r = ~ i e l  )qr We have r = 0 for all n > 1. Since 
TA = SI,(N) +, the elements TnA generate Sk(N) + when n runs through the integers 
> 1. So we have r = 0. Since (r  is a basis of Homc(Sk(N)+ ,C) ,  we have 
,~i = 0 for all i E I.  Because of the equality of the dimensions of Sk(N) + and Sk(N) 
the proposition is proved with respect to Sk(N) + (for S~,(N)- the proof is of course 
similar). 

Remark .- It is in fact diffi, cult to find an element A in S~(N) + expressed as a 
linear combination of Manin symbols and satisfying TA = Sk(N) +. But the set of such 
elements is Sk(N) + minus the union of a finite number of proper subspaces. 

We can restate the proposition 22 as follows. 

C o r o l l a r y  1 Let A be as in the proposition 20. Let z E C~-2[X,Y][EN] such that the 
image o[ ~ in .Ad~(N) is equal to A. Let (r be a linearly free family in the space 
of linear forms r �9 Homc( Ck_2[X , Y][EN], C) satisfying 

r + r = r + r + r 2 = r - r  = o, 

and 

r = r 

We suppose also that the space generated by the family (r is in direct sum with the 
space of elements o[ Homc( Ck_2[X, Y][EN], C) which factorize through the linear map 

b :  C~_2[X,Y][EN]-+ C[FI(N)\Q2]k. 
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Moreover we suppose that the family (r is maximal with respect to the above prop- 
erties (i.e. the cardinality of I is equal to the.,dimension of Sk(N)). Then 

r d'~M 
MEX 

runs through the Fourier expansion of a basis of Sk( N) when i runs through I. 

Proof .- This is a direct reformulation of the proposition 22, obtained by considering 
the results obtained in the section 1.3, 1.4, 2.2 and 4.2. The list of equalities satisfied by 
r (i �9 I)  expresses that r factorizes through A4k(N)/(1 - t*)A4k(N). Because of the 
direct sum, the family of linear forms induced by (r on S~(N)/((1 - t*)A4k(N)N 
S~(N)) "" Sk(N) +) is linearly free. So the family of linear forms on Sk(N) + defined 
by (r is linearly free. It is a basis because of the maximality condition. We are in 
position to apply the proposition 22, with (r equal to the family of linear forms 
on s N) + defined by (r 

Let A1 be the unique modular symbol in Sk(N) such that for all f �9 Sk(N), we 
have a l ( f )  =< f ,  At > and al( f)  =< ~(f), Aa >. Let A + + A~ be the decomposition 
of A1 with respect to the direct sum 

Sk(N) = s k (g )  + $ Sk(N)- .  

Propos i t ion  23 The modular symbols A + E Sk(N) + and A~ �9 Sk(N)-  verify 

TA + = S~(N) + and TA~ = Sk(N)- .  

Proof .- Because of the proposition 7, we only have to prove that no modular form 
f �9 Sk(N) is orthogonal to TA +. We have for f �9 Sk(N) and n an integer > 1 

< f,T,~g + > = < T , f , l ( A t  +L*(At)) > 

1 
= ~ < Tnf + ~(Tnf),A1 > 

= ~(al (T, f )  + al(t(t(Tnf)))) 

= al(T,~f) 

= an(f). 

If f is orthogonal to TA +, we have a,,(f) = 0 for all n. So f = 0. The proposition is 
proved. 

Remark .- The modular symbol A1 defined above is a canonical element of A4k(N). 
It would be interesting to obtain an expression as a linear combination of Manin symbols 

of A1. 
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