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Abstract. We construct fundamental domains for arithmetic subgroups of
Γ = GL2(Fq [t]). Given ∆ ⊇ Γ(a) we construct a contracted form T of the

Bruhat-Tits tree T and a fundamental domain F of ∆ acting on T. We define a

lift of F to F ⊂ T called the “bipartite” lift. We show that F is a fundamental
domain of ∆ acting on T precisely when F is “∆-compressed.”

1. Introduction

Fix a finite field k = Fq, let A = k[t] and K = k(t). We denote the ∞-adic
completion of K by K∞.

The arithmetic group Γ = GL2(A) acts on the Bruhat-Tits tree T and the quotient
X = Γ\T is a half-line. Given a proper ideal a ⊂ A one may consider the arithmetic
subgroup Γ(a) ⊂ Γ with the induced action on T. Similarly one may consider an
arbitrary arithmetic subgroup ∆ ⊇ Γ(a). The quotient X∆ = ∆\T is a connected
graph which is the union of a finite graph X◦∆ and finitely many cusps. The genus
of the finite graph and the number of cusps have been computed by Gekeler.

We say that a subtree F = F(∆) ⊂ T is a fundamental domain for ∆ if the image
of F surjects onto X∆ and is a bijection of edges. A fundamental domain always
exists and we may assume without loss of generality that it is connected. Given ∆
we show how to compute a fundamental domain.

2. Properties of Connected Fundamental Domains

In this section we study properties satisfied by any (connected) fundamental domain
F for Γ(a). We assume throughout that a ⊂ A is a proper ideal. We start by
recalling the construction of a fundamental domain of Γ (cf. section II.1.6 of [S]).
Let O ⊂ K∞ be the valuation ring; the valuation of f ∈ K× is −deg(f).

Fix V = K2
∞ and let {e1, e2} denote the canonical basis. For n ≥ 0, let vn denote

the vertex in T corresponding to the lattice Otne1 ⊕ Oe2. The subtree F(Γ) ⊂ T
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spanned by {vn}n≥0 is a half-line starting at v0. Let

Γ0 = GL2(k) ⊂ Γ, Γn =

{(
a b
0 d

)
∈ Γ : a, d ∈ A×,deg(b) ≤ n}

}
, n ≥ 1.

We recall without proof the following lemma from [loc. cit.].

Lemma 2.0.1.

(1) The vn are pairwise Γ-inequivalent.
(2) Γn is the stabilizer of vn in Γ.
(3) Γ0 acts transitively on the set of edges starting at v0.
(4) For n ≥ 1, Γn fixes the edge from vn to vn+1 and operates transitively on

the remaining edges from vn.

Proof. This is proposition 3 on page 119 of [loc. cit.]. �

The lemma implies that F(Γ) is a fundamental domain of Γ (cf. corollary to propo-
sition II.3 of [loc. cit.]).

Definition: Let v ∈ T be a vertex and Γv denote the stabilizer of v in T. We say
that v is of type n if v = γvn for some γ ∈ Γ, in which case Γv = γΓnγ

−1.

More generally, for an arithmetic subgroup ∆ ⊇ Γ(a), we denote the stabilizer of v
by ∆v. Let Tn ⊂ T be the vertices of type n.

Corollary 2.0.2. Suppose n ≥ 1 and v ∈ Tn. Then Γv acts transitively on the
edges from v to Tn−1. It fixes the unique edge from v to Tn+1.

Proof. The follows from part 4 of lemma 2.0.1 and the identification of Γv
above. �

For every n ≥ 0, Tn is closed under the action of Γ, a fortiori under the action of
∆. We denote the subtree of all vertices of type at most n by T≤n, and similarly
for T≥n. They are also closed under the action of Γ.

Lemma 2.0.3. For every n ≥ 0, the quotient Γ(a)\T≤n is a finite graph.

Proof. By definition Γ\T≤n is the finite subgraph of Γ\T spanned by the first
n + 1 vertices. It is a quotient of the graph Γ(a)\T≤n by the finite group Γ(a)\Γ,
hence must be finite. �

We define the cusps of Xa = Γ(a)\T to be the infinite half-lines such that the origin
of each is connected to at least three vertices in Xa and every other vertex in the
cusp is connected to exactly two. We denote the complement X◦a and call it the
finite part.

Fix a fundamental domain F = F(Γ(a)) ⊂ T of Γ(a) and let Fn denote F ∩ Tn.
We assume without loss of generality that F is connected. We define the cuspidal
part of F and the finite part F◦ to be the inverse image of the cusps of Xa and X◦a
respectively.
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Corollary 2.0.4. There exists N ≥ 0, such that for every n ≥ N , F◦ ⊂ T≤n and
every cusp intersects Tn in at least one point.

Proof. The first part is trivial because F0 is a finite graph. Let L ⊂ F be a
cusp. By definition, L is an infinite graph which maps injectively to the quotient
Γ(a), and hence by the previous lemma, it has finite intersection with F≤N for every
N ≥ 0. It is also connected, so intersects Fn for every n� 0. �

We will see below that one may take N = d − 1 = deg(a) − 1 and that for every
n ≥ N each cusp will intersect Fn in exactly one point.

For any v in T of positive type, part 4 of lemma 2.0.1 implies that there is a unique
edge from v to Tn+1. We denote the edge ε(v) and the terminating point τ(v).

Lemma 2.0.5. Suppose n ≥ 0 and v ∈ Tn.

(1) If n < d, then edges from v are Γ(a)-inequivalent.
(2) If n ≥ d, the stabilizer of v in Γ(a) fixes ε(v) and acts transitively on the

remaining edges from v.

Proof. Let γ ∈ Γ be an element such that v = γvn. Then Γv = γΓnγ
−1, so

Γ(a)v = Γv ∩ Γ(a) = γΓnγ
−1 ∩ Γ(a) = γ(Γn ∩ Γ(a))γ−1.

The last equality holds because Γ(a) is a normal subgroup of Γ. Therefore, we may
conjugate by γ−1 and reduce to the case v = vn. In this case, the lemma follows
from lemma 2.0.1. �

The last property imposes a strong uniformity on Fn for n ≥ d.

Lemma 2.0.6. Suppose n ≥ d and v ∈ Fn. There are exactly two edges in F from
v, one of which is ε(v).

Proof. Part 4 of lemma 2.0.5 implies that for every n ≥ d and v ∈ Fn, there
is at most one edge from v to Fn−1. For a fixed v, this implies every geodesic of
length m ≥ 1 in F, starting at v and going through τ(v), must terminate at τ (m)(v).
Hence there must be at least one edge in F from v to Fn−1, otherwise F would not
be connected. It remains to show that ε(v) is in F.

Because F is a fundamental domain, there are a unique edge e in F and some
γ ∈ Γ(a) such that γe = ε(v). From the above, there is a unique edge e′ in F from
v′ = γ−1v to Fn−1. Also, γe′ is the unique edge in F from v to Fn−1. Because F is
a fundamental domain, we must have γe′ = e′, which implies v′ = γv′ = v. Hence
ε(v) = ε(v′) = e is in F. �

Corollary 2.0.7. For every n ≥ d and v ∈ Fn, the half-line in T spanned by
{τ (m)(v)}m≥0 is contained in a unique cusp L ⊂ F. In particular, there is a one-
to-one correspondance between elements of Fn and cusps.

The proof is straightforward.
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Theorem 2.0.8. Every cusp L ⊂ F attaches to F◦ in Fd−1. Moreover, if d > 1,
there is a one-to-one correspondance between elements of Γ(a)\Fd−1 and cusps.
For d = 1, there is a unique point v ∈ F0 and a one-to-one correspondance between
elements of F1 and cusps.

Proof. By corollary 2.0.7, every v ∈ Fd is contained in a unique cusp L ⊂ F.
Further, there is a unique edge starting at v and ending in Fn−1, hence L connects
to F◦ in F≤d−1. On the other hand, part 3 of lemma 2.0.6 implies that for every
v′ ∈ Fd−1 there are at least three Γ(a)-inequivalent edges ei of F and elements
γi ∈ Γ(a), such that {γiei} are Γ(a)-inequivalent edges from v′. Hence L must
attach to F◦ in Fd−1.

For d = 1 and v ∈ F0, every edge starting at v terminates in F1 and is contained
in a unique cusp L ⊂ F. Hence for every v′ ∈ F distinct from v, the segment in
F connecting v to v′ is contained in a unique cusp L ⊂ F. In particular, v′ is of
positive type, hence F0 = {v}. This implies there is a one-to-one correspondance
between cusps L ⊂ F and edges starting at v, which in turn correspond bijectively
to elements of F1.

Finally, suppose d ≥ 1. From the above, distinct cusps attach at Γ(a)-inequivalent
points of Fd−1. Conversely, let v ∈ Fd−1. Because F is a fundamental domain there
is a γ ∈ Γ(a) such that e = γ−1ε(v) is contained in F. Further, e is contained in a
unique cusp L ⊂ F which attaches to F◦ at γv. Therefore cusps L ⊂ F correspond
bijectively to elements of Γ(a)\Fd−1. �

Remark: From the proof we see, for d = 1, that F is the union of q + 1 cusps all
starting at the same v ∈ T0.

Let ∆ ⊃ Γ(a) denote an arithmetic subgroup and F(∆) ⊂ T a connected funda-
mental domain of ∆ acting on T. We may assume without loss of generality that
F(∆) ⊂ F = F(Γ(a)) and view it as a fundamental domain of Γ(a)\Γ acting on F.

Corollary 2.0.9. Every cusp L ⊂ F(∆) attaches to the finite part F(∆)◦ at a
vertex in F(∆)≤d−1. In particular, for every n ≥ d and v ∈ F(∆)n, there are
precisely two edges from v in F, one of which is ε(v).

Proof. The finite group Γ(a)\∆ permutes the cusps of F = F(Γ(a)). Hence
every cusp L ⊂ F(∆) contains a unique cusp of F and is disjoint from the remaining
cusps. Theorem 2.0.8 implies L attaches to F(∆)◦ in F(∆)≤d−1. �

3. Bipartite Trees

Let T be the Bruhat-Tits tree. Throughout we let F ⊂ T denote a connected subtree
such that F0 is non-empty. We fix an ideal a ⊂ A and write d = deg(a).

Let T+ ⊂ T denote the vertices of positive type.
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Definition: Suppose v, v′ ∈ T+. We say v′ orbits v if there is an m ≥ 0 such that
v = τ (m)(v′). Let T(v) denote the subtree of T spanned by the vertices orbiting v
and F(v) = T(v) ∩ F. We call it the constellation centered at v.

If one imagines bodies orbiting a common point, the following lemma motivates the
terminology.

Lemma 3.0.10. Suppose n ≥ 1 and v ∈ Tn. Then the stabilizer in Γ of T(v) is Γv.
It acts transitively on T(v)m for every 1 ≤ m ≤ n.

Proof. The first part follows by observing that γT(v) = T(γv) for every γ ∈ Γ.
The second part is corollary 2.0.2. �

The first property in the following definition is motivated by corollary 2.0.9.

Definition: We say F is a bipartite tree if it satisfies the following properties:

(B1): For every n ≥ d and v ∈ Fn, there are precisely two edges from v in F,
one of which is ε(v).

(B2): For every 1 < n < d and v ∈ Fn, F(v) is the union of the segments from
F(v)1 to v.

(B3): For every v ∈ F1, there is an edge from F0 to v.

For v ∈ T+, let L(v) denote the half-line spanned by ε(τ (m)(v)) for m ≥ 0. We call
it the cusp starting at v.

Lemma 3.0.11. Suppose F,F′ satisfy (B1) and (B2). Then F≤1 = F′≤1 if and only

if F = F′.

Proof. One direction is trivial: if F = F′, then F≤1 = F′≤1. Property (B1) is

equivalent to assuming that F is the union of F≤d−1 and the cusps L(v) starting
at each v ∈ Fd−1. Hence F = F′ if F≤d−1 = F′≤d−1. Both properties imply F is
the union of F≤1 and the cusps starting at each v ∈ F1. In particular, F may be
recovered from F≤1, so F = F′ if F≤1 = F′≤1. �

Suppose that v, v′ ∈ T1. If they do not belong to a common constellation, then
we say that v, v′ do not meet and define the distance d(v, v′) = ∞. This happens
if and only if the segment between them contains a vertex in T0. Otherwise, we
define d(v, v′) to be the radius of the smallest constellation T(v′′) containing both
vertices, and call µ(v, v′) = v′′ the meeting point; if v′′ ∈ Tm, then d(v, v′) = m−1.

Lemma 3.0.12. If F satisfies property (B1) and v, v′ ∈ F1, then either d(v, v′) ≤
d− 2 or d(v, v′) =∞.

Proof. The segment from v to v′ has trivial intersection with each cusp.
Corollary 2.0.9 implies it is confined to F≤d−1. If m = d(v, v′) < ∞, then their
meeting point lies on this segment, hence is in F≤d−1. Therefore m ≤ d− 2. �
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Let ∼ denote the equivalence relation on T1 such that v ∼ v′ if d(v, v′) ≤ d− 2 and

T the quotient tree T≤1/ ∼. For any γ ∈ Γ we have µ(γv, γv′) = γv′′ = γµ(v, v′),
hence d is Γ-equivariant. This allows us to “restrict” the action of Γ on T≤1 to the

quotient T. Restricting ∼ to any F, we let F denote the quotient tree F≤1/ ∼.

Corollary 3.0.13. If F satisfies (B1), then F connected.

Proof. If v, v ′ are vertices in F, it suffices to construct the segment connecting
v to v ′. Let v, v′ be vertices in F≤1 lying over v, v ′, and consider the segment s
connecting them in F. Lemma 3.0.12 implies it is confined to F≤d−1. We construct
the segment connecting v to v ′ by contracting each subgment of s, contained within
a constellation T(v′′) centered in Fd−1, to the point v ′′ in F1 associated to v′′. �

Let F ⊂ T denote a connected subtree such that F0 is non-empty. One may lift
it to F≤1 ⊂ T≤1 by lifting the edges, then to F ⊂ T by adjoining L(v) for every

v ∈ F1. We call F the bipartite lift of F. As the following lemma shows, given a
bipartite F, the bipartite lift of F is F again.

Lemma 3.0.14. Suppose F,F′ are bipartite. Then F = F ′ if and only if F = F′.

Proof. One direction is trivial: if F = F′, then F = F ′. Suppose that F = F ′.
The edges of F correspond bijectively to those of F≤1. Property (B3) assert that
for every v ∈ F1 there is an edge from v to F0, hence F≤1 may be recovered from

F. In particular, F≤1 = F′≤1, and lemma 3.0.12 implies F = F′. �

Fix an arithmetic subgroup ∆ ⊇ Γ(a). If F is a fundamental domain of ∆, then F

is a fundamental domain of ∆ acting on T. However, if F is a fundamental domain
of ∆ on T, then the bipartite lift F is not necessarily a fundamental domain of ∆
on T.

Suppose e, e ′ are edges T0 to T1. We lift each to T≤1 and let v, v′ be the endpoints
in T1. We define

(3.0.1) d(e, e ′) :=

{
0 if e = e ′

d(v, v′) + 1 otherwise
.

If v ∈ T1 and v ∈ Td−1 is the center of the associated constellation, then one easily
verifies that ∆v = ∆v.

Definition: We say that F ⊂ T is ∆-compressed if it satisfies the following prop-
erties:

(D1): For every v ∈ F1 and every pair of edges e1, e2 from F0 to v,

d(e1, e2) = min{d(e1, e3) : e3 ∈ ∆v e2}.

(D2): For every v ∈ F1 and every γ ∈ ∆, γv ∈ F1 if only if γ ∈ ∆v.

Suppose e1, e2 are edges from F0 to v. If they are ∆v-equivalent, property (D1)

implies d(e1, e2) = 0, which happens if and only if e1 = e2. Thus for every v ∈ F1,
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the edges from F0 to v are pairwise ∆-inequivalent. Property (D2) implies the
vertices in F1 are pairwise ∆-inequivalent, hence so are the cusps L(v) ⊂ F for

every v ∈ Fd−1. Together the properties imply that the edges of F, hence the edges
of F≤1, are pairwise ∆-inequivalent.

Lemma 3.0.15. Suppose F ⊂ T is connected and F0 is non-empty. The edges of the
bipartite lift F are pairwise ∆-inequivalent if and only if F is ∆-compressed.

Proof. From the remarks preceding the lemma we see that properties (D1)

and (D2) are necessary for the edges of F to be pairwise ∆-inequivalent, hence it
suffices to show that they are sufficient.

Suppose F is ∆-compressed and e1, e2 are distinct ∆-equivalent edges of F. They
must lie in F(v) for some v ∈ Fd−1 because the edges of F≤1 are pairwise ∆-
inequivalent. By property (B2) there are (distinct) vertices v′, v′′ ∈ F(v)1 such
that e1, e2 lie on the segments in F(v) connecting v′, v′′ to their meeting point
µ(v′, v′′). If e′1, e

′
2 are the edges of the segments ending at µ(v′, v′′) and e1 = γe2

with γ ∈ ∆v, then e′1 = γe′2, which implies d(v′, γv′′) < d(v′, v′′).

By property (B3) there exist distinct edges e′′1 , e
′′
2 from F0 to v′, v′′. They contract

to distinct edges e1
′′, e2

′′ from F0 to the point v ∈ F1 corresponding to v. In
particular,

d(e1,
′′ , γe2

′′)− 1 = d(v′, γv′′) < d(v′, v′′) = d(e1
′′, e2

′′)− 1,

which contradicts (D1). The first equality results from (3.0.1), for the edges of F≤1

are ∆-inequivalent, hence e1
′′ 6= γe2

′′. The second follows similarly. �

We now have most of the pieces for the following theorem.

Theorem 3.0.16. Let F be a connected fundamental domain of ∆ acting on T. The
bipartite lift F is a connected fundamental domain of ∆ acting on T if and only if
F is ∆-compressed.

Proof. As we observed before, one direction is trivial. It remains to show
that the bipartite lift F of a fundamental domain F of ∆ on T is one of ∆ on T. By
lemma 3.0.15 the edges of F are pairwise ∆-inequivalent, hence F is a fundamental
domain of ∆ on T, unless there is an edge of T which is Γ-inequivalent to every
edge of F.

Suppose e is an edge from Tn to Tn+1. If n = 0, the contraction e is ∆-equivalent
to an edge of F, hence e is ∆-equivalent to an edge of F. If n ≥ 1, we may choose a
vertex v ∈ T1 such that e = ε(τ (n−1)(v)) and an edge e′ from T0 to v. By the above,
γe′ is an edge of F for some γ ∈ ∆, hence γv is in F1. Because F is connected and
satisfies (B1) and (B2), the edge γε(τ (m)(v)) is in F for every m ≥ 0. In particular,
γe is in F. �
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4. Constructing Fundamental Domains in T

Let T be the contracted Bruhat-Tits tree associated to Γ(a) as in section 3 and
∆ ⊇ Γ(a) an arithmetic subgroup. In this section we construct a fundamental

domain F of ∆ acting on T and show that it is ∆-compressed. If one applies
theorem 3.0.16, then the bipartite lift F will be a connected fundamental domain
of ∆ acting on T.

Let e0 the “canonical” edge of T from v0 to v1 (cf. section 2). We denote the
contracted edge by e0 and the contracted vertices by vi. Let B ⊂ Γ0 denote the
Borel subgroup of upper triangular matrices. We recall the following facts without
proof (cf. lemmas 2.0.5 and 3.0.10).

Lemma 4.0.17. Γv0 = Γ0, Γv1 = Γd−1, and Γe0 = Γv0 ∩ Γv1 = B.

We refer to vertices in T0 as nodes and those in T1 as cusps. We call an edge e from
a node to a cusp a positive edge, and we associate to it the coset γB where γ ∈ Γ
satisfies γe0 = e. We obtain a bijection with the coset space Γ/B.

Corollary 4.0.18. { positive edges of T connected to e0 }
1−1−→ { cosets of Γ/B }.

The cosets Γv0/B correspond bijectively to the edges of T from v0 and those of

Γv1/B to the edges of T to v1. We choose representatives of the cosets as follows.

Viewing the coset space Γv0/B as P1(k), we index the cosets by z, and let {ωz} be
the coset representatives{

ωa =

(
1 0
a 1

)
: a ∈ k

}
∪
{
ω∞ =

(
0 −1
1 0

)}
.

B is a normal subgroup of Γv1 , and the coset space Γv1/B is a group isomorphic
to R := k[t]/td−1. We index the cosets by b ∈ R, so deg(b) ≤ d− 2, and let {γb} be
the coset representatives {

γb =

(
1 t · b
0 1

)}
.

Let S0 = {ωz} − {ω0}, S1 = {γb} − {γ0} and S be the disjoint union S0 ∪ S1. We
refer to elements of S as letters, elements of S0 as nodal letters and elements of S1

as cuspidal letters.

Definition: An S-word is a finite product w = λ1 · · ·λn of letters. When viewed
as an element of Γ, the empty word corresponds to the identity element. We say
that an S-word is reduced if every pair of successive letters λi, λi+1 has both a nodal
and a cuspidal letter. Moreover, we say it is nodal (resp. cuspidal) if the last letter
is nodal (resp. cuspidal); the empty word is both nodal and cuspidal.

To every S-word w we associate the edge ew = w e0 in T, associating e0 to the
empty word.

Lemma 4.0.19. Suppose w is a reduced S-word.
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(1) If w is cuspidal and v is the node of ew, then the nodal letters λ ∈ S0

correspond bijectively to the other edges of T from v via λ 7→ ew·λ.
(2) If w is nodal and v is the cusp of ew, then the cuspidal letters λ ∈ S1

correspond bijectively to the other edges of T to v via λ 7→ ew·λ.

Proof. We will prove the first statement, leaving the analogous proof of the
second statement to the reader. Let w be a cuspidal (reduced) S-word and v the
node of ew. Suppose λ ∈ S0 and w′ = w · λ. Then wλw−1 is an element of Γv,
hence

ew′ = (wλ) e0 = (wλw−1w) e0 = (wλw−1) ew

is an edge whose node is also v. The coset w′B is distinct from wB because
w−1 · w′ = λ 6∈ B, hence ew and ew′ are distinct edges by corollary 4.0.18. If
λ, λ′ ∈ S0 are distinct, then (w ·λ)−1(w ·λ′) = λ−1λ′ 6∈ B, hence ew·λ and ew·λ′ are

distinct edges of T to v. �

We say that two edges of T are adjacent if they are distinct and have a vertex in
common.

Corollary 4.0.20. { reduced S-words } 1−1−→ { positive edges of T connected to e0 }.

Proof. Suppose e is a positive edge of T. Let e0, . . . , en be the unique sequence
of adjacent edges in T from e0 to en = e. By lemma 4.0.19 and induction on i, there
is a unique reduced S-word w = λ1 · · ·λn such that ei = eλ1···λi for 0 ≤ i ≤ n. �

We denote the set of reduced S-words by Σ. Combining corollaries 4.0.18 and 4.0.20
we see that Σ is a set of coset representatives of Γ/B.

Lemma 4.0.21. Suppose w,w′ ∈ Σ are distinct. If ew, ew′ are not adjacent edges or
their common vertex is a node, then d(ew, ew′) = ∞. Otherwise, w−1w′B = γbB
for a unique γb ∈ S1 and d(ew, ew′) = deg(b) + 1.

Proof. The first part follows from the definition of d(ew, ew′) (cf. section 3).
Suppose have the cusp v in common. We may assume either w is nodal or both
w,w′ are cuspidal.

In the first case, w′ = wγb for a unique γb ∈ S1, by part 2 of lemma 4.0.19. Because
d(·, ·) is Γ-equivariant we have

d(ew, ew′) = d(we0, w
′e0) = d(we0, wγbe0) = d(e0, γbe0).

Therefore it suffices to prove d(e0, γbe0) = deg(b) + 1 for every γb ∈ S1.

In the second case w = w′′γb′ and w′ = w′′γb′′ for a unique nodal w′′ ∈ Σ and
distinct γb′ , γb′′ ∈ S1, again by part 2 of lemma 4.0.19. Writing b = b′′− b′ we have

d(ew, ew′) = d(w′′γb′e0, w
′′γb′′e0) = d(e0, γbe0).

Again it suffices to prove that d(e0, γbe0) = deg(b) + 1.

Let F be the union of the edges e0, γbe0 and F the bipartite lift. We denote the
lifts of the cusps of e0, γbe0 by v, γbv. From the definition of γb we see that it
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is an element of Γdeg(b)+1 − Γdeg(b). Moreover, their meeting point m(v, γbv) is
the only vertex fixed by γb on the segments from v, γbv to v′. By lemma 2.0.1
we must have m(v, γbv) ∈ Tdeg(b)+1, so d(v, γbv) = deg(b). Finally, the identity
d(e0, γbe0) = d(v, γbv) + 1 implies the lemma. �

Recall that R = k[t]/td−1. For any element f ∈ R and 0 ≤ n ≤ deg(f), let fn ∈ k
denote the nth coefficient of f , so that f(t) =

∑
n fn ·tn in R. We choose a bijection

σ : k× → {1, . . . , q − 1} and impose the lexical ordering on R as follows.

Definition: If f, g ∈ R are distinct elements, then we define f < g if either of the
following conditions hold:

(O1): deg(f) < deg(g);
(O2): deg(f) = deg(g) and σ(fdeg(f−g)) < σ(gdeg(f−g)).

We consider the induced order on the cuspidal letters: γb < γb′ if b < b′.

We call a positive edge nodal (resp. cuspidal ) if the corresponding reduced S-word
w is nodal (resp. cuspidal); e0 is the unique edge which is both cuspidal and nodal.

Every cusp v of T belongs to a unique nodal edge ew, for lemma 4.0.19 implies that
the remaining edges to v correspond bijectively to cuspidal letters via γb 7→ ew·γb .

We consider the induced order on the positive edges of T to v: ew < ew·γb < ew·γb′
if γ0 < γb < γb′ .

Let F ⊂ T be connected and assume F0 is non-empty. For any cusp v let F(v)
denote the union of the edges containing v.

Lemma 4.0.22. If v is a cusp of T and e1 ≤ e2 ≤ e3 are positive edges of T(v), then

d(e1, e2) ≤ d(e1, e3).

Proof. The lemma follows immediately when e1 = e2 or e2 = e3, hence
we assume e1 < e2 < e3. It suffices to prove the following: if e1 < e2, e3 and
d(e1, e2) > d(e1, e3), then e2 > e3.

Let ew be the unique nodal edge adjacent to every ei and b1 < b2, b3 the unique
elements such that ei = ew·γbi ; b1 = 0 if and only if e1 = ew·γ0 = ew. Let

di = deg(bi) and di,j = deg(bi − bj). We observe that

d3,1 = d(e1, e3)− 1 < d(e1, e2)− 1 = d2,1,

by assumption. Also, by assumption, e1 < e2, e3, so lemma 4.0.21 implies d1 ≤
d2, d3. If d1 < d3, then

d3 = d3,1 < d2,1 ≤ d2,

so e2 > e3. If d1 = d3 < d2, then e2 > e3. Hence we may assume d1 = d2 = d3.

Because d3,1 < d2,1, b3 and b1 have more leading coefficients in common than b2 and
b1 do. That is, b3 is closer than b2 to b1, in the lexical order. Finally, b1 precedes
both b2 and b3, hence b3 must precede b2. That is, e2 > e3. �

The following is the main theorem of the section.
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Theorem 4.0.23. Assume F satisfies (D2). Suppose for every cusp v that F(v)
satisfies the following properties:

(1) the positive edges of F(v) are ∆-inequivalent;

(2) for every positive edge e of F(v) we have e = min{γe : γ ∈ ∆v}.

Then F is ∆-compressed.

Proof. We must show that F satisfies (D1): for every cusp v of F and every
pair of positive edges e1, e2 in F(v),

(4.0.2) d(e1, e2) = min{d(e1, e3) : e3 ∈ ∆v e2}.

Suppose e1 < e2 are positive edges of F(v). By assumption e2 ≤ γe2 for every
γ ∈ ∆v, hence applying lemma 4.0.22 with e3 = γe2 we obtain (4.0.2) as desired.

For e2 < e1 we observe that (4.0.2) is symmetric because d(·, ·) is Γ-equivariant and
symmetric:

min{ d(e1, γe2) : γ ∈ ∆v } = min{ d(e2, γ
−1e1) : γ−1 ∈ ∆v }.

Hence we may apply the above argument swapping e1 and e2. �

It is now quite simple to describe an algorithm for constructing F = F(∆) induc-

tively. We choose a node v of T, say v = v0, and let F(0) denote the tree whose

single vertex is v. Without loss of generality, we may assume v is in F. Because F

has a finite number of edges, the theorem implies it suffices to construct a strictly
increasing sequence of ∆-compressed trees F(0) ⊂ · · · ⊂ F(m) = F.

Definition: Suppose v ′ is a cusp in T. Let M(v ′) denote the maximal subtree of

T(v ′) satisfying property 2 of the theorem.

The idea is to choose a sequence of ∆-inequivalent cusps v ′1, . . . , v
′
m in T such that

M(v ′n+1) is is adjacent to F(n) and to define

F(n+1) := F(n) ∪ M(v ′n+1).

Such a sequence always exists: if e is an edge from F(n) to a cusp v ′n+1 of T−∆F(n),

then it is the unique nodal edge in T(v ′n+1), so lies in M(v ′n+1). Further, the
sequence is finite, because the number of cusps m is known to be finite. One uses
the following lemma to show inductively that F(n) is ∆-compressed for all n.

Lemma 4.0.24. Suppose F,M satisfy the hypothesis of theorem 4.0.23. If their cusps
are pairwise ∆-inequivalent, then F ∪M satisfies the hypothesis of the theorem.

Proof. The edges of F,M are pairwise ∆-inequivalent, because their cusps
are pairwise ∆-inequivalent. Let G denote F∪M. By assumption, it satisfies (D2).
Any cusp v of G is either a cusp of F or a cusp of M. In the first case G(v) = F(v)

and in the second G(v) = M(v). In either case G(v) satisfies the properties in

theorem 4.0.23, hence G is ∆-compressed. �
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4.1. Minimal Spanning Tree (Sketch/Draft). In order to ensure that we
can find a minimal spanning tree, we must choose the sequence of cusps v′1, . . . , v

′
m

carefully. Starting with v0 we choose cusps adjacent to v0. Once we have exhausted
the ∆-equivalence classes of all such cusps, so that the resulting tree is F(i), we

choose a new node v in F(i) and precede as before.

Lemma 4.1.1. For each ∆-equivalence class of nodes in F, there is at most one
node adjacent to at least two edges of F.

Proof. Indeed, the only time a node is adjacent to two or more edges is when
it is one of the nodes fixed in the construction for which we add all adjacent cusps.
Hence if we later chose a ∆-equivalent node, then we will have already added cusps
∆-equivalent to every adjacent cusp, hence will add no extra edges. �

For each node v adjacent to two or more edges (in F) we must discard the edges
adjacent to all ∆-equivalent nodes distinct from v.

Claim 4.1.2. Every node v ∈ F adjacent to exactly one edge e ∈ F lies on the
‘boundary’.

If all nodes in a given ∆-equivalence class are adjacent to exactly one edge, then
we may choose any one node, its adjacent edge, and discard the edges adjacent to
the other ∆-equivalent nodes.

• If I discard an edge, then it means that its node is ∆-equivalent to another
node of F.

• I recognize that a node is ∆-equivalent to another node by recognizing
that adjacent edges are ∆-equivalent. Hence I need to keep track of the
elements of ∆ taking the respective edges to each other.

4.2. Hecke Operators. The important data with respect to a minimal span-
ning tree Ft is the collection of edges E in the complement F − Ft. The genus g of
Y (∆) is equal to the number of edges in E.

Given two ∆-equivalent nodes v1, v2 ∈ F we need an algorithm for determining
whether an edge e lies on the geodesic from v1 to v2. If it doesn’t, we define
χ(v1, v2; e) = 0. Otherwise, we also need to know its orientation with respect to
the geodesic, i.e. whether its node or cusp is closer to v1. In the first case we define
χ(v1, v2; e) = 1 and in the second we define χ(v1, v2; e) = −1 .

Given an element γ ∈ GL2(K) ∩ M2(A) we need an algorithm for finding γ′ ∈
GL2(A) and m ∈ Z such that

γ · PGL2(O∞) = γ′
(
Tm 0
0 1

)
· PGL2(O∞).

For PGL2(O∞) is the stabilizer of the ‘canonical’ edge e0 and such cosets correspond
bijectively to (oriented) edges of T.
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