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Jacobians of Drinfeld modular curves

By E.-U. Gekeler') at Saarbriicken and M. Reversat®) at Toulouse

In an attempt to prove the Langlands conjectures for GL(2) in characteristic p > 0,
V.G. Drinfeld introduced in 1973 what now is called a Drinfeld module [6].

Drinfeld 4-modules are group schemes locally isomorphic with the additive group
scheme G,, and provided with a certain 4-action, where A is the affine ring of a smooth
projective algebraic curve €/F, minus one closed point oo. They should be considered as
the motivic K-counterparts (K = quotient field of 4) of the Q-motives given by the multi-
plicative group, an elliptic curve, or more generally, a semi-abelian scheme.

Drinfeld was then able to prove K-analogues of classical theorems like the Kronecker-
Weber theorem, the main theorem of complex multiplication, and the theorem of Eichler-
Shimura.

The basic idea underlying Drinfeld’s construction is best understood in considering
the WeierstraB uniformization of an elliptic curve E/C by means of a lattice 4 in C.
Weierstral3’ g-function and its functional equation yield a purely algebraic description of
A; conversely, as each E/C comes from a lattice, the complex points of the moduli scheme
for elliptic curves (+ perhaps some extra structure) are described as I'\ H, where H is the
complex upper half-plane and I some subgroup of SL(2,Z). Now replace C by C, the
completed algebraic closure of K = completion of K at co. With each A4-lattice 4 in C,
Drinfeld associates some entire function e, : C — C and a new A-action ¢* on C = G,(C)
derived from e,. If r = rank , (A1), @4 will be a Drinfeld 4-module of rank r over C. Clearly,
the case r = 2 (the only one to be treated in this article) corresponds most closely to the
elliptic curve case mentioned above. In particular, the C-valued points M ?(n)(C) of the
moduli scheme for rank-two Drinfeld 4-modules with a level-n structure (for definitions,
see below) can be described as a finite union of quotients I'\Q=: M-(C), where

Q=C-K,

is “Drinfeld’s upper half-plane” and I'< GL(2,K) is a subgroup commensurable with
GL(2, 4).

1y Supported by DFG, Sonderprogramm *Algorithmische Zahlentheorie und Algebra”.
2) U.R.A. CNRS 1408.
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Let M be the smooth projective model of the algebraic curve M./ C, which is defined
over a finite abelian extension of K. Drinfeld’s theory involves the study of the /-adic coho-
mology H'(M,Q,) both as a Galois module and as a module under the Hecke algebra.
He arrives at a description of H' (M, Q,) as a space of automorphic forms on GL(2) and
at the same time establishes a one-to-one correspondence between certain l-adic Galois
representations of K and the automorphic representations occurring in H ! (lim /2 (n), Q,)
([6], sect. 10, see also (4.13)). .

From the above it is evident that many of the deeper results on arithmetic properties
of K are encoded in the moduli schemes M"(n)/ A for Drinfeld A-modules of rank r with
a level-n structure. As a matter of fact, the case r =1 essentially yields the abelian class
field theory of K (see [6], Thm.1 and [23], where the class fields totally split at oo are
constructed). As in the classical case of elliptic moduli schemes, the main tool in their
study is the theory of (Drinfeld) modular forms, which for r =2 are rigid holomorphic
functions f: @ — C with a prescribed transformation behavior under the natural action
of ' GL(2,K) on 2 and certain regularity conditions “at infinity”’. The first attempts
towards results about these modular forms were made in [19], [20] and later in [8]. These
were completed in [10], where the study of the behavior of modular forms around cusps
was continued and consequences about the geometry of the modular curves M, were
derived.

Now let for the moment I' = GL(2, K,) be a Schottky subgroup, i.e., a finitely gener-
ated subgroup consisting of hyperbolic elements, and Q = P*(C) — closure of {limit points
of I'}. As follows from the work of Manin-Drinfeld, Mumford, and Gerritzen-van der
Put[29], [32], [17], the C-analytic space I'\£2 is the ‘“‘analytification” of a smooth projective
curve M/ C, a so-called Mumford curve. Moreover, the Jacobian J;. of M|, the space of
holomorphic differentials, the Néron model ... of J. may be very explicitly described by
means of theta functions for I' (see [17]).

The aim of the present work is to give a similar description of these data in the case
of an arithmetic subgroup T, i.e., a subgroup I' of GL (2, K) commensurable with GL (2, 4),
and leading to a Drinfeld modular curve M. Apart from the superficial analogy between
Mumford curves and Drinfeld modular curves (we used this analogy and especially the
treatment in [17] as a heuristic guide-line), there are substantial differences between the
two concepts. While Mumford curves are “compact” (projective) by construction, Drinfeld
modular curves are affine and have to be compactified, which causes some technical but
also principal difficulties. Secondly, while Schottky groups are always free (so in particular
torsion free), arithmetic groups of the type considered may contain elements of finite order
prime to p (which lead to “elliptic points” on the modular curve) and always contain
unipotent elements of p-order (p = char(F,)). Hence many arguments and constructions
of e.g. [17] are not applicable in our case. Finally, and most importantly, Drinfeld modular
curves are richer in that they carry an amount of supplementary arithmetic structure
(rational and integral structure, action of Hecke operators) that should be reflected in the
description of J;. = Jac(M,).

As follows from Drinfeld’s work (although it is nowhere explicitly stated), the ana-
logue of the Shimura-Taniyama-Weil conjecture on the uniformization of elliptic curves
through modular curves holds in our case:
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STW/K. Each elliptic curve E/K with split multiplicative reduction at oo is the
quotient of a suitable Drinfeld modular curve M, or equivalently, appears up to isogeny
in the Jacobian J;.

While this had been known to some experts since many years, no formal reference
exists in the literature (with the exception of a few remarks in [9], sect. 9 and [10], VIII).
In section 8 of the present paper, we try to fill this gap, i.e., we explain how STW/K may
be derived from the results of [6] and prior work of Grothendieck and Jacquet-Langlands.

However, there are several important problems left open by Drinfeld’s work.

(A) The above result STW/K is a sheer existence statement. Of course, one would
like to dispose of a construction that, given E/K, produces a ‘“‘Weil uniformization”
pr: My — E. Equivalently, one would like to construct E (or some curve isogeneous with
E) out of the Hecke newform ¢, and to understand how properties of E are reflected in
¢ and vice versa. (Precise definitions are given in sections 4 and 8; for the moment it
suffices to regard ¢ as a substitute for the newform f; of weight two for I,(N) = SL(2, Z)
that hypothetically corresponds to an elliptic curve E£/Q with conductor N.)

(B) In the Drinfeld modular curve context, there are two different concepts that
generalize classical modular forms, viz, automorphic forms, which are C- or Q,- or Q-
valued functions on some adele groups, and Drinfeld modular forms, which are C-valued
holomorphic functions on Q. Both of these are needed for a full understanding of the
curves M, so the question of their relationship arises.

It will turn out that these problems are closely related with our main result, the
description (given in sect. 7) of J;- as a torus divided by some lattice. We will give satisfactory
answers to both questions: See sect. 9, notably (9.6.1) for (A) (we construct an elliptic
curve E from its newform ¢ by specifying the Tate period) and sect. 6, notably (6.5) for
(B) (roughly speaking, Drinfeld modular forms of a certain type ‘“‘are” the reductions
(mod p) of Z-valued automorphic forms).

Here a word of warning is in order. Due to the loss of information caused by reduction
(mod p), Drinfeld modular forms (together with their Hecke operators) are less rigid
objects than their number-theoretic counterparts. Many “non-classical” phenomena may
occur:

— eigenforms of different weights may share the same set of eigenvalues;
- “multiplicity one” fails to hold even for eigenforms of weight two;
— the Hecke action on modular forms may fail to be semi-simple.

An example based on the numerical results of [9] is worked out in (9.7.4).
The contents of the paper are as follows.

In section one, we give a detailed discussion of the Drinfeld upper half-plane Q, its
standard covering, the associated reduction, and its relation with the Bruhat-Tits tree I

3 Journal fiir Mathematik. Band 476
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of PGL (2, K ). We carefully describe the group actions on various associated structures,
since this is crucial for our approach and there is some confusion in the literature about
notation and signs.

In section 2, largely following [10], we browse through Drinfeld modules and modular
curves. As far as is needed later on, and without proofs, we explain their description over
the field C, their compactification, and their relationship to modular forms.

Section 3 deals with harmonic cochains for arithmetic groups I' and their connection
with I’ = I'*®/tor (I"**) and with the modular curve M.

In section 4 we introduce those concepts from the theory of automorphic forms that
are needed to formulate Drinfeld’s reciprocity law ([6], Thm. 2) and STW/K, and for our
construction (9.5) of the strong Weil curve. Of course we cannot recall even the most
important facts of the theory; so we assume the reader to be familiar with automorphic
forms on GL(2) as presented e.g. in [14], and limit ourselves to indicate the special
features that appear when considering automorphic forms /K “of Drinfeld type”. For a
more detailed discussion of these questions (which unfortunately does not include Hecke
operators and the Petersson product), we refer to the article of Deligne and Husemoller [5].

In section 5, theta functions u for arithmetic groups I' =« GL (2, K) are studied. Their
logarithmic derivatives u’/u are double cuspidal modular forms of weight two and type
one, and thus give rise to holomorphic differential forms on M. The basic theta functions
0(w,n,z) and u,(z) (« € I') have first been introduced, in the case of Schottky groups I,
by Manin and Drinfeld [29], and have subsequently been used by Gerritzen and van der
Put in their uniformization theory of Mumford curves. By reasons explained above, the
theory is different for our arithmetic groups. In the case of the special arithmetic groups
I' = GL (2, A), these functions have first been studied by Radtke [38], to whom a part of
Theorem 5.4.1 is due. The most important steps towards the construction of J are given
by Theorems 5.6.1 and 5.7.1, which relate theta functions with automorphic data. There
results in particular the positive definiteness of the theta pairing («, ) on I" (Cor. 5.7.5).
Let us remark here our feeling that from a conceptual point of view, theta functions should
be defined simultaneously on all the components of the moduli scheme, which would
require an adelic treatment. We abstained from this since for our purposes, the additional
technicalities would not be compensated by essential advantages. For other questions,
however, it might very well be worthwhile to develop such an adelic theory of theta
functions.

In section 6 we compare theta functions for different arithmetic groups 4 = I'. We
obtain the principal result (6.5.1) and its consequences Theorems 6.5.3 and 6.5.4, which
state that essentially all holomorphic differentials on M, are obtained from the u, by
logarithmic derivation.

Having collected enough material about theta functions, it is quite straightforward
to construct the Jacobian J; as the torus C*? divided by the period lattice of theta functions.
This is done in section 7 (Thm.7.4.1), where also some consequences about the groups of
all holomorphic resp. meromorphic theta functions are derived. E.g., each holomorphic
theta function u for I whose multiplier is trivial on tor (I'*®) equals const. X u, for some
ael.
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Finally, in sections 8 and 9 we discuss how STW/K “abstractly” follows from Drin-
feld’s reciprocity law, and how a Weil uniformization actually is obtained from an auto-
morphic eigenform. For this we have to define a Hecke action on I and to show that the
basic diagrams (6.5.1) and (7.3.3) are compatible with Hecke operators. We conclude with
some examples for strong Weil curves (where our results suffice to predict the Néron type)
and with the discussion of open problems.

Some of the results of the present article have been announced in [13]. But note that
we have made important changes in notation, signs (e.g. definition of theta functions) and
some more conceptual matters, mainly the definition of H, (7, B)", and our present (6.4.4),
which replaces (4.5) of loc. cit. In fact, we are not sure whether the latter holds in full
generality: Our intended proof works (besides the case of p’-torsion free groups) only if
the base ring 4 is a polynomial ring [34]. Anyway, (6.4.4) suffices for everything we have
in mind.

Throughout the paper, we make free use of the well-known “GAGA” relationship
between ‘‘algebraic’” and ‘““‘analytic” properties of varieties defined over complete valued
fields. If misconceptions are unlikely, we do not distinguish between a variety, its associated
analytic space, and its set of closed points over an algebraically closed field.

Also, in order to save notation, we use one single symbol ““7,” for Hecke operators
acting on various objects (moduli schemes, modular forms, automorphic forms, harmonic
cochains .. .).

We wish to thank the following institutions for support and/or hospitality during
work on this article: MPI fiir Mathematik (Bonn), DFG, IHES (Bures-sur-Yvette), CNRS,
and our respective universities Universitdt des Saarlandes and Université Paul Sabatier.

0. Preliminaries

(0.1) Let € be a geometrically connected nonsingular projective curve over the
finite field F, of characteristic p. Once for all, we fix a point oo of ¢ of degree 9, i.e., the
residue class field k(o0) has degree 6 over F,. We denote by A the ring of regular functions
on € — {0}, by K its quotient field.

(0.2) We will not distinguish between prime divisors of %, places (= normalized
absolute values) of K, and prime ideals of associated coordinate rings, and label them
briefly as places or primes. Thus a prime v is either equal to oo or to a maximal ideal p
of A, in which case it is called finite. Similarly, each divisor of % (written multiplicatively)
is the product of a finite divisor, i.e., of a fractional ideal n of 4, and a power of co.

(0.3) Given a place v of K, K,, O,, m,, g, denote the completion at v, its ring of
integers, a local parameter, the size of the residue class field & (v), respectively. The absolute
value |.| =|.|, and the degree map deg: 4 - N, U {— o0} at 0o are normalized such that

(0.3.1) In,|=qx'=¢ % and ¢%** =|a|.
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Throughout, C will be the completion of an algebraic closure of K, which again is alge-
braically closed. Note that the value groups of K, and C are g% and ¢2 ¢, R*, respectively.
If not stated otherwise, “log” will be the logarithm to base g,. Most of the features of
the general set-up can be seen in the following basic example.

(0.4) Example. %= P! = projective line over F, and co = usual place at infinity.
Then 4 is the polynomial ring F,[7] with quotient field F,(7'), deg is the usual degree,
and K, = F,((n,)), the field of formal Laurent series in n,, =7 ~*.

(0.5) For general facts in rigid geometry, we refer to [1], [7], and [17]. If X is a
rigid analytic space over K, C, ... provided with a pure covering U = (U;), Ry : X = X,
denotes the corresponding analytic reduction. We usually omit the subscript %. Recall that

X is a scheme over the residue field of K, C, ... with structure sheaf
(0.5.1) Oz = R, 0y,

where
0.5.2) Oy = 02 03°,

and the subsheaves 09° = () = Oy are given on parts of % by
(0.5.3) RU) = {fe )| f1IP =1},
R (U) = {fe (DI fIF <1},

respectively. Here ||.||{? is the spectral norm on U. Our basic references for “GAGA”-
type theorems are [25], [26], and [27].

(0.6) For all definitions and properties concerning graphs, we refer to the book [45]
of J.-P.Serre. In particular, X (T') and Y(T') are the sets of vertices and of oriented edges,
respectively, of the graph T, and o(e), z(e), € the origin, the terminus, the inverse edge of
eecY(T).

(0.7) For a field K, K**? (resp. K) denotes the separable (resp. algebraic) closure.
R* is the unit group of the ring R, #(S) the cardinality of the set S. If the group I acts
on X, I, I'x, I'\X are the stabilizer of x € X, its orbit, the set of all orbits, respectively.
I'®® is the group I made abelian.

Furthermore, in the largest part of the paper, G will denote the group scheme GL (2)
with the center Z of scalar matrices.

1. The Drinfeld upper half-pane
(1.1) Set-theoretically, the Drinfeld upper half-plane is
1.1.1) Q=P(C)-P(K,)=C—-K, .

On Q, we dispose of the two positive real functions z+— |z| and z — | z|;, where
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(1.1.2) |z|; = inf{|z — x||xe K}
is the imaginary absolute value of z € Q. Among its properties, let us mention:
(1.1.3) if [z| ¢ |KX|= ¢ then |z, =|z|,
and:

(1.1.4) if |z] =1 with class Z in the residue field k(c0) of C then |z|; =1 if and only
if Z¢ k(o0).

Slightly less obvious is the following
ab
(1.1.5) Lemma. Let (c d> =17 be an element of GL(2,K_) and z€ Q. Then

az+b
cz+d

" = |dety||cz +d| " ?|z|;.

Proof. As is easily seen, the assertion holds for y -y’ provided it is true for y and
7" Since it is obvious for upper triangular matrices, we are reduced to showing it for

01
y = (1 O>’ e, |z7Y, =]z ?%|z|,.

If |z|,=|z]| then |z7 !, £ |z Y| = |z| " ?|z|,. If |z]|,= |z — x| <|z| then |z| =|x| and
13 1 13 i
[z7Y;S|z7 = x| =|z—x|/|zx| =|z| ?|z|;. On the other hand,

lzl;=11/z""; = 1z?|1z7 1. O

(1.2) Analytic structure on 2. As P!(K_) is compact, 2 has a natural structure of
rigid analytic space ([7], I, 7). We now recall this structure and describe a pure covering
of Q (see also [7], V, [2], I, and [40]). Fix a uniformizer n == ,.

(1.2.1) For ne Z, we set D, for the subset of z e C that satisfy

@) [e"*t < z] < |
and

() |z—en"|Z|n|"|z—cn""| 2 |n|"*! forall cek(o0)* ¢ KX .
The last condition may be replaced by |z|; = |z|, which shows that D, is contained in £,
and is independent of the choice of =. It is an affinoid space over K, with ring of

holomorphic functions

(122 A=K {n"zya"t iz (n " z—0) L (T iz —0) 7 cek(0)*),
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the algebra of “‘strictly convergent power series” in #~ "z, ... (see [1], VI, 1 for the nota-
tion). It follows that the canonical reduction D, of D, ([17], [7]) is isomorphic with a

union of two projective lines M, M’ over k(o0) meeting transversally in a k(oo)-rational
point, and the other rational points deleted:

(1.2.3) D,=MuM — (M(k(0))uM' (k())u(MAM').

We further put

(1.2.4) D,,=x+D, (xeK,).
Note that
(1.2.5) Dypy=Dyyy<ssn=n" and |x—x'|Z|n|""".

Let I={(n,x)|neZ, xe K, /n"*'0,}, where for each n, x runs through a set of represen-
tatives modulo n"*'0, . Then

(1.2.6) Q=\JD, (iel).

Given i, there are only finitely many i % i’ € I such that D, D, is non-empty, in which
case the intersection is isomorphic with a ball with ¢ holes = P!(C) with g, + 1 holes.
Ife.g.i=(nx)and i'=(n—1, x) then

1.2.7) DinD;,={zeC||lz—x—cn"| =|n|"Vcek(0)}
={zeCl||lz—x|;=|z—x| =|=n|"}.
Its reduction is
(1.2.8) (D;n D)~ = M — M(k(x)),

where M is a projective line over k(c0). The analytic structure of Q2 is obtained by glueing
those of the D,, ie I. With (1.2.3) and (1.2.8) we see that (D,);.; is a pure covering (loc.
cit.) of Q. Let

(1.2.9) R:Q-Q
be the associated analytic reduction. Then € is a scheme over k(0), locally of finite type.
Each irreducible component M of € is isomorphic with P!/k (00) and meets exactly ¢, + 1
other components M'. The intersections are ordinary double points which are rational
over k(o0). Conversely, each k(co)-rational point s of M determines a component M’ such
that MnM' = {s}. M and M’ as above are called adjacent or neighbors. Putting

(1.2.10) M* = M — M(k(0))
and for adjacent M, M’

MUM')*=MuM' —(M(k(©))uM (k(x)v(MAM'),
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there exist i, i’ e I such that
(1.2.11) R™'(M*)=D;,nD, and R '((MUM')*) =D,.
The intersection graph of Q is the combinatorial graph T with vertices
(1.2.12) X (T) = {components M of Q}

and oriented edges

Y(T) = {(M,M')|M, M’ adjacent components of Q} .
It is a (g, + 1)-regular tree. The reduction map R induces via (1.2.11) a bijection
(1.2.13) Y(T) (mod. orientation) —— 1.

(1.2.14) The group GL(2,K_) acts on Q by fractional linear transformations

ab az+b : . . .
(c d) z= i d We easily see that it acts in fact on the covering (D,),.;, hence also on the

tree T.
(1.3) The Bruhat-Tits tree of PGL(2, K_) ([45], [5]).

(1.3.1) An O,-lattice in K2 is a rank-two O_-submodule of K2. Two lattices L and
L' are equivalent if there exists x € K* such that L' = x L. We write [L] for the equivalence
class of L. Two classes [L] and [L'] are adjacent or neighbors if there exists L € [L'] such
that L” = L and L/L" has length one as an O, -module. Let 7 be the combinatorial graph
whose vertices are the classes [L], two vertices being connected by an edge if and only if
the corresponding classes are neighbors. The graph 7 is a (¢, + 1)-regular tree, the Bruhat-
Tits tree of PGL(2, K ). In (1.5.4), we shall canonically identify J with T.

(1.3.2) Let now G be the group scheme GL (2) with center Z. G(K ) acts as a matrix
group from the right on the set of lattices L in K2, thus also on X () = {lattice classes}.
We consider the associated left action (y, L) — y, L= Ly~ '. Clearly, this action is compatible
with the simplicial structure on X (), so there results a left action of G(K_) on . The
stabilizer of the standard vertex [L,] = [02]is X - Z(K ), where " = G(O,,). This yields
the description

(1.3.3) G(K) A Z(K,)—> X(T),
Y 7, [Lo].
Similarly,
(1.3.4) G(K )| S Z(K,)—>Y(T),

%, ([L,], [Lo])»

where # = {(a Z)e.}t’ | c = 0(mod oo)} is the Iwahori group and ([L,], [L,]) the
c

standard edge, L, =0, @ O,,. Having made these identifications, the obvious map
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Y(7)- X(J) induced by £, A associates with each oriented edge e its terminus
tle)e X(I).

(1.3.5) Let now L be a lattice in K2. The edges emanating from the vertex [L] cor-
respond to the points of P(L/nL) = P*(k(0)), the paths (without backtracking) of length
[ to the points of the projective line P(L/n'L) = P*(0,,/(n')) over the finite ring O, /(n").
A half-line in J is a subgraph isomorphic with «—s—s ~— ..., an end of I an
equivalence class of half-lines, where two half-lines are equivalent if they differ in a finite
graph. Letting / — oo yields

{ half-lines emanating

and in fact a bijection
(1.3.6) {ends of 7} —= PY(K,),

which is independent of the choice of L. To the point (0:1) e P!(K_) there corresponds
the end represented by [L,];5¢, L, =7'0, @ O,,. In (1.6) we will see, however, that it is
more natural to use a different labelling of the ends.

(1.4) Norms on K2. A non-archimedean norm on a K_-vector space V is a map
v:V > R that satisfies
v(v) 20, vp=0=v=0,
vixv)  =[x[v(x),
v(v+w) < sup {v(v), v(w)}

forv,weV, xe K. Two norms are similar if they differ by a real constant. Let the linear
group GL (V) of V act from the right on V. This yields a left action

(1.4.2) (V) () = v(vy)
on the set of norms v and also on the set of similarity classes [v].

Recall that the realization 9 (R) of J is a topological space that consists of a real
unit interval for every non-oriented edge of 7, glued together at their extremities accord-
ing to the incidence relations of J.

The next theorem is but a special case of a general result valid for all dimensions.

(1.4.3) Theorem (Goldman-Iwahori). There is a canonical G(K )-equivariant bijec-
tion b between I (R) and the set of similarity classes of non-archimedean norms on V= K2.
(The G(K)-actions are given by (1.3.2) and (1.4.2), respectively.)

Instead of the full proof ([18], [5]), we merely give the construction of b, and verify
the compatibility with the group actions. To a vertex [L] € X (7 ) = J (Z), we associate
b([L]) = class[v,] of the norm v, with unit ball L:
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1.4.9) vy (v)==inf{|x||xe K ,vexL}.

If Pe 7 (R) belongs to the edge ([L], [L']) with L' < L = L', say
P=(1-0[L]+:([L] 0=t=1),

then 5(P) is the class of the norm v, defined by

(1.4.5) vp(v) = sup {v,(v), g, v, (v)}
which degenerates to v;, v;. for t =0, 1, respectively. It suffices to verify the G(K)-
equivariance on vertices of 7. For this we have to show: If ye G(K) and L is an O, -
lattice in K2, then

(1.4.6) b [LD) = [v..]=[v,-] equals y(b([LD) = [yv.] = [v.(()¥)],
which is clear.

(1.5) The building map. Let A: Q2 — 7 (R) be the building map, which to z € Q asso-
ciates the similarity class [v,] of the norm v, on K2:

(1.5.1) v,((u,v)) = |uz +v|.

Since the value group of |.| is g2, the image of 1 is contained in 7 (Q). In fact,
(1.5.2) A(Q)=7(Q),

as immediately results from the construction (1.4.5).

(1.5.3) Proposition. The building map is G (K )-equivariant.

ab 2 az+ b
= $ . = h
Proof. Lety (C d)e G(K,), ze 2, (u,v)e K. Then yz ard thus

az+b
cz+d

=|cz+d| Y(az+b)u+ (cz+d)v|=]|cz+d| *v,((u,v)y)

v, ((,v) = u+v

and 2(y2) = [v.1=[.(()»]=Dv]=74(2). O

(1.5.4) Using A, we may now canonically identify the graphs 7"and 7, whic{x in the
sequel will not be distinguished. Let M € X(T') be an irreducible component of 2. Then
there exists a uniquely determined [L] e X(J) = 7 (Z) such that ATY[L]D) = R Y (M™).
The reader may easily (?) verify that M [L] is well-defined, bijective, and compatible
with the actions of G(K,) defined in (1.2.14) and (1.3.2). It therefore identifies the com-
binatorial graphs T and 4 provided with their G(K,)-actions.

Let now i = (n, x) and D, be as in (1.2),

D= (MUM)*, e =M, M)= (L, [L)e Y ()
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an associated oriented edge, e(R) and €°(R) = e(R) — {M, M’} the corresponding closed
and open edges, respectively, of 7 (R). Put D? for the subset of D, defined by strict
inequalities (see (1.2.1)):

(1.5.5) D) ={zeC||n|"*"'<|z—x|;=|z— x| <|n|"}
={zeCllnI"* ! <|z=x|<|x|"} .
Let further
(1.5.6) Ci={zeC|lz—x|;=|z—x| =n|"} .
As results from (1.2.11)—(1.2.13) and the above,
1.5.7) A Y e(®)) =D;=R ' (MuM)*),
(1.5.8) A1 (e®R) =D’ =R '(MnM).
Furthermore, depending on the orientation of e, either one of the cases («), () holds:

(159) @ A LD =Cupoy=R ' (M%), L' [LD=Cpi1y=R (M)
(p): asin (a), but roles of ([L], M) and of ([L'], M’) reversed.

(1.5.10) Remark. The R-valued functions |.| and |.|; on @ factor through 4, since
|z| = v,(1,0), | z|; = distance of (1,0) to (0, K) w.r.t. v,. Considered as functions on 7 (Q),
log|.| and log|.|; are linear on edges.

(1.6) Coordinates. We now provide the set of ends of ~ with coordinates compatible
with those on Q. Let s be the end represented by the sequence [L,] of vertices of 7, where
Ly> L,> - are O,-lattices with length (L,/L,,,) =1. Let further z,€ Q be such that
A(z,) = [L,]. Suppose that s corresponds under (1.3.6) to (u:v)e P}(K,), i.e.,

K, (L) =K, (u0).
Now

(1.6.1) |z,]; » oo ifand onlyif (u:v)=(0:1),
as immediately results from (1.5.10). If y e G(K ) then we see with (1.4.6) and (1.5.3) that

(1.6.2) (A (yz,,)),lgo determines the end corresponding to

1

Ye@:v)=@:v)y 1 ="y" (u:v).

. -1
In view of w™'yw ="'y 'mod Z(K ) (where w = <? 0 ) and '(.) = transpose), the in-

volution (u: v) > (—v: u) of P*(K_) interchanges the two actions

(7, (:0) > y(u:v), 7, (u:v)
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of G(K,). This is why from now on, we make the following

(1.6.3) Convention. Let (u:v) e P'(K,). The end s = s(u: v) labelled by (u: v) (we
briefly write s = (4 : v)) is the equivalence class of half-lines that under (1.3.6) corresponds
to (—v:u)e PY(K,).

Letting now s = (1 : v), (1.6.1) and (1.6.2) translate to

(1.6.49) [2,]; > 0 s=0:=(1:00eP(K,),
and

(1.6.5) (A(72,))ns o determines the end ys = y(u: v).
As a consequence, we have

(1.6.6) Proposition. Let (z,),, o be as above. If (zl(z,,)),,go determines the end (u: v)
then z, converges to (u: v) with respect to the strong topology on P'(C).

Proof. By (1.6.5) we may assume that (u:v) = (1:0), in which case the assertion
follows from (1.6.4). 0

(1.6.7) Remark. The above may be used for constructions similar to the one of
[47],1.3, i.e., to construct a topological space Q* = Q U {cusps of I }, which after dividing
out the action of the arithmetic group I' yields the ‘“‘compactification” of the modular
curve I'\Q (see also (2.4.6)).

(1.6.8) Remark. Since J is a tree, the end oo = (1:0) of  defines an orientation
on J, in that precisely one edge of each pair {e, &} points to co. In particular, our domains
D, are canonically oriented. Also, log|z|; (which only depends on A(z)) increases by one
for each step of length one towards co.

(1.7) Invertible functions and harmonic cochains.

(1.7.1) Definition. Let B be an abelian group. A harmonic cochain (= *“‘currency”
in [36], [37]) on J with values in B is a map ¢:Y(J ) — B that satisfies

e+ @) =0 (ccY(T)

and
Y o()=0 veX()).

eeY(J)
t(e)=v

We denote by H(Z, B) the group of B-valued harmonic cochains.

(1.7.2) Theorem (van der Put). There is a canonical exact sequence of G(K,)-

modules
0 - C* - 0,(*—— H(Z,Z) » 0.
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For a complete proof, see [36], Prop. 1.1 or [7], I, 8.9. We restrict ourselves to
describing the map r, which by construction will be compatible with the G (K )-actions.

(1.7.3) The map r. Letee Y() correspond to the double point M n M’ in §, where
M’ and M are the irreducible components associated to o(e) and ¢(e), respectively. There
exists i = (n, x) € I such that R™!((M U M')*) = D,. Let fe 0,(2)*. Since f has no zeroes
on £, there exist ce C*, ke Z, and g € (,(22)* such that

(1.7.4) f@ =cz—x)"g()
and | g(2)] is constant equal to 1 on D; ([7], I, 8.5). Now r( f)(e) is defined by
(1.7.5)  r(f)(@) =log(l fIIR-1am /Il fIIR-1aa0)
=k in case (a)
= —k in case (f8) of (1.5.9).
(Recall that “log” = log,_ .) Suppose for instance that we are in case (). The reduction
mg(c(n.x)) - (O.\')(Cv(n,x))~ = (pf)(M*)

maps f/(cn*") to a rational function 4 on M, which has a zero of order k at the point
M M'. Since the divisor of & on M has degree zero, r( f) satisfies the sum condition at
the vertex v =M of J.

(1.8) Residues. Next we define the residue map attached to a global holomorphic
differential form w on Q ([17], 111, 1, [7],1, 3). Let ee Y(J), M, M', D? = D; as in (1.5.5).
With s:=n""(z — x), t:=n""1(z — x) !, w restricted to D? may be written as

(1.8.1) w=Y astds=Y bi*dt, a,beC.
keZ keZ
We set
(1.8.2) res(w,e) =a_, in case (a)

=b_, in case (f) of (1.5.9).
Note that we have a_, = —b_,, which means that
(1.8.3) res(w, e) = —res(w, €) .

As follows from the residue theorem in rigid geometry ([7], I, 3), res(w, e) is indepen-
dent of the choice of coordinates s, t on D; and satisfies

(1.8.4) Y res(w,e)=0 (veX(9)).

eeY(T)
t(e)=v

Therefore:

(1.8.5) Proposition. Let w be a holomorphic differential form on Q and
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res(w) : e res(w, )
its residue map. Then res(w) € H(Z, C).

Finally, we compare the two maps r and res : w > res(w). Let f be a nowhere vanish-
ing holomorphic function on Q. Then w:=df/f is a holomorphic differential form, and
one easily verifies

(1.8.6) r(f)(e) = res(w, e)(mod p) .

In other words: The diagram

r

O (2)* — H(7,2)
dlogl redl

1.8.7
(18.7) { holomorphic } res

—_— a7
differentials on Q H(7,C)

is commutative, where the vertical maps are dlog: f— df/f and reduction mod p, respec-
tively.

2. Modular curves and forms
Here and in the sequel, G is the group scheme GL(2) with center Z.

(2.1) Arithmetic subgroups of G(K). LetY be an A-lattice (projective 4-submodule
of rank two) in K2 and

(2.1.1) r(¥)=GL()={yeGK)|Yy="Y}.

For an ideal a of 4, I'(Y, a) = ker(GL(Y) —» GL(Y/aY)) is the a-th congruence subgroup
of I'(Y'). An arithmetic subgroup I' of G(K) is an intermediate group I'(Y,a)c ' < I'(Y)
for suitable Y and a. Note that all arithmetic subgroups of G(K) are commensurable.

(2.2) Fix I as above. As usual, G(K_) acts on Q through z+> (az + b)/(cz + d).
It is easy to see that the stabilizer in I is finite for every z € @, which implies that the
quotient I'\Q exists as an analytic space over C and even over K. In fact, I'\Q is smooth
of dimension one, i.e., an “open Riemann surface”.

Moreover, it is algebraic:

(2.2.1) Theorem (Drinfeld). There exists a smooth irreducible affine algebraic curve
M| C such that ' \Q and the underlying analytic space M;" of M are canonically isomorphic
as analytic spaces over C.

The curves M will be referred to as Drinfeld modular curves. Since M is unique up
to isomorphism, we often abuse notation in not distinguishing between M, and

r\Q = M;(C).
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(2.2.2) Remark. M is actually defined over a finite abelian extension K'c, K of
K that depends on I'. The proof of (2.2.1) ([6], sect. 6) yields naturally that the isomorphism
of I'\Q with M?" holds over the common field of definition K.

(2.3) Drinfeld modules. In order to describe the algebraic structure on I' \Q, we have
to briefly review the notion of Drinfeld 4-module. Let A be a discrete projective A-sub-
module of C (we call this an A4-lattice in C) of rank r, and put

@2.3.1) @)=z [] <1—§>.
O+Aed

Since A intersects with each ball in a finite number of points, the product converges and
defines an entire, [ -linear, surjective, and A-periodic function e, : C — C. It provides the
additive group scheme

(2.3.2) G,/C = C«=— C/ker(e,) = C/4

with a new structure ¢4 of 4-module. Recall that the endomorphisms fe End; (G,) of
G,/L (L any field of characteristic p) are the “polynomials” f in the Frobenius endo-
morphism 7, = (x — x”) with coefficients in L. Thus

(2.3.3) End,(G,) = L{z,} = {Y ;7| a;e L}

with the commutator rule t,a=a’t, for ae L. Now ®*: 4 - End.(G,) turns out to
satisfy:

(234) 94:4 - End(G,) = C{t,},
a— @
is a ring homomorphism with values in C{z}, where t =1, = 7} (¢ = p°) and
@) Lie(®)=a,
(i) deg (®) =r - dega.

Here (i) states that &, = a + higher terms in 7, and deg, is the well-defined “degree” in 7.
Note that (2.3.4) does not involve the analytic structure on C. It therefore makes sense
over arbitrary field extensions L of K= Quot(4). Thus a Drinfeld module (G,, ®) of rank
r over G,/ L will be given by a ring homomorphism & : 4 — L{t} that satisfies (i) and (ii)
above. There are natural notions of morphism and isomorphism of Drinfeld modules, for
which one proves ([6], [5], [10]):

(2.3.5) Theorem (Drinfeld). The association A+ ®* defines an equivalence of cate-
gories between the category of A-lattices in C of rank r (morphisms are multiplications with

elements of C) and the category of Drinfeld A-modules of rank r over C.

(2.4) Moduli schemes. As follows from (2.3.4), the 4-submodule
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2.4.1) (,®)(L)={xe L|®,(x) =0} (ae A non-constant)

of a-torsion points of (G,/L, P) is free of rank r over the finite ring 4/(a), provided that
L is algebraically closed. This enables to define level-a structures (and even level-a struc-
tures, a a not necessarily principal ideal) on the Drinfeld module & = (G, /L, ®): A level-a
structure is an isomorphism of the 4-module (a™'/4)" with (,®)(L). Moreover, all these
notions may be extended to work over arbitrary A-schemes S (instead of S = SpecL, L/K
field extension). There results a moduli functor

set of isomorphism classes of
(2.4.2) IN"(a) : S+ { rank-r Drinfeld 4-modules over

S with level-a structure

on the category Sch, of 4-schemes. Under the ‘“‘admissibility” condition that a is divisible
by at least two different primes, I (a) is representable by an affine flat 4-scheme M7 (a),
which is smooth of finite type over F, and has dimension r — 1 over Spec 4. Further, the
fibers of M"(a) over Spec A are smooth away from a ([6], sect. 5). Taking quotients by
finite groups if necessary, one constructs for arbitrary a (including the trivial ideal (1) = 4)
a scheme M’ (a) which in any case is a coarse moduli scheme for 9" (a). In particular, we
will have

(2.4.3) M (a)(L) = M"(a)(L),

if L is an algebraically closed field, e.g. L = C. (For a more complete discussion of this,
see [6] and [5].)

(2.5) Analytic description of moduli schemes. Let now 2 be the set of isomorphism
classes of projective A-modules of rank 2. By elementary lattice theory, 27 is finite and
may be represented by A-lattices ¥ in K2. We let i,: K? —» C be the K-linear map given
by (1,0) - z and (0,1) — 1. Up to multiplication by elements of C*, each 4-lattice 4 in
C of rank two has the form i,(Y), where Y is as above and ze 2 = C — K, is uniquely
determined up to the action of I'(Y). Therefore, (2.3.5) yields

[I rarne —=-m*1)(0),

Ye?}
and combined with (2.4.3),
@2.5.1) [[ r\e —=- M*(1)(C),
Ye#]

both set-theoretically and analytically. Note that
(2.5.2) det: 22 —» 2! = Pic(4) is bijective .

Hence M2(1)x, C has h:= # (Pic(4)) irreducible components. This corresponds to the
fact ([10], VII, 1.9) that M (1) X, K as an algebraic curve is defined over the Hilbert class
field H of (K, A). (By definition, H is the maximal unramified abelian extension of K con-
tained in K. Its Galois group over K is canonically identified with Pic (4).)
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There are similar isomorphisms for moduli schemes “with level”. This explains the
statement of (2.2.1), since for every arithmetic group I', I'\Q2 appears as a component of
a convenient moduli scheme (see also (4.11)).

(2.6) Compactification. For the moment, we discard the modular interpretation of
M ?(a) and restrict to studying the components M, = I'\Q. The only fact used is that M/
is a smooth affine curve over C, which implies the existence of a smooth projective model
M;.. So our next task is to describe M. This being rather technical, we merely outline the
main ideas and refer to [10] for details. Since the building map 1:Q - 7 is G(K_)-
equivariant, there results for each arithmetic group I' « G(K) a map

(2.6.1) Ap:T\Q - I'\7,
which may be used to describe an admissible covering of I'\Q. Now I'\.J is the edge-
disjoint union

(2.6.2) g =T\7)°v
of a finite graph (I'\7")° with a finite number of half-lines 4; ([45], II, Thm. 9). An end

sof 7 givesrise to anend of '\ if and only if s is K-rational. Thus the ends (= equivalence
classes of half-lines) appearing in '\ correspond bijectively to the finite set

(2.6.3) cusp(l'):= '\P(K)

of cusps of I'. As explained below, the inverse image A, *(s) of an end s of I'\J consists
of a nested sequence of annuli with decreasing radii, whose union is a pointed disk.
“Compactifying” I'\Q therefore just means filling in the missing points

~

(2.6.4) M. — M, =, {ends of I'\T } —=5 cusp(I').

This will be achieved by specifying a uniformizer for M;. at every cusp s of I'. Set-theoreti-
cally, M, will then be the quotient of QU P*(K) <, P!(C) by the arithmetic group I

(2.7) Uniformizers. Let first s be the cusp represented by co € P!(K) and I, the
. : : 156
stabilizer of co in I It contains a maximal subgroup I} of matrices ( 0 1>, where b runs

through a subgroup b of K commensurable with a fractional A-ideal. I} acts by shifts
z+>z+ b on Q and stabilizes

2.7.1) Q:={zeQ|zl;2c}.
We form
2.7.2) e =z [] <1 - g)
O+ beb

which has properties similar to those stated in (2.3.1). In particular, it is b-invariant and
therefore a (non-vanishing) function on b\Q =I'\Q. Easy estimates show that for ¢
sufficiently large,
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(2.7.3) t=1t(l,00)=¢,; !

identifies b\, with a small pointed ball B,(0) — {0} = {ze C|0 <|z| £ r} of radius r = (c)
in C. (We have to suppose that ¢ belongs to the value group ¢2 of “|.|”, which suffices.)
If I, = I}, t is a uniformizer at s = 0. In general, I* is strictly contained in I',, which
may also contain transformations of type z+az (ae F*). Let w = w(I,00) be the order
of the cyclic group of these transformations. Then we use ¢* as uniformizer. We need the
following result, which is an easy consequence of (1.1.5).

(2.7.4) Proposition.  There exists a constant ¢, = co(I, 0) >0 such that for ¢ = ¢,
andyerl, Q.ny(Q,) + 0 implies yeT,,.

Now for ¢ as above,

I \Q2.C — I'\Q
z
t"(2)
(2.7.5) B..(0) — {0} r =r

is an open immersion of analytic spaces. Hence a function f on I'\Q is holomorphic at
the cusp oo if and only if it has a power series expansion

2.7.6) f@ =Y ar@)

i20

with a strictly positive radius of convergence. Similarly, we express meromorphy and the
order of vanishing of f at oo through #*.

(2.7.7) Finally, let se P!(K) be arbitrary and ve G(K) with v(c0) = s. If f is me-
romorphic and I-invariant on , f, = fov will be invariant under the arithmetic group
' =v~!I'v, and holomorphy properties of f at s will be the corresponding properties of
f, at oo. Here we have to be aware of some subtleties. In order to describe the behavior of
fata cusp in I'\P!(K), we have to choose (a) se P!(K) in its class mod I, (b) ve G(K)
with v(c0) = s. It is easy to see that holomorphy and the order of vanishing of f, at oo
do not depend on these choices, but the coefficients of the expansion of f, w.r.t. ¢(I'*, c0) do.

(2.7.8) Remark. As results from the preceding discussion, the curve M. (which in
fact is defined over K) is a totally split curve over K, in the sense of [17], IV, 3. The
required pure covering of M?" is essentially obtained from the covering (D)), 1 of (1.2.6)
by dividing out the action of I The associated reduction R yields a scheme (Mp")~ over
k(o0), which is a finite union of projective lines intersecting with normal crossings in k (c0)-
rational points. Its intersection graph is the “finite part” (I'\J )° of '\, i.e., the graph
obtained by collapsing each end of '\ to a point.

(2.8) Modular forms. As for classical elliptic modular curves, the geometry of M,
will be studied through (Drinfeld) modular forms. Let

4 Journal fiir Mathematik. Band 476
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2.8.1) d(I') = # (det(I'))

be the order of det(I") ¢, F*. For the most important groups I considered later, d(I") will
equal g —1.

A Drinfeld modular form for I' of weight k and type m (where k is a non-negative
integer and m a class modulo d(I')) is a function f: Q — C that satisfies

@82 O fG2)=@ety) "z +d) () (y=<j f,>er>;

(i1)  f is rigid holomorphic;

(iii) f is holomorphic at the cusps.

b
We briefly explain the last condition. For y = (j d) € G(K), put

(2.8.3) Sitem @)= (detp)™(cz+d)*f(y2),

which defines a right action of G(K). If f satisfies (i), i.e., f,;, . =f for y € [ then (nota-
tion as in (2.7.7)) £y, . Will be fixed by I'*. Now condition (iii) above means that for every
ve G(K), f, . has a power series expansion with respect to #(I"”, c0).

(2.8.4) Due to the presence of non-trivial determinants in I, condition (i) of (2.8.2)
implies that a modular form f is usually not invariant under I, but only under I*. Hence
there is no ¢"-expansion but only a z-expansion for f. We therefore define the order of f
at the cusp o (and similarly at the other cusps) by means of its t-expansion. A form f
will be called cuspidal (i times cuspidal) if it vanishes (vanishes i times) at all the cusps of I'.

(2.8.5) We set M, ,(I') for the C-vector space of modular forms of weight k and
type m for I and M{ ,,(I') for the subspace of i-cuspidal forms. As we will see below
(2.10.2), M7 ,(I') may be identified with the space of holomorphic differentials on M/,
which by a standard argument implies that all the M, , (I') are finite-dimensional. Their
dimensions, i.e., the Hilbert function of the graded ring

(2.8.6) M) = @M, ()
k,m

of modular forms may be calculated explicitly [10].
Note also that
(2.8.7) M, ,T)=0,
whenever k is incongruent to 2m modulo z(I'):= % (I'n Z(K)).
(2.9) Examples of modular forms ([19], [10]). For simplicity, let I'=T'(Y) be a

maximal arithmetic subgroup, where Yo, K2 is a rank-two A-lattice. The most typical
example of modular form for I is
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(2.9.1) li(@:zw—1(a,z),

where ae A and Y /(a,z)1" is the operator &2 for the Drinfeld module ¢4 associated

with the lattice 4 =i,(Y) in C. Then /;(a) is modular of weight ¢' —1 and type 0. It is
analogous with the elliptic modular forms g,, g,, and is called a coefficient form. The sum

(2.9.2) E®@= Y i

O%yeY

converges for ze Q, k> 0 and defines for k = 0(mod g — 1) a non-zero element E® of
M, o(I'). It is called an Eisenstein series [19]. Modular forms for non-zero types may be
constructed as Poincaré series [11]. However, most important for our purposes are the
logarithmic derivatives of the theta functions u, defined in section 5. They are elements
of M2 ,(I').

b
(2.10) Modular forms and differentials. Let fe M, ,(I') and y = (Z d) eI Since

d(yz)/dz = dety (cz + d) 2, the differential form f(z)dz on Q is I-invariant. Let us inve-
stigate when it comes from a holomorphic differential on M. First, if z € £ is unramified
in pp: Q- I\Q, ie, if z is fixed by no non-trivial element of F=T|/rnZ(K), f(2)dz
descends in a neighborhood of pp(z) to I'\Q = M. Thus assume that z is a fixed point
of I" (such points are called elliptic), and let I, be its stabilizer. It is known ([10], p. 50)
that I} is a cyclic group of order e a divisor of ¢ + 1. In particular, e is prime to p = char(C).
Choose local uniformizers x and y of Q and I'\Q, respectively, with x¢ =y, and write

f(Z)dZ= Z aix"dx = e—lzaixi+l—edy‘

i20
Since f(z)dz is I.-invariant, g; # 0 implies / = —1(mod ¢). Hence
f@dz=e""(a,-y+ ay_yy+ )dy
is holomorphic on I'\©2, too.

Finally we discuss what happens at the cusps. The function e,(z) of (2.7.2) has
constant derivative 1, so

(2.10.1) dz=—1t"2dt

for t = e; *. Hence f(z) dz is holomorphic at oo (and at the other cusps) if and only if f(z)
is double cuspidal, i.e., belongs to M3 (). Similarly, as is easily verified by a small
computation, f(z)dz has at most simple poles at the cusps of M, if and only if fe M, (I').
Since by GAGA, we may identify “algebraic” and “analytic” differential forms on the

projective curve M, we have shown:

(2.10.2) Proposition. The map [+ f(2)dz identifies M 2 ,(I') with H° (M, Q") and
M} (I') with H°(M, Q' (cusps)).
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Here H° (M, Q') and H® (M, Q" (cusps)) are the spaces of holomorphic differential
forms on M/, of forms with at most simple poles at the cusps, respectively. Note that
Riemann-Roch yields g and g + ¢ — 1 for the respective dimensions of these spaces, where

(2.10.3) g =g(I') = genus of M,
c=c(l) = #(cusp(l)).

Similar isomorphisms exist between spaces of higher weight modular forms and spaces of
multi-differentials. Special consideration has to be given to the behavior of modular forms
at elliptic points and at cusps.

3. Harmonic cochains for I

In the whole section, I' is a fixed arithmetic subgroup of G(K) and I its quotient
by the finite group I'n Z(K ) of order z(I').

(3.1) Recall that H(Z, B) is the group of functions ¢:Y(J ) » B = any abelian
group that satisfy (1.7.1). Let H(J, B)" be the subgroup of invariants, i.e., of ¢ with

(3.1.1) o(ve) =@(e) (velLeeY(T)).

We shall consider H(Z, B)" as a space of functions on the quotient graph I'\J" as follows:
Let ve X(7) with image i€ X (I'\7"). The stabilizer group I, acts on the set

{eeY(T)|1(e) =},

and the orbits correspond to {¢e Y (I'\J)|t(é) = §}. Let m(e):=[TI,: I,] be the length of
the orbit corresponding to e, which only depends on its image & in I'\Z. Considering
@ € H(Z, B)" as a function on Y(I'\.7"), the sum condition of (1.7.1) translates to

(3.1.2) Y m@e@=0 @ecX(\7)).
e

Note that ), m(é) equals g, + 1. We finally put

tey=7o

3.1.3) H(Z,B) = {9 e H(Z, B)" | ¢ has compact support modulo I
@
=: group of B-valued cuspidal harmonic cochains for I.

Letnow I'\I = (I'\7)® u | J h; be decomposed as in (2.6.2). The following is obvious:

(3.1.4) Proposition. If B is torsion free, any ¢ € H (7, B)" vanishes on edges belonging
to one of the h;.

(3.2) As will be explained below, the groups H,(Z, B)" for B=Z and B=C are
closely related to the modular curve M. In particular, we will have:
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(3.2.1) H\(Z,Z)" is a free abelian group of rank g, where
(a) g = abelian rank dimg(I'*®*® Q) of I,
and
(b) g=g(I') = genus of M.

Statement (b) will be described in detail in the next section (see (4.7.6) and (4.13.1)). We
explain (a).

Let I, be the normal subgroup of I" generated by the elements of finite order. Then
I'*:=TI|I} is canonically identified with the fundamental group of '\ ([45], I, Thm.
13, Cor.1). In particular, I'* is free and

(3.2.2) (Ir*® =5 H(I'\7,2).

Let
(3.2.3) I:=I®*/tor(I'*®)

be the factor commutator group modulo torsion. Since (I" *)®® is torsion free, the canonical
map from I'* to (I'*)*® induces an isomorphism

(3.2.4) I —=. (%,
Finally, as results from (3.1.2), the map

(3.2.5) H,(I'\7,2) - H(J,2)",

@ — o*
defined by ¢* (e) = n(e) ¢ () with

(3.2.6) n(e)=z(I)™ ' # () = # L)

is well-defined, injective, and becomes bijective after tensoring with Q. Together, we have
an injection with finite cokernel

(3.2.7) I H(Z,2)",
which will turn out to be bijective in important cases.

(3.3) We now give a more explicit description of this map. For any two vertices v,
w of 7, let c(v, w) be the unique geodesic (= path without backtracking) from v to w.

Choose a base vertex v. For ee Y(7) and a,ye " we put

(3.3.1) i(e,a,y,v) =1,—-1,0,



50 Gekeler and Reversat, Jacobians of Drinfeld modular curves

if y(e) belongs to c(v, a(v)), c¢(a(v), v), neither one, respectively. As a function of y it has
finite support. Since I" acts on  through I, the function

(332) Pun(€)=2(1) ' Y, i(e,0,7,0)
vel

on Y(7) is well-defined and Z-valued.
(3.3.3) Lemma. o, , has the following properties:
(i) @.,e H(TZ);
(i)  @,:=q,, is independent of the choice of v;
(iil) @, 5=, + @4, thus o @, induces a homomorphism j: T — H\(J, Z)";
(iv) j is injective with finite cokernel.

Proof. It is obvious from the definition that ¢, , belongs to H(J,Z)". Since its
support in I'\J is the cycle defined by c(v, 2(v)), we have (i). Let v and w be adjacent
vertices and o € I. After possibly exchanging v and w, the subgraph spanned by the two
geodesics ¢(v, a(v)) and c(w, a(w)) looks like

v e W a(v) a(e) 2(w) voe W a(w) a(e) 2(v) -
——— - - —0———e ofr e—e— - —e——+

This is, c(v, 2 (v)) U {x (e)} = {e} U c(w, a(w)) or c(v, x(v)) = {€} Uc(w, a(w)) U {x(e)}. The
same number of y e I' carries a given e'€ Y(J) to e and to a(e), which in the first case
implies ¢, , = ¢, .. In the second case, the contributions of e and a(e) in ¢, , cancel. We
thus have always ¢, , = ¢, ., i.e., (ii), since J is connected. The formal identity

(paﬂ,v = (Pa,ﬂ(v) + (pﬁ.v

combined with the above yields (iii). Both groups I" and H,(Z, Z)" are free abelian of the
same rank. It therefore suffices for (iv) to show the surjectivity of j® Q. Let T be a
maximal tree in '\, and let {¢, ..., ég} be a set of representatives mpdulo orientation of
Y(r\7)-Y(T).Fori=1,2, ..., g,letd;, = 0(é;), w; = t(&;). There exists a unique geodesic
¢/ in T that connects W, to 7;. Let ¢; be the closed path around #; obtained by composing
é; with ¢;. Define ¢,: Y(I'\J) — Z as follows:

n), ifé
(3.34) ;&) ={ —n(e), ifé appears in ¢; .
0, if neither & nor é

Here e Y(7) is a lift of é and n(e) is given by (3.2.6). From (3.1.2) we see that

¢ H(Z,2)".
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Since ¢,(¢;) = é; ;n(e,), they are independent. If ¢ € H,(7, Q)’, its projection

» (&)
?= Y e
vanishes outside of the maximal tree 7, thus vanishes identically, and {¢,, ...,(pg} is a

basis of H,(7,Q)". Let c; be a lift of & to  with origin v, and terminus v;. There exists
«; € I' with &;(v;) = v/, and a closer look shows that in fact ¢; = ¢, , which ends the proof. O

Going through the constructions, the reader may verify that j agrees with the map
of (3.2.7).

(3.4) Some group G is called p-torsion free if every torsion element of G has order
a power of p. The following is easy to see:

(3.4.1) Every arithmetic group I" contains a normal subgroup 4 of finite index which
is p-torsion free. Take e.g. the intersection of I'c, I'(Y) with a congruence subgroup
I' (Y, a), where a & 4.

Assume now that I is ptorsion free.

(3.4.2) A vertex v (resp. an edge e) of J is called stable with respect to I if its
stabilizer I, (resp. I},) is trivial, and unstable if not (cf. [45], pp.132-134). Let J_, be the
subgraph of 7 consisting of the I'-unstable vertices and edges. The stabilizer of an unstable
vertex v or edge e is a finite p-group that necessarily fixes a unique K-rational end s(v) or
s(e), respectively, of J. Moreover (loc. cit., proof of Lemma 13):

(3.4.3) Proposition. The map e+ s(e) induces a bijection of the set of connected
components of T, with P*(K) = set of rational ends of T (see (1.6.3)).

Let 7 (s) be the connected component of 7, with end se P!(K). An unstable edge
e belongs to 7 (s) if and only if s(e) = s. Further, y(7 (s)) = 7 (y(s)) for y eI, which
implies

(3.4.9) [\ (s) embeds into the quotient graph I'\Z, and
NZ,= 11 [\,
sel'\P(K)

Since I" has no p-torsion, the stabilizers I, are elementary abelian p-groups of infinite
ranks. In particular, I, \ 7 (s) has no cycles, and is therefore an infinite tree with precisely
one end. The graph I'\.J is the union of a finite graph all of whose edges are stable, and
a finite number of trees I\ (s).

(3.4.5) Proposition. The map j: I — H\(7,Z)" is an isomorphism whenever I isp-
torsion free.

Proof. Let T be a maximal tree in I'\7 such that Y(I' \J ) —Y(T) consists of the
classes of stable edges of 7. Such a T exists by the considerations above. Forming the ¢,
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as in (3.3.4), they constitute a Z-basis of H,(7, Z)" since ¢;(é) =n(e;) = % (fei) =1. But
@, is in the image of j, so j is surjective. 0O

(3.5) Let B be an abelian group with pB =0 and I" an arithmetic subgroup of G (K).

(3.5.1) Proposition (see [51], Prop. 3). (i) If I is p-torsion free, each ¢ € H(Z, B)"
vanishes on edges in 7.

(ii) In the general case, H(J, B)" = H\(7, B)". More precisely, ¢ € H(7, B)" vanishes
on ecY(T) if #(I,)=0(modp).

Proof. (i) By (3.4.3), 7, =[] 7 (s) (s€ P'(K)). On J (s) there is a canonical orien-
tation: An edge e is positive if it points to the end s, and negative otherwise. Let ee Y * (7 (s))
and {e'} the g, edges of J with t(e’) = o(e). ¢(e) is determined by the ¢(e’). Since any
path in J (s) without backtracking and that emanates from e into the negative direction
is finite, it suffices to show

(3:5.2) Y @) =0,

e'eY(e)

where Y (e) = {e'€ Y(T)|e’ stable and 1(e’) = o(e)}. Now since Y (e) consists of stable edges,
I, acts on Y (e) with orbits of length # (I) = 0(mod p). Hence the contribution to (3.5.2)
of each orbit cancels.

(i1) Let 4 be a normal subgroup of finite index of I' which is p’-torsion free. Then
H(7, B)" = (H(, B)*)"4, and similarly for H,. Thus the first assertion on I follows from
that on 4. If ee Y (') has a stabilizer I, whose order is divisible by p, we can find 4 as
above which retains this property, so ¢ € H(Z, B)" . H(Z, B)? vanishes one. 0O

(3.6) Recall that the map res of (1.8.5) associates to each holomorphic differential
from w on Q the harmonic C-valued cochain res(w) € H(Z, C). For a holomorphic func-
tion f on Q, we put res(f) = res( f(z)dz). If now f is a modular form of weight 2 and
type 1, f(z)dz is I-invariant and so res () € H(Z, C)" = H,(Z, C)". The next assertion is
a generalization of a special case of [51], Theorem 16 (see also [52], Theorem 1).

(3.6.1) Theorem. Let I" be an arithmetic subgroup of G(K). The map res : f+— res( f)
is an isomorphism between M} ,(I') and H\(7,C)".

The proof in loc. cit. is given for principal congruence subgroups I' only, but may
easily be adapted to work for general I. We leave details to the reader.

(3.6.2) Remarks. It is clear that the formation of H(Z, B)" and of H,(Z, B)" com-
mutes with flat ring extensions B’/ B. Hence the theorem yields a canonical F,-structure
M; (T, F,) on the C-vector space M (I'). For an arbitrary commutative ring B, the
canonical map H,(7,Z)'® B —» H,(Z, B)" is still injective but in general fails to be sur-
jective. We define H, (7, B)" to be its image. By construction, it commutes with arbitrary
ring extensions B’/ B. Later on (6.5.1), we shall see that res identifies M7 (I') with
H\(7,0).
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4. Automorphic forms of Drinfeld type

In the present section, we explain how harmonic cochains for I are related to auto-
morphic forms on G = GL(2). The basic references are [24], [14], and [55].

(4.1) In what follows, W = A, will denote the adele ring of K with ring of integers
0 = Ok and idele group I = I (see e.g. [54]). Having fixed the place oo of K, they decompose
into “finite’” and “infinite” parts

4.1.1) A=A, xK,, O0=0,%x0,, I=IxK}.

The natural inclusions between K, K, 0y, 0, U, A give rise to inclusions between the
groups of points of G over these rings. We refrain from labelling these inclusions and hope
that the context will always make clear whether e.g. K will be considered as a subring of
K, U, or A. We recall the principal facts about the above, which are well known but
dispersed in the literature.

(4.1.2) A is a locally compact ring that contains K as a discrete and cocompact
subring (i.e., K\ is compact).

(4.1.3) 0 is a maximal compact subring of 2, moreover, ¢, is the completion of
A= Kn O, with respect to the ideal topology (here the intersection is taken in ).

(4.1.4) The quotient K*\1,/0f is canonically isomorphic with the class group of
A, and in particular, is finite.

As in (1.3.2), G = GL(2) acts as a matrix group from the right on the affine plane
A?. For ge G(U,), let Y =Y (g) be the A-lattice in K 2 uniquely determined by its span
in O}
]

(4.1.5) Y-0,=0}-g".

(Here and in the sequel, we denote adelic data by underlined letters.) Then g~ Y(g) is a
bijection of the double coset space G(K)\G(U,)/G(¢,) with PE (see (2.9)).

Now let J#; be an open subgroup of G(¢). Since the latter is compact, ) has finite
index and G(K)\G(¥,)/HA; is finite. As results from the strong approximation theorem
for SL(2), the determinant induces a bijection

(4.1.6) G(K)\G(,)/H; —=— K*\I,/detA; .

(4.1.7) Finally, we note that G(K) as a subgroup of G(2) is discrete and ““close to
cocompact”. Viz, choose a Haar measure u on the locally compact group G()/Z(Y).
(In (4.8.1), we will specify u.) Then the quotient G(K)\G(U)/Z(A) has finite volume.

Here as usual, Z = G,, is the center of G. Since

Z@)=I and K*\I/Of x KX —=-K*\I,/O}
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is finite and ¢ is compact, even the quotient G(K)\G()/Z(K,,) has finite volume with
respect to a Haar measure on G(¥)/Z(K ).

(4.2) Automorphic representations. Let L?(G(K)\G()/Z(K,)) be the Hilbert
space of square integrable complex-valued functions on G(K)\G(¥)/Z(K ). Itis a unitary
G (W)-module, where G () acts through right translations. Let dx be a Haar measure on
K\, and put L2(...) for the G(U)-stable subspace of functions ¢ € L?(...) that satisfy
the cusp condition

1 x
42.1 - dx=0
20 Joo((o 7)e)es

for almost all g e G(Y). The space L} decomposes discretely

(4.2.2) L} =P LIy
according to characters yp of the compact group

Z(K)\Z(W)/Z(K,) —=> K*\I/K%.

Finally, each L?(y) is a Hilbert sum

(4.2.3) Ly =@V,
where the ¥, are irreducible unitary G ()-submodules occurring with multiplicity one in
le (y). All of this is discussed in more detail in [14], sections 3C, SA. The G(2)-module
¥, or rather the underlying unitary representation ¢ will be called a cuspidal automorphic
representation. Among the automorphic representations considered in [24], they are di-
stinguished through the fact:

(4.2.4) The central character y of g has a trivial co-component.

(4.3) Newforms. For a positive divisor n of K, we define the open subgroups
b
Hy(m) = {(i ;1> le= O(modn)},

A (n) = {(f §>Ib—3050, asdsl(modn)}

4.3.1)

of G(0). They are called the Hecke and the principal congruence subgroup with conduc-
tor n, respectively. Similarly, if n is coprime with oo, we define the open subgroups % ,(n)
and X} (n) of G(0y). Now for each ¥, of the type considered above, with central character
, there exists a positive divisor n = n, of K, the conductor of ¢, and a distinguished function
0+ ¢ = ¢, €V,, well-defined up to scalars, the newform of g, characterized by

(43.2) e(gk)=0(@vk) (geG),keA,(n),
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where 1 is minimal with this property. Here we have extended y to a character of % (n)
by putting

(4.3.3) k&) =[]y, (a) fork= (“cz b'>, a=(a,),

vin

v running through the places of K (see [14], Thm. 4.24 for details). Thus, considered as
a function on G(¥), ¢ is left G(K)-invariant and transforms according to y under Z ()
and X, (n), and may therefore be considered as a function with some extra properties on
the double coset space G(K)\G(A)/ A (n) Z(K,,). Note that n, is a multiple of the rami-
fication divisor of .

(4.4) Automorphic forms. We define an automorphic cusp form for an open subgroup
A of G(0) to be a C-valued function ¢ on

(4.4.1) Y():=GK\GQ)/ A - Z(K,,)

that satisfies (4.2.1). Since " is open, Y (") is a discret set. Our definition therefore agrees
more or less with (a special case of) the one given in loc. cit., 3.17. (Conditions (iv) and
(v) given there are obsolete since we have no archimedean places, (iii) is satisfied since o
has finite index in G(0), and (ii) results from the Z(K, )-invariance.) As is easy to see, the
1 x
01
is in fact a finite sum. A closer look shows that automorphic cusp forms have their support
in a finite subset of Y (") ([22], 1.2.3). They are therefore square-integrable, and:

argument ( ) g in (4.2.1) takes on only finitely many values in Y ("). Hence the integral

(4.4.2) The space W(X') of automorphic cusp forms for A has finite dimension.
Conversely, the newform of an automorphic representation ¥, of conductor n is an auto-

b
morphic cusp form for " = #"(n) (and even for the subgroup of G (@) of matrices (‘j ;)
with ¢ =0, a = 1 (mod n)). =

(4.4.3) Remark. As results from the absence of archimedean places of K and the
discreteness of Y(o¢"), the topology on the coefficient field C of W (") plays no role.
Furthermore, writing (4.2.1) as a finite linear relation for values of ¢, the coefficients are
volumes of double cosets, whose ratios are rational numbers. There results a canonical Q-
structure W (X, Q) of W (o). If F is any field of characteristic zero, we put

444 WA, F)y=W(H,QF
and call it the space of F-valued automorphic cusp forms for A.

(4.5) Suppose now that the open subgroup %" of G(¢) decomposes as a product

4.5.1) H = A XA,

with subgroups J; of G(€)) and ¥, of G(0O,,), respectively. Choose a system § of represen-
tatives for the finite set G(K)\G(U,)/H; (see (4.1.6)). Each g e G(W) may be written as
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4.5.2) g =yxkg,

with ye G(K), keH;, g,€G(K,), and some uniquely determined xeS. (Here
G(K), #; < G(U,), and G(K,,) are considered as subgroups of G().) Let

(4.5.3) L=GK)nxAx"!
be the intersection in G (). It is an arithmetic subgroup of I' (Y (x)).

(4.5.4) Lemma. The map on Y (X') that to the double class of g € G (W) associates the
double class of g, in T\G(K,)| A, - Z(K,) (see 4.5.2)) is well-defined and identifies Y (A")
with the disjoint union || T\G(K,)/ A, - Z(K,).

xeS
Proof. Straightforward.

The case of interest to us is when 7, is the Iwahori group £, = .# defined in (1.3.4).
In this case,

(4.5.5) Y() —=- [ L\G(K,)/Z(K,) - 5,

xeS

=[] r)\7).

X€eS

(4.6) Our next task will be to describe which kind of automorphic forms on
H=H XS,

correspond under the above isomorphism to harmonic cochains. Let (g, V) be an auto-
morphic respresentation of G (). As explained in [14], 4C, it decomposes into an infinite
tensor product

(4.6.1) V,=®V,,,

where v runs through the set of places of K and V, , is the space of an irreducible unitary
G(K,)-representation g,. The type of g, is uniquely determined by ¢, whose conductor n,
splits into the product of local conductors. Further, the newform ¢, of ¥, may be re-
presented as the tensor product of local newvectors ¢, , €V, , with a local property ana-
logous with (4.3.2).

(4.7) The special representation of G(K,). Let F be a field of characteristic zero.
G(K_) acts from the left on the projective line P*(K_) and from the right on the space
of locally constant F-valued functions on P*(K_). Dividing out the constants, the resulting
special representation @,  on

4.7.1) Vio.ri={f: PY(K,,) - F| f locally constant}/F
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is irreducible. Clearly,

@.7.2) Csp.F = Csp,r ® F

for field extensions F'/ F, which justifies omitting the subscript F in (0sp> ¥ep)- Furthermore,
for F= C the field of complex numbers, there is a (unique up to scaling) G(K, )-invariant
scalar product on ¥, such that

(4.7.3) o, extends to an irreducible unitary representation g, on the completion Zp

of ¥,
We then have:

(4.7.4) The conductor of g, or g, is the prime divisor co.

In view of (4.3) this means that its subspace of .# -invariants has dimension one. (For
more details, see [14], 4B.)

(4.7.5) An F-valued automorphic cusp form ¢ for 2" will be said to transform like
0, if its right G(K,)-translates generate a module isomorphic with a finite number of
copies of g,,. If the coefficient field F equals C, this is equivalent to saying that ¢ is right
G (0, )-finite, and belongs to the direct sum @V; & L? (see (4.2.2) and (4.2.3)) over a finite
number of automorphic representations ¢ all of whose co-components are isomorphic
with g,.

We put W, (A, F) = W(X, F) for the space of ¢ that transform like g ,. The next
result gives an answer to the question raised in (4.6). It is merely part of [6], 10.3, but
for the sake of transparence, we state it separately.

(4.7.6) Theorem (Drinfeld). Let S = X, X £ with an open subgroup X, of G(0;)
and F a field of characteristic zero. Under the byectton (4.5.5), the space @ H, (,7 F)% of
F-valued harmonic cochains corresponds to W,,(X, F). xe§

Note that the cusp condition (4.2.1) forces ¢ € W, to have compact (= finite) support
as a function on [[ Y(I,\9).

xeS
(4.8) Petersson product. Let ge G(U) be written g = yxkg,, as in (4.5.2). With its
class cl(g) in Y("), we associate
z(I3)
(4.8.1) p(cl(g) = T S

Recall that z(I}) = # (F NZ(K)) and I,ng, 2. g5" is the stabilizer of the edge e of I
determined by g . Thus with (3.2.6), u(cl (8)) =n(e)™*. Clearly, this number depends only
on cl(g) but not on the choice of representatives S of G(K)\G (A,)/ A;. 1t is the volume
of cl(g) with respect to a conveniently normalized Haar measure u on G (QI) /| Z(K,), which
we regard as a measure on Y (). As follows from the considerations of (4.1.7), vol (Y(.xf )
is finite. For more details, see [24], section 10.
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There results a scalar product

(4.8.2) (@1, 02),= | 01(8)0,(8)du(g)

Y(X)

on the space of Q-valued functions with compact support on Y(X’), and notably, on
W, (X, Q). Since ¢, and ¢, have compact support, the integral is in fact a finite sum. This
product, or its real euclidean, or complex hermitian extension, will be called the Petersson
product. 1t is the restriction of the scalar product on L?(G(K)\G(W)/Z(K ), 1) to its
subspace W, (X, C).

(4.9) Hecke operators. We merely give a special case of the general construction
and refer to [14], 5B for an exhaustive treatment of Hecke operators. Let n be the con-
ductor of A;, i.e., the least positive divisor n coprime with oo such that J; (n) is contained
in 4. If v is a finite place coprime with n (such v are called unramified for #;, or for n),
A,+=G(0,) embeds into ;. Let n, be a local uniformizer and z, the matrix

n, 0
(0 1)eEG(K,,).

The group #,:=X,nt,X,t, ! has index g, + 1 in ;. Let dk, be the Haar measure on
A, normalized such that

4.9.1) voly () =1.
For a function ¢ on Y(X') put
(4.9.2) (T,0)(8) = | o(gk,t,)dk,
Ny

= Y gk,

kyedy|Hy

where k, runs through a set of representatives for ¢,/ 5#,. The Hecke operator T,: o — T, ¢
has the following properties:

(4.9.3) T, is again a function of Y(X), and T, maps W, = W,, (¢, C) into itself.
We therefore regard 7, as an operator on W, only.

(49.4) Any two T,, T, commute. Together with their adjoints 7,* with respect to
the Petersson product, they generate a commutative algebra of normal operators in W,,.

By the above, there exists a basis {¢} of W, that consists of simultaneous eigenforms
for all the 7,. Let A(¢@,v) be the corresponding eigenvalue. Then

(4.9.5) A(p,v) is an algebraic integer,
and

(4.9.6) |2 (p,v)| < 243"
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for every embedding of @ (A(g,v)) into C.

Among these statements, (4.9.3) and (4.9.4) are straightforward from the definitions,
and (4.9.5) results since T, comes from a correspondence on Y(X') with integral coeffi-
cients. In contrast, (4.9.6), the analogue of Ramanujan’s conjecture, is deep. It has been
proven by Drinfeld [6], who reduced it to Weil’s conjectures, i.e., to properties of Frobenius
eigenvalues on the cohomology of modular curves of the type considered in section 2. See
also (4.13.1).

(4.9.7) Remark. Our space W,,(X;C) splits

W, = @ W, ()

according to characters y of the finite group Z(K)\Z(,)/Z(AU,) N ;. Clearly, the ope-
rators T, respect the decomposition. An easy change of variables in (4.9.2) now shows the
formula

(4.9.8) TX W) = v ' () T, W, (w)

for the adjoint T.* of T, restricted to W,,(y). Since v is unramified, the value y(r,) does
not depend on the choice of m, but only on the place v. In particular, 7, is hermitian if
restricted to the component W, (1) of the trivial character y = 1.

(4.9.9) Remark. We introduced Hecke operators 7, for prime divisors v only. For
some purposes, it is useful to extend the definition to arbitrary positive finite divisors m
coprime with n, using a formula similar to (4.9.2). The resulting operators 7, will satisfy
T..=T.,T,(mm)=1)and 7,. = polynomial in 7, with integral coefficients. In par-
ticular, T, lies in the Z-algebra generated by the T,. We refer to [47], 3.2, 3.3 or [44],
VII, 5, where analogous cases are treated.

(4.10) The special Galois representation. Let K be the maximal unramified exten-
sion of K. The Galois group Gal(K¥/K,) is isomorphic with the profinite completion
Z of Z, where the canonical generator corresponds to the Frobenius automorphism F, of
KY over K. Let / be a prime different from p = char(F,), and let E,;/ K7 be the field
extension obtained by adjoining all the /"-th roots (r € N) of the uniformizer n,, to K.
Then Gal(E,/Ky)=2Z,(1) = ligly(l’) ~ Z,. Moreover, E, is galois over K, and its group
is a semi-direct product

(4.10.1) Gal(E,/K,) = Gal(K¥/K,) % Gal(E,/KY)
=2Zx7,),

where the action of F,, =1¢€ Z on Z,(1) is given by
(4.10.2) F uF;'=u' (ueZzZ/)).

Choose an isomorphism of Z,(1) with Z,. The two-dimensional /-adic special representation
sp = sp, of the local Galois group Gal(K3?/K,) is the representation on Q7 given by
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(4.10.3) sp: Gal(K*®/K,) —» Gal(E,/K,) —=— Zx Z, - G1(2,Q,),

. 1
where the right hand arrow maps (1,0) to ( 0 (21> and (0,1) to (:) i) For a more
detailed discussion, see [3], 3.1. 9o

(4.11) Let now X, be any open subgroup of G(0¢;). To ¥, there corresponds a
moduli scheme M, , whlch may be described as follows: If (1) c Ay, then M, = quo-
tient of M 2 (n) by the finite group %/ A, (n). Here nis any posmve admissible (i.e., d1v1sxble
by at least two primes) finite dw:sor of K. (Recall that M2 (n) represents the functor
“Drinfeld 4-modules of rank two with a level-n structure”, so there is a natural action of
G(O)/ H;(n) on M 2 (n), see (2.4).) My, is a coarse moduli scheme for a moduli problem
that depends on %}

The main examples are X, = X, (n) and A} = X (1), which lead to My =M 2(m)
and M¢(n), respectively. M2 (n) is called the Hecke moduli scheme of level n 1t classifies
“rank-two Drinfeld A-modules with a cyclic A-submodule of exact order n”’

Base extension from 4 to C of M, yields an affine curve over C, whose associated
analytic space has a description similar to the one given in (2.5). More precisely, there is
a canonical isomorphism of analytic spaces

(4.11.1) I L\e =5 M, (0),

xeS

where S and I are as in (4.5), and the components I \Q = M. are modular curves of
the type con51dered in section 2. Note that (2.5.1) is a special case of (4.11.1).

(4.12) The Hecke correspondence. Next, we let M, *; be the canonical normal com-
pactification of M, ([6], section 9). Using (4.11.1), its space of C-points is the disjoint
union [ [ M_of the compactifications of its components. From the interpretation of M,
as a moduli scheme there results for every J -unramified finite place v of K a Hecke
correspondence on M, , which uniquely extends to fo. By abuse of notation, we label
this correspondence and everything derived from it (the associated endomorphisms of the
Jacobian, and of the /-adic cohomology of M,f x C) by “T,”. As usual, the correspondence
T, associates to every point xe M, (i.e., to every rank-two Drinfeld module ® with a
level-J; structure) the collection of points x’ for which there exists a v-isogeny x — x". It
may be described through the action of G(,) on the projective limit 1111_1 M?(n) of schemes
M?*(n) ([6], 5 D, [10], I, 3). After base extension with C, the module @ is given by an
A-lattice 4 in C. Then T, associates to A the collection of lattices 4’ that “‘contain A with
index v”’. For details, see [10], VIII, 1.

(4.13) We are now ready to state (a version appropriate for our purposes of)
Drinfeld’s reciprocity law:

(4.13.1) Theorem (Drinfeld). Let A = X, x %, be as above, M x C = M, X C the
corresponding compactified modular curve over C, and 1+ p a prime number. The l-adic
cohomology module H' (M x C,Q)) is canonically isomorphic with W,,(X,Q,) ® sp,, where
W,, and sp, are given by (4.7.5) and (4.10.2). The isomorphism is compatible with the actions of
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(a) the Hecke operators T, (v an unramified finite place);

(b) the local Galois group Gal(KP/ K ) (which acts on H* (M x C, Q,) since My, and
M, are defined over K).

(4.13.2) Remarks and comments. The statement just given follows from combining
Proposition 10.3 and Theorem 2 of [6]. The assertion given there is about the coho-
mology of E@M %(n) x C, considered as a representation space for G(U). (4.13.1) comes
out by taking #;-invariants, since knowledge of the G(2)-action is equivalent with the
knowledge of all the T, (v unramified for ;) for all open subgroups #; of G(¢,). Simi-
larly, we see that the isomorphism commutes with ““Atkin-Lehner involutions” whenever
these are defined, e.g. A, =%} ,(n).

Now let (¥, 9) be any @Q,-valued automorphic representation of G (A,) whose co-
component g, is isomorphic with g,. Its newvector ¢, occurs in W, (X, Q,) for some
H = A, xS, By “multiplicity one”, the G(U,)x Gal(K5*?/K,)-submodule V'® sp of
H? (}lrl’l M2 (n),Q,) is even Gal (K*P/K)-stable. So the latter splits as a

G(A,) x Gal(K**?/ K )-module

into a direct sum (P V;® s;, where (¥}, ¢;) is an automorphic representation with ¢, , = o,

and s; a representation of Gal(K*®®/K) in Q7 whose restriction to Gal(K:?/K_) is iso-
morphic with sp. This establishes a one-to-one correspondence between the V; and the s;
that preserves conveniently normalized L-factors. This correspondence is a special case of
the Langlands conjectures for G = GL(2) over K; it justifies the labelling as a *“‘reciprocity
law”. A much more detailed discussion of the theorem along with its implications for the
Langlands conjectures is given in [5]. We have chosen our more simple-minded version
of (4.13.1) since in this form, it is best adapted to our purposes (see sections 8, 9). Note
in particular that by (4.7.6), the information about the Hecke action on a modular curve

M,y is encoded in W, (#;Q)) = @ H,(7,Q))". The latter is a quite accessible object,

xeS

on which calculations can be carried out.

5. Theta functions
In the whole section, I is a fixed arithmetic subgroup of G(K) = GL(2,K).

(5.1) A holomorphic theta function for I is a function u: Q — C that foreacha e I'
satisfies a functional equation

5.1.1) u(@z) = c,()u(z)

with some c,(«) € C* independent of z, and is holomorphic without zeroes on  and at
the cusps. In view of (5.1.1), u is invariant under I'?, since this is a p-group and C* is
p-torsion free. Therefore, u has a Laurent expansion w.r.t. #(I', ) (see (2.7.3)). Holo-
morphy of u at co (and at the other cusps) is then defined as in (2.7.7). For a mero-
morphic theta function, we allow poles and zeroes on £ (but not at the cusps). We set

5 Journal fiir Mathematik. Band 476
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0,(I') o 6,,(I') for the multiplicative groups of holomorphic or meromorphic theta func-
tions, respectively. Clearly
c,: I - C*,
o ¢, ()

and

(5.1.2) ¢:0,(I') » Hom (I, C*) = Hom (I'*, C¥),

u—c,
are group homomorphisms. Furthermore,
(5.1.3) ker(c)n®,(I') = C*,
since € is a Stein domain [16].

(5.1.4) Lemma. Let u(z) be a holomorphic theta function for I'. Then its logarithmic
derivative u'(z) | u(z) lies in M3 ().

Proof. The transformation rule for f(z) =u'(z)/u(z) comes directly from (5.1.1),
thus fe M, (I'). Let u= ) a;t' be the expansion of u at the cusp oo (compare (2.7.6)),

iz0
where a, # 0. From (2.10.1), «’ = const. X t* + higher terms, thus «’/u has a double zero
at oo, and similarly at the other cusps. O

(5.1.5) Remark. In (7.5.2) we shall see that the divisor on M, of a theta function
has degree zero. The non-vanishing requirement for holomorphic theta functions is there-

fore superfluous.

(5.2) Let w, n be fixed elements of 2, and put

zZ—yw
(5.2.1) 0r(w,n,2)= .
r ynr z—1

Note that the product is not over I but over ' = I'/ ' n Z(K). In order to simplify notation,
we write elements of I" as matrices, and omit most parantheses in expressions yo = y ().
The product is said to converge locally uniformly on Q if there exists an admissible covering
(U,) of Q such that, given U, and ¢ > 0, almost all the factors satisfy

zZ—yw
z—n

5.2.2) —1| <& uniformly for ze U, .

This being the case, the resulting meromorphic function 0 (w, 7, -) will turn out to be a
theta function for I'. As long as I' is fixed, we omit the subscript I.

Products of this type have been introduced by Manin-Drinfeld [29] and studied by
Gerritzen-van der Put [17] and Myers [33]. In the case of the special arithmetic groups
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I' = GL(2, A), the basic properties (5.2.3) and (parts of) (5.4.1) are due to W. Radtke ([38],
sections 7, 8, see also [39]). We simplify his proofs and complete his results.

(5.2.3) Proposition. The product for 6(w,n, z) converges locally uniformly on Q. If
IF'w#1TI'n, 0(w,n,2) has a zero (pole) of order #(I,) (3 (I)) at w, n, respectively, and no
other zeroes or poles. If I'w = I'n, 0(w, n, z) has neither zeroes nor poles on Q.

The proof is contained in (5.3), notably (5.3.8).
(5.3) Estimates. Let w,n € Q be given. We will do the relevant estimates on
(5.3.) U, = {zeQ|lzl x| ™|z, 2 x|} .

(Recall that « is a uniformizer at oo and |n| = ¢ '.) Clearly, U, is affinoid and @ = | ) U,
neN
an admissible covering. Let I’ be the subgroup of upper triangular matrices in I. The

following is easy:

cd c d
in LI if and only if u(c,d) = (c’,d’) with some u e F*.

b " b
(5.3.2) Lemma. Two elements y = (a ), Y = (a > of I define the same class

(5.3.3) Lemma. Let two constants c,, ¢, > 0 be given. For almost all the classes in

b
I' \I" of elements y = (‘Cl d

we write ‘‘for almost all pairs (c,d)’’. Of course, the same assertion holds for the first rows
(a,b) of yeT')

) in T, |z|;> c, implies |cz + d| > c,. (By abuse of language,

Proof. Clear in view of [cz+d|=|c||z|; and the fact that the ¢, d occurring as
coefficients in I' are contained in a fractional 4-ideal. O

(5.3.4) Corollary. Let ¢ > 0 be given. For almost all pairs (c,d) such that
a b
= r,

Proof. Straight from (5.3.3) and (1.1.5). O

we have |yn|; < €.

ab
(5.3.5) Lemma. Let (c,d) be fixed and c,, c; > 0. For almost all y = (C d> el in
the class determined by (c,d), |z| < ¢, implies |z —yn| > c;.

Proof. Applying (5.3.3) to the first row (a,b) of y and z =7,
lynl=1len+d|™ |an+b|> sup(c,, ;)

for almost all (a,b). Then |z —yn|=|yn|>c;. O
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(5.3.6) Lemma. For almost all ye T, |z —yn| = |xr|" uniformly on U,.
Proof. By (5.3.4), |yn|; <|=|" for almost all pairs (c,d). For these,

lz—ynl2lz—ynl;2Ixnl"

since | z|; = |n|". For the remaining pairs (c,d), apply (5.3.5). O

An easy calculation yields

Z—yw dety(n — w) ab
5.3.7 —-1= for y = .
O30 T T emmenr deord T \ed
(5.3.8) Lemma. Let ne N and ¢ > 0 be given. For almost all ye I" we have

zZ—yw
z—=n

-1 <e¢

uniformly on U,. (Note this proves Proposition (5.2.3)!)

Proof. (5.3.7) combined with (5.3.6) and (5.3.3) gives the wanted estimate for almost
all pairs (c, d). Fixing (¢, d) and applying (5.3.5) shows that it holds for almost allye I. O

(5.3.9) Lemma. Let s= u/ve K. The product [] ST converges.

yel §—yn
b — d—b
Proof. Fory=<j d> wehavels—ynlzl(uc |:|U|)cnnj—ud| vl 2c,len+d|™,
- : s—yw _y In— o]
where ¢, > 0 is independent of y. Now (5.3.7) yields —1|Z¢et cotd] As

usual, for all but a finite number of pairs (¢, d), the above is less than ¢ for ¢ > 0 given.
We conclude by combining (5.3.7) with (5.3.5). O

(5.3.10) Lemma. Given ¢ > 0, there exists c¢5 > 0 such that for all yeT and z € Q
Z—yw
zZ—yn

-1 <e.

with |z|; > c¢s we have

zZ—yw

Proof. From (5.3.7) we see that

-1 ' < cg¢|z—yn|~! with some constant

¢ that depends only on w, #, and I', but not on ze Q and yeI. Let

cs = sup{ce/e lynl,ye T},

which exists e.g. by (5.3.4). Then for |z|,>cs and yeT,

—1|<cg/es<e. O

z—yw
- 2lz— > z|, > d
lz—ynl2lz—ynl;2|z|;>¢s an 'z—vn
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(5.4) The most important properties of the functions 6 (w, , z) are collected in the
following result.

(5.4.1) Theorem. Let w,ne Q2 and ael be given.

(1) There exists a constant c(w,n, o) € C* such that

(5.4.2) 0(w,n,az) = c(w,n,a)0(w,n, z)
independently of z.

(1) c(w,n,a) depends only on the class of o in I’ = I'*®/torsion. Thus a > c(w, 1, &)
defines a group homomorphism from I' to C* that factors through T.

(iii) The function 0(w, n, z) is holomorphic and non-zero at the cusps of T.
(iv) The holomorphic function
(5.4.3) u,(z) =0(w, aw, z)
is independent of the choice of w € Q. It depends only on the class of o in I.
(v) For a, el we have u,; = u,up.
(vi) We have
(5.4.4) c(@, 1, 0) = u, (1)t (@) .
In particular, c(w, n, &) is holomorphic in w and 7.
(vii) Let
(5.4.5) ,()=clwaw,): T > C*

be the multiplier of u,. Then (x, )+ c,(B) defines a symmetric bilinear map from rxr
to C*.

As results from (i) and (iii), the functions 8(w, 1, z) (,(z)) are meromorphic (holo-
morphic) theta functions for I'. Note also that by (vii),

(5.4.6) (o, B):=log|c ()]
is a Q-valued symmetric bilinear pairing on I'. Before giving the proof, we note that

_l
0z —w z—a w a0 — @
=h , Wwhere h,=
(5:4.7) oz —n *z—oalpy o®o0 — 1

eC*.
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(The two rational functions in z have the same divisor. Letting z = oo yields the formula.
Of course, A, =1 if a0 = 0.)

Accordingly, we have

az—yo _ z—a o p o 2070

a,y

(5.4.8)

az—yn T z—oa lyp’ a0 —yn

-1
Proof of (5.4.1). (i) 6(w,n,az) =[] (h[x , i——“—_—lv??), so we have to show that

yel Tz—a
(5.4.9) c(w,n,a) =[] A,,
yel

converges. For a00 = oo this is trivial, for aco =u/ve K it is (5.3.9).

(iv) O(w, 0w, 2)0(n,an,z)" ' = 1—1 ( zZ—yw > H (z—yan)

, \z—vyaw/) "\ z—yn
Z—yw z—yon
= —— | =60(w,n,2)0(n,w,z) =1.
I;I<Z~vn>ryl<z—vaw> e

(V) Upp(2) = 0(w, 2w, 2) = 0(w, Bw, 2) 0 (Bw, a fw, z) = uy(2) u,(2).

(vi) The y-th factor of c(w,n, a) is

ozz—yw/z—yw B yw—ocz/yn—ocz_w~'y‘1az/r1—y_locz
Ym—z w—y 'z n—y 'z

az—yn | z—yn  yw—z ! -1
(see (5.4.7)), which is the y~*-th factor of u,(n)/u,(w).
(ii) Since o+ c(w, n,®) is a homomorphism into the abelian group C¥*, it factors
through I'*®*. Let a eI’ have order m in I'*®. Fixing w, the holomorphic function
n+— c(w, n, o) takes its values in the m-th roots of unity, hence is constant. Inserting # = w

shows it is identically one.

(iii) In view of (2.7.7), it suffices to see that 6 (w, 1, z) is holomorphic and non-zero
at oo for every arithmetic group I' in G(K). Now (5.3.10) shows that actually

(5.4.10) Or(w,n,2) =1+0(),
where ¢ = ¢(I, o0) is the uniformizer at co.

(iv) (continued) We still have to show that u, only depends on the class of « in TI.
Let o be such that a™ is a commutator. Then u, must be constant equal to an m-th root
of unity. Evaluating at z = oo shows u, =1.
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(vii) ¢,(p) is defined on I' x I' and bimultiplicative. By (vi) we have
Ca(B) = C(UJ, aw, )B) = up(aw)/uﬂ(w) = cﬂ(a) .0

(5.4.11) Remark. The functions 6(w, n, z) may be analytically continued such that
w and 7 are allowed to be elements of P!(K). This amounts to modifying those of the
factors of (5.2.1) that correspond to yw = o or y5 = co. From the modified product, one
can read off:

(5.4.12) Proposition. c¢,(f)e K, for all o, feT.

Since the complete discussion involves complicated case considerations and an exten-
sion of the estimates in (5.3), it will be omitted. (5.4.12) may be seen by the following ad
hoc argument: Let we Q2 be algebraic over K. Then (5.4.8) and (5.4.9) show that
c,(B) e K (w). Since u, is independent of the choice of w, ¢,(B) is contained in every
proper algebraic extension of K, thusin K. O

(5.5) For a holomorphic theta function u, the cochain r(u) € H(Z, Z) is I-invariant,
as directly results from the construction of the map r (see (1.7.3)). Let now a € I" be given.
Our next aim is to compare r(,) to the cochain ¢, of (3.3). We need some preparations.

(5.5.1) Let D, = C,U D3I C, be the subsets of 2 discussed in (1.5): C,, D3, C, is
given as the set of ze @ that satisfy |z|,=|z| =1, |n|<|z|;=|z|< 1, |z|;=|z| = |n|,
respectively. By e we denote the oriented edge of  determined by Dy, i.e.,

A(C) =o0(e), A(Co)=1(e),

having chosen the orientation as in case («) of (1.5.9). The graph 7 — {e, &} has two con-
nected components

(5.5.2) T—{ee}=T"[]7 ",
where o(e)e T ~, t(e)e T *. We let
(5.5.3) Q= 1" YT (R)—t(e), Q =i"Y(T " (R)—o0(e),
A =Q"uC=2"Y(T*R), Q@ =2 uC=1""(T (R).
As is easily verified,
(5.5.9) Qt={zeQ|lz|>1or |z];<|z| =1},

Q = {zeQllzISInl, |z|; <|xl}.

Therefore,

(5.5.5) |z—w|=|o| (zeDy,wel’) or(zeDg, weQ™)

=|z| (zeDy,weR”) or(zeDy, weQ7).
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This in turn implies the

(5.5.6) Lemma. For ze D, we have
sp sp 1 ’
(|2
Co Cy O

We further note the trivial

zZ—w

’

zZ—w

(5.5.7) Observation. Let fe O,(D,)*. Then

wel ,w'eRt,
wet, weQ,
w,w bothin Q% orin Q.

HANE /N ANE = lir;lo | f(2)]/ lirglo | f(2)].
lz =1 |21 2]

(5.6) Theta functions and harmonic cochains.

Now we can state and prove the

wanted relationship.

(5.6.1) Theorem. Let a €I be given. Then r(u,) = ¢, (see (1.7.3) and (3.3) for defini-
tions).

Proof. Up to conjugation with elements of G (K), we only need to show that given
any arithmetic group I" and any a € I, r(u,) and ¢, agree on the edge e associated to D,,.

Let w € Q be such that v:=4(w) € X(7). Then u,(z) = [ —— 2

yeI: z—=
factors have absolute value 1 uniformly on D,. If y is such that {yw, yaw} D, =09, its
contribution to r(u,)(e) is

, where almost all the

(5.6.2) 1, ifyweQ ", yowe™,
1,

0, otherwise,

ifyweQ*, yawe Q™

as we read off from (5.5.6). The product

=11

zZ—7yw

z—yow

over those y € I" such that yw or yaw lies in D, is finite and invertible on D,, i.e., its zeroes
and poles on D, cancel. We thus may evaluate log (|| fII& /|| f||,) termwise by means of
(5.5.7) and (5.5.5). As {yo,yaw}n D3 =0, this yields

ifyweQ ,yaweQ™,
ifyweQ*, yaweQ™,

(5.6.3) 1,
-1,
0, otherwise

for the contribution of (z — yw)/(z — yaw) to r(u,)(e), even if yw or yaw meets D,. We
therefore have
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r(u,)(e) #{yellyoeQ ,yoweQ") —#{yelywel* yawe Q™)

# {y € ['|e occurs in the path c(y(v), ya(v)) on I}
— 4 {yeI'|é occurs in the path ¢(y(v), ya(v)) on 7}
= zZ()™1 Y i(e, 0,7, v)  (see (3.3.1))

vel
= e le). O
(5.6.4) Corollary. r(u,) € H(7,Z)" (i.e., r(u,) has compact support modulo T).

Of course, this may also be seen directly: It follows from the fact that u, is finite and
non-zero at cusps, so its absolute value becomes constant in the neighborhood of a cusp.

(5.6.5) Corollary. The homomorphism ii: I — @,(I')| C* induced by o+ u, is injec-
tive with finite cokernel, and bijective if ' is p'-torsion free.

Proof. aw> ¢@,: T - H(7,Z)" has the same properties. O

(5.7) Recall that the Petersson product (.,.), on H,(Z,Q)" is induced from the
measure u on Y(I'\.7") that to each & associates u (&) = n~'(e) (see (3.2.6)), where e€ Y(F)
lies above &. On the other hand, we have the pairing (.,.) on I defined by (5.4.6).

(5.7.1) Theorem. Let «, BeI. Then 2(x, B) = (@, Pp),-

(Here and in the sequel, we write “f(x)” instead of *“f(&)” for functions f on I' and
a=class of ae I'.)

Proof. We adapt an argument of van der Put [36] to our situation. Let P(Z, Q)be
the group of Q-valued potentials on 9 (= functions f on X () such that df is a harmonic
cochain). Then the exact sequence (1.7.2) extends to a commutative diagram of I-modules

0 — C* — G(Q* —— H(7,Z) —> 0
log|.| log |1

(5.7.2) 0— Q@ — P(70Q) —— H(Z,Q) — 0.

The middle vertical map is derived from the spectral norm, and df (e) = £ (t(e)) — f (0 (e)).
The long exact cohomology sequence yields a commutative diagram

HO(I', H(7,2)) = H(7,Z)" —— Hom(I',C*) = H'(I', C*)
log|.|

H(7,Q)" — Hom(I, Q).
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Now ¢, e Hom (I, C*) is the cocycle associated to ¢, = r(u,) € H,(7, Z)", thus
(5.7.3) (&, B) =log|c,(B)| = P,(Bv) — P,(v) (ve X(J) any base vertex),

where P, = log||u,||*" is the potential characterized up to an additive constant by dP, = ¢,.
Let (ey,...,€,) = c(v, fv) and (e}, ..., e;) = c(v, av) be the geodesics in J connecting v to
Bv and v to av, respectively. (5.7.3) reads (¢, 8) = Y. @,(e;). By the very definition of

Op @)= Y {ee}}, s0 151y

1<jss

@h= 2 2 feej}

15isr 1£j<s

with
(5.7.4) n(e), I'e=Te’,
{e,e’} = —n(e), TI'é=Te’,
0 otherwise .

On the other hand
(@0 @)= 2. n(e) 'o,(e)p4(e)

eeY(I'\J)

= Zn(e)"lz Z {e,e;} {e,¢]},

e

having extended the function {.,.} to Y(I'\.7).

Now {e, e;} {e, ¢/} # 0 if and only if the three edges e, ¢;, ¢/ agree up to signin I'\Z,
in which case it takes the value n(e)® if e; = ¢/ and —n(e)® if ¢, = ¢;. Since both ¢ and &
give the same contribution, we have

(00 @), =2 Y, Y {ene}=2(wp). O

1gisr 15jss
(5.7.5) Corollary. The form (1, ) on T @ R =, H\(Z,R)" is positive definite.

(5.7.6) Corollary. The homomorphism ¢ : I’ - Hom (I, C*) induced by o> c, is in-
Jective.

6. Changing levels
In this section, I" will be an arithmetic group and 4 a congruence subgroup of I. We
use subscripts I, 4 to indicate the level of objects treated, e.g. j-: I' > H(Z,Z)", uy.,€ 6,(I')

etc. Our first aim is to relate the theta functions for I and for 4.

(6.1) First note that I' and I = I'/ ' Z(K) have the same torsion free abelizations:
The canonical map from I'*® to [*® induces an isomorphism

(6.1.1) [ = I'*/tor(I'**) —=— [/ tor(I"*?).
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Let

>N
=~

(6.1.2) I. A>T T -

b

!
~
N

V. [ e

—

be the maps induced from the inclusion 4 ¢, I" and the transfer maps, respectively. The
transfer is defined and discussed e.g. in [43], VII, 7/8 (see also proof of (6.2.1)). We will
write Vo for V applied to the class of a € I. Similar notation will be used for I, V, I. We
have (loc. cit., Prop. 6): If n is the index [I': A] then

6.1.3) IoV=n=1I-V,

where ““n” is multiplication by » on the additively written groups I'*®, I, respectively. Since
T is torsion free, this implies:

(6.1.4) Proposition. V:I — A is injective.

(6.2) Trivially, any theta function for I is a theta function for 4, i.e., ©,(I') ¢, ©,(4).
A more precise description is as follows:

(6.2.1) Proposition. Let o€ I' and ur., the attached holomorphic theta function. Then
Ur, = Uy p,. In other words, the diagram

r., e.n

=

6.2.2) a4 o 0,4)
is commutative, where ur is derived from a v ur. ,.
Proof (compare [17], p.234/235, where a similar case is treated). Let {a;,...,a,}

be a set of representatives in I for A\I" and ¢ the permutation of {1,2, ..., n} such that
the classes of «;o and a,, agree. Let further y, = o;aa, ;. With some w e @,

ua@ = 1 (;_‘L“C’D) = 11 1] (Z—————Z__;aff;)

yel 15isn yed
= H ]_[ ( z_yaiw )
ved 1gisn \Z = VWi%3®@

()

Z = YYilepW

=HH...=HuA’yi= Ug g s
iy i
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where the class of f:= ﬂ i = [] w0, equals ¥ (class of «) ([43], VI, Prop. 7). O

Essentially the same rearranging procedure yields the corresponding result for ¢ ,,

whose proof is left to the reader:
(6.2.3) Proposition. ¢, = ¢, 7,.
Hence the diagram

r H(T.2)"

\/
i

,(4)/C*
(6.2.4) a / Ja \ H\(7, 2)"

is commutative, where 7. and 7, are derived from r: 0,(2)* — H(Z, Z). Note also that 1
corresponds to the norm map on harmonic cochains, i.e.,

I BT 2)"
(6.2.5) T T
4 - H(7,0)*
commutes, with (Ng)(e) = Y. ¢ («; ).
(6.3) Next, let f be a (holomorphic or meromorphic) theta function for 4. With

{a;} as above, put

(6.3.1) Lyf@)=]]f(%2).

(6.3.2) Proposition. (i) g:= L% f(z) is a (holomorphic or meromorphic) theta function
for T, which up to constants does not depend on the choice of {;}.

(i) Let c; : A2 — C* be the multiplier of f. The multiplier of g is cg=cpoV.

Proof. For ael, let o(i) and y; be as in the proof of (6.2.1). Then
glaz) = H f(yoz) = nf(yiaa(i) z)
= H Cf()’i) Hf(ao'(i)z) = Cf(VO‘)g(Z) >
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i.e., g transforms under I" according to ¢, o V. The other assertions are then clear. O
The construction applies notably to our basic theta functions. For these we get
(6.3.3) Proposition. Let f(z) = 0,(w, n,z). Then L f(z) = const. x 0(w, 1, z).

Proof.
f@)= HG (@, 7, 2;2)

e=n
¢TI T1 (—-—%"> by (5.4.7)

i yeA

= 11 ()

= clr(w,1,2)

with some ce C*. 0O

(6.3.4) Corollary. Let a€ A. Then Liu, , = const. X up.,.

(6.4) From now on, we make the assumption:

(6.4.1) A4 is p-torsion free, and the index n = [I": 4] is not divisible by p.

(6.4.2) Lemma. FEach arithmetic group I' contains some A subject to (6.4.1).

Proof. LetI'c, I'(Y)be asin (2.1), let n & 4 be an ideal, and = the projection from
I'(Y)to GL(Y/nY) modulo thei image of Z(F, ) =~ F*. Let further S be a p-Sylow subgroup
of t(I')and 4:=n""(S)NTI. Then [[: 4] = [n(F) S7 =% 0 (mod p). Since I'(Y, n) = kern
has no p*-torsion ([45], p. 130, Ex. 3), the same must hold for 4. O

(6.4.3) Corollary. A theta function fe ©,(4) belongs to ©,(I') if and only if
r(f)e H(T, Z)". The map 7. ©,(I')|C* > H\(Z, Z)" is always bijective.

Proof. Letr,(f)e H(Z,Z) . If ye T, put f,(2)=f(yz). From r,(f) = r,(f,),

fy=ce /S

for some c¢(y) € C*, which means that fe ©,(I"). The second assertion follows from the
bijectivity of 7,. O

Now the crucial statement is

(6.4.4) Proposition. For each arithmetic subgroup I' of G(K), the cokernel of
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Jr: r- H, 7, )"
is finite with order not divisible by p.

Proof. We already know that j. is injective with finite cokernel. Consider (6.2.4)
with some 4 < I' that satisfies (6.4.1). Put H:=j,; '(H,(7,Z)") and consider ¥ as an
embedding. Then I' = H. Since To V = n on T, T restricted to H is again multiplication by
n and maps H into I'. Thus H,(Z, Z)"/j (')~ H/T has an order that divides

#(H/nH)=n*"D £ 0(modp). O

(6.4.5) Remark. We suspect that in fact j is always bijective. This is at least true
in the cases

(a) Iis p-torsion free;
(b) K is a rational function field and oo is the usual place at infinity, i.e., 4 = F,[T].

Case (a) has been treated in (3.4.5). Following the same lines, the result for (b) comes
out by explicit determination of the quotient graph I'\.J [34]. However, this method
seems not to be applicable in the general case. For another approach, see [41].

(6.5) A large part of our results so far may be summarized in the following com-
mutative diagram (explanations below) with surjective vertical maps:

r
0,(I')/C* 4 H(ZD)"
u
reduction
‘l> mod p
u'lu
(6.5.1) M2 (T, F) = H(TF)

Here j: a — ¢, and u is derived from o — u,. For the upper triangle, see (5.6.1) and (6.4.3).
By (1.8.7), (3.6.1), and (5.1.4), we have a commutative diagram (6.5.1)" similar to the
above, but with H,(7, [Fp)" instead of H (7, !Fp)’ . (Clearly, the res mapping in the bottom
row of (6.5.1)" will not be surjective, since H, in general is strictly larger than H,,, see
(2.10.2).) Now by definition (3.6.2) of H,,, reduction modp maps H,(Z, Z)" surjectively
onto H, & H\(Z,F)". In view of (6.4.4), j(I') has the same image H, in H,(7,F)"as
H\(Z,Z)". Recall that



Gekeler and Reversat, Jacobians of Drinfeld modular curves 75

(6.52) dim; M2 ,(I,F) = dimM2,(I') =g and
dimg H,(7,F,)" =rank H\(7,Z) =rankT'=g.

The commutativity of (6.5.1)" therefore forces the map o+ u,/u,: I - M3 (I ) to be
surjective. So res maps M7, in fact into H,(Z,F,)", and it is bijective by dimension
reasons. 0O

We point out the next two results, which have been proved in the course of the
preceding discussion.

(6.5.3) Theorem. The residue map res identifies M3 (I, F,) with H,(7,F,)" and
M2 (I') with H,(7,C)".

(6.5.4) Theorem. Let {a;,...,0,} be elements of I whose classes in I form a Z-
basis. Put u;=u,. Then the elements u/|u; (i=1,...,g) form an F-basis of M} (I, F),
hence a C-basis of M2 ().

The intuitive meaning of (6.5.1) is twofold. First recall that by (4.7.6), H,(Z, Q)" ““is”
a space of automorphic forms provided with a natural integral structure. Therefore, iden-
tifying the left and right hand sides of (6.5.1) by the indicated isomorphisms, we can state:

(6.5.5) “Drinfeld modular forms (double cuspidal, of weight two and type one, and
with [F-residues) are the reductions (mod p) of automorphic forms (of the type described
in section 4).”

Secondly,

(6.5.6) a cuspidal [F,-valued harmonic cochain res f for I' can be lifted to a cuspidal
Z-valued harmonic cochain for I' if and only if f is double cuspidal. In this case, the lifting
of res f amounts to integrating f = u'/u to a holomorphic theta function u for I.

We finally note that all the groups appearing in (6.5.1) are provided with natural
Hecke actions. For M, | (I'), it is the natural Hecke action on modular forms, described
e.g. in [10]. The action on harmonic cochains is as in (4.9), the action on I" and on @,(I)
will be discussed in section 9. It will then turn out that with suitable normalizations, all
the maps in (6.5.1) are compatible with Hecke operators.

7. The Jacobian

(7.1) We know from (2.7.8) that M is a totally split curve over K. As is shown
in [17], this implies that it is also a Mumford curve, i.e., may be described through a
Schottky subgroup of PGL(2, K,). It would be very interesting to make this alternative
description of M explicit. Recent work of van der Put [37] shows how to find the Schottky
group in question. Another consequence of the fact that M, it totally split is the following

(171, VD):
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(7.1.1) Let J; be the Jacobian of M. Then J; has an analytic uniformization.

This means, there exists a discrete subgroup A of (C*)? isomorphic with Z¢ such that
Jr(C) is isomorphic as an analytic group variety with (C*)?/A. We will construct the
lattice 4 by means of theta functions.

(7.2) Abelian varieties und analytic tori (cf. [15]).

(7.2.1) A subgroup 4 of (C*)? is called a lattice if A =~ 79 and the image of 4 under
log: (C*)? - RY is a lattice in R?. The logarithm map depends on the given coordinates on
(C*)%,1.e., the choice of a basis of its character group, but the lattice property is independent
of that choice. Thus we may define lattices in arbitrary tori (= algebraic groups isomorphic
with GY), and may do so for tori defined over K or its extensions in C.

(7.2.2) Let now T be a torus (over C, to fix ideas) of dimension g and A a lattice
in T(C). Since A4 is discrete, T/ A exists as an anlytic space: It is an analytic group variety,
and is compact in the rigid analytic sense.

(7.2.3) Theorem (Gerritzen [15]). T/ A is projective algebraic (i.e., the analytic space
associated to an abelian variety) if and only if there exists a homomorphism o from A to the
character group Z(T) = Hom(T, G,,) of T such that the bilinear map

(@,f) > a(@(P):4x4 - C*

is symmetric and positive definite. The last condition means that log| o (a)(a)| > 0 whenever
1+aed.

(7.2.4) Remarks. By GAGA, the abelian variety that corresponds to 7'/ 4 is uni-
quely determined. As usual, we therefore will not further distinguish the two concepts.
The theorem as stated is the synopsis of several assertions of /loc. cit., notably Theorem
5. The requirement that the complete valued field C be algebraically closed is not needed.
So the corresponding statement holds over each complete subextension of C/K_, provided
all the ingredients are defined over this field.

(7.3) We now return to our general situation, dealing with modular curves. As a
torus, we take

(7.3.1) Tr==Hom([, G,,),

which is a split torus defined over K with character group I'. As a lattice in 7;-(C), we
take I', embedded into 7,(C) via ¢: a+ c,. The requirements of (7.2.3) (with

c=1id:T - I'=2(T}))
are satisfied due to (5.7.1) and its corollaries. So we obtain
(7.3.2) Proposition. Let I' be an arithmetic subgroup of GL(2, K) and

A =&T) e, Hom(F, C*) = Tr(C).
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Then A is a lattice, and there exists an abelian variety Ay over C such that Tp| A and Ay
are isomorphic as rigid analytic spaces.

By (5.4.12) and the remarks above, A4, is in fact defined over K. Thus it is charac-
terized by the short exact sequence of analytic groups defined over K :

(7.3.3) 1 - I - Hom ([, C*) - A;(C) - 0,

oA,

(7.4.1) Theorem. The abelian variety Ay defined above is K -isomorphic with the
Jacobian Jy of the modular curve M.

Proof. Let w,e Q be fixed and y: Q - Hom (I, C*) > A,.(C*) the map that to
w € Q assigns the multiplier ¢(w,, , *) of 0(w,, w, -) followed by the canonical projection.
It follows from (5.4.4) that v is analytic.

Next consider p(axw), a eI It is represented by the homomorphism c(w,, aw, *),
whose value on eI is c(wg, aw, f) = ug(aw) /ug(wy). Thus

c(wg, 0w, )  ug(aw)
c(wq, », B) - ug(w) -

p(@) = ¢, (B)

i.e., p(aw) = y(w), and y factors through the projection p,: Q - I'\Q = M (C). Write
Y=yropr,Yr: Mp(C) > A (C). As u, is holomorphic and non-zero at the cusps,
wr:wr>class(mod A4) of c¢(wy, w,a) =u,(w)/u,(w,) extends to an analytic map
Yr: Mp - A (C). By the GAGA theorems (see [27]), %, is a morphism of algebraic
varieties.

Let Py = p,(w,) and Kk, : M, — J, be the morphism that to each Pe M (C) asso-
ciates the divisor class of P — P,. The universal property of the Jacobian now yields a
unique morphism ¢ : Jr = A, of C-varieties which makes the diagram

(7.4.2) M Y 4,

Kr /‘Pr
Jr

commutative.

Let w,,...,0,€Q, P,=pr(w)eM(C), and [D] the class of the divisor
D=P,+ -+ P,—nP,. Suppose that ¢.([D])=0. This means that there exists ae I’
such that

o= J] clw,wy, ).

1<ign
The function

u;l(z) H 0(w;, Wy, 2)

1<ign

6 Journal fiir Mathematik. Band 476
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on Q is invariant under I" and holomorphic and non-zero at the cusps, thus a meromorphic
function on M(C), whose divisor equals D. Therefore [D] = 0, and ¢, is injective, since
every divisor class of degree zero on M, can be represented by some D as above.

We are now reduced to showing that ¢ is separable. Let Q} be the sheaf of 1-differ-
entials on ? = My, J, Ay, respectively. Then x}: H°(J-, Q') » H° (M, Q') is bijective
([31], Prop. 5.3). Thus, considering (7.4.2),

@r is separable < o} : H°(A, Q') - H°(J;, Q') bijective

< y¥: H°(A, QYY) - H°(M[,Q) bijective.

Choose a,, ..., a, € I' whose classes in I" form a basis, and identify Hom (I; C*) =, (C*)?
by means of the «;. Then

p:Q - Hom(I, C*) - 4,(C) = (C*)?/e(T)

is given by w > class of (¢(wq, , ot,), ..., c(wy, W, 4,)). Let wy, ..., w, be the coordinates
dw;

on (C*)?. Then {
w

14

[1<i ég} is a basis of H°(A4y, 2'). In view of

C((DO, w, a) = ua (w)/ua (a)O) )

dw; . du; . .
we have 240 — u;(wo) " 'u(w), having put u;:=u, and u, = T This finally yields
dw ! dw

dw, ui(w
w"‘(?f) N u'fw; do=dlogy; (i=1,...,2),

which we view as a holomorphic differential form on I'\Q and, in fact, on M, =T'\Q.
Since, by virtue of (6.5.4) and (2.10.2), the dlog u; form a basis of H°(M, Q'), we have
shown: ¢ is bijective, and the proof is finished except for the statement on K_ -rationality.
But all our constructions can be carried out over K since the ¢,(f) are containedin K. O

(7.5) We may derive several important corollaries from the theorem and its proof.
First, since J-(C) = Hom (I, C*)/¢(I") is generated by divisor classes of the form [P — P,],
each ye Hom(I,C*) may be written as a product c,[]c(w;, w,,*) for suitable
Wy, ..., 0, € and ael. Therefore:

(7.5.1) Corollary. Let y: I — C* be a homomorphism. There exist
Wiy vy Dps Ny ovvs Ny € 2
such that x equals the multiplier ¢, of u(z) =[] 6(w;, n;, 2).
The divisor of a meromorphic theta function u on € is I-stable and may therefore
be regarded as a divisor on I'\Q = M (C). Since p;: Q2 — I'\Q is ramified in ®w with

ramification index 4 (), the divisor of 8(w,n,z) on M is P—Q if P=Tw+ I'n=Q
and zero otherwise.



Gekeler and Reversat, Jacobians of Drinfeld modular curves 79

(7.5.2) Corollary. Let ue 0,,(I') have divisor D on M. Then deg D = 0. In particular,
each u without poles is a holomorphic theta function as defined in (5.1).

Proof. Upon replacing u by a suitable power, we may assume that the multiplier
¢, of u is trivial on tor(I"*®). (Recall that the non-p-part of tor(I'*®) is finite, [45], p.130,
ex. 2.) Then by (7.5.1), there exists v(z) = [ [ (w;, n;, z) such that v/u is a meromorphic
function on M. The divisor of v has degree zero by the above. O

(7.5.3) Corollary. Let ue ©,,(I') be such that ¢, =1 on tor(I'*®). Then
u(z) = const. x [[ 0(w;, n;, 2)
for suitable w;, n; € Q. Eachue ©,(I') with ¢, =1 on tor (I'*®) has the form const. X u,,a € T.

Proof. After dividing u(z) by suitable 0(w;, 1;, z), there results a holomorphic theta
function. It therefore suffices to prove the second assertion. Thus let u € ©,(I'), and let
v(z) = [ 0(w;, ;, z) have the same multiplier as u (see (7.5.1)). Then v/u is meromorphic
on My, i.e., its divisor div(v/u) = div(v) = Y P, — Q; is principal, P, = p;(w,), Q; = pr ;).
But this means that [ | c(w;, #;,*) = ¢, for some o € I. Now u and u, are both holomorphic
with multiplier c,, thus agree up to a constant. O

8. Application to uniformization of elliptic curves

(8.1) The conjecture of Shimura-Taniyama-Weil®). In the classical number theoretic
context, the conjecture (e.g. [53]) asserts the existence of a dominant morphism of algebraic
curves over Q:

(8.1.1) pp: Xo(N) > E

for each elliptic curve over E/Q with conductor N. Here X,(N) is the compactification
of Hecke’s modular curve X, (N) that classifies elliptic curves with a cyclic subgroup of
order N. The conductor, which measures the diophantine complexity of E, is defined in
[35]. Modulo known facts, the conjecture is equivalent to certain properties (analytic
continuation to C, functional equation under (s, w) — (2 — s, @)) of the zeta function {(s)
of E and its twists L (w, s) by Dirichlet characters w. If true, it yields bijections between

(8.1.2) (a) the set of isogeny classes of elliptic curves over @ with conductor N;

(b) the set of one-dimensional factors (up to isogeny) in the Q-decomposition of the
new part J8¥(N) of the Jacobian J,(N) of X,(N), and

(c) the set of normalized Hecke newforms with rational eigenvalues in S, (N), the
space of cusp forms of weight two for the Hecke congruence subgroup I',(N) of SL(2, Z).

3) We refrain from discussing the proper labelling of the conjecture in question.
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Among the remarkable consequences of the conjecture, we note that its validity for
square-free N implies Fermat’s last theorem [42]. It is this special case which has been
proven by Wiles [56] and Taylor-Wiles [50].

(8.2) The automorphic representation attached to an elliptic curve. We come back to
our usual function field situation. Let E/K be an elliptic curve. The /-adic cohomology
modules H!(E,Q,) (/ +p) give rise to a system of compatible /-adic representations
ng = (ng,) of the absolute Galois group Gal(K*?/K) of K. Let {;(s) be the Hasse-Weil
zeta function of E, which is derived from 7n;. As is explained in [4], §9, {;(s) together
with its twists Lg(x, s) by “grossen-characters” y (= unitary characters of the idele class
group I/ K*) has the properties:

(8.2.1) L.(x, s) is a rational function in ¢~%, and even a polynomial if E is not a
twisted constant curve, i.e., if its j-invariant is not contained in F, <, K.

(8.2.2) The system Lg(.,.) satisfies the functional equation

LE(Xa 5) = SE(X’ S) LE(X_’ 2—y)

with some e-factor ¢;(.,.) (loc. cit., 9.2-9.5) that depends on 7, i.e., on E. Recall that
L and ¢y are products of local factors Ly , and ¢ ,, v running through the places of K.

Provided that E/K is not twisted constant, the preceding properties imply ([24],
Thm. 11.3) the existence of a uniquely determined cuspidal automorphic representation
(¢, %)) in the space L?(1) of (4.2.2) with the same L- and ¢-factors as 7, i.e.,

(8.2.3) L,,=L and g, =¢

U o,V v o,V

for all v.

(8.2.4) Remark. The local L- and e-factors of automorphic representations are de-
fined and calculated in [24], notably, 2.18, 3.5, 3.8, 4.7. The table in [14], Thm. 6.15 might
be helpful. Note that there are different normalizations of the Langlands correspondence
between Galois representations n and automorphic representations ¢ = ¢ (), which affects
the precise form of the functional equation. An exhaustive discussion is given in [3], 3.2.
We use what Deligne calls the “Hecke correspondence”, since it produces some g = g
with trivial central character, starting with an elliptic curve E as above.

(8.3) Shimura-Taniyama-Weil: The function field case. Let E/K be an elliptic curve
such that

(8.3.1) E/K, is a Tate curve.

Equivalently, the restriction of n; to a decomposition group Gal(K?/K,) is the special
representation sp of (4.10.3). Note that j(E) is not integral at co and hence E is not a
twisted constant curve. Under the construction described above, the special Galois repre-
sentation at v = co corresponds to the special representation g, of G(K,). This means
that for ¢ = g
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(8.3.2) V= QV,, with
(0> ¥}, 00) = (05p» Vep) -
As results from (8.3.1), the conductor of E has the form
(8.3.3) cond(E)=n" o©

with some finite divisor n. On the other hand, the conductors of E (i.e., of n;) and of g,
agree (cf. [3]). Thus by definition (see (4.7.5)) of the space W,,, a newform ¢, €V, for
0 = ¢y belongs to W, (4, C), where

8.3.4) H = Hom-0)=H; ()X I, .

Now ¢ is an eigenform for all the Hecke operators T, (v4 n- o) with rational eigen-
values 4, determined by the reduction of E at v. More precisely,

(8.3.5) Jy=q,+1— #E(k(v)).

where # E(k(v)) is the number of k(v)-rational points of the reduction of E at v. Since
T, is defined over Q, we may normalize ¢ such that ¢, e W, (A, Q).

Let M = MZ (n) x K be the Hecke moduli scheme of level n, base extended to K. As
an algebraic curve, it is defined over the Hilbert class field H of (K, 4). (See (2.5.2); the
field of definition of M corresponds by class field theory to the image of

det: A, (n) xS, — Iy

and therefore agrees with the field of definition H of M *(1) x K.) We put J,(n) for the
Jacobian of M, where the smooth projective model M of M is regarded as a (perhaps
absolutely reducible) curve over K. Note that we have canonical bijections

K-embeddings o }

(8.3.6) S - Pic4 —— Gal(H/K) — {ofH into K.,

where S is a system of representatives for G(K)\G(U,) / A o(n) as in (4.5.2). Thus

(8.3.7) JoWx K= [] Jac(M) x K,

6:Ho K,
and
Jom(C) = [] I, (0),

xe§

where T, is given by (4.5.3) and J._is the Jacobian of the modular curve M I, as discussed
in the last section. Combining the above with (4.7.6) and (4.13.1) yields

(8.3.8) @ H (I, Q) =H'(J,()*xC,Q)= H (MxC,Q)
xeS h

~

—= W, (A, Q) ® sp, = XEEBS H(7,Q)%>®sp,
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as modules under both Gal(K**?/K) and the Hecke algebra # generated over Z by the
operators T, (vf n - o). (A priori, only Gal(K3?/ K ) acts on the two right hand modules;
by Drinfeld’s reciprocity law, the action may be uniquely extended to an action of
Gal(K*?/K) in the same space such that (8.3.8) holds, see (4.13.2).) Note that neither
Gal(K*?/K) nor # respect the decomposition over S given in (8.3.8). While the Galois
action permutes components according to (8.3.7) (in fact, H'(MxC,Q,) is the
Gal(K**?/K)-module induced from a certain Gal(K**?/ H)-module), the Hecke operator
T, maps the component of x € S to the component of x’ = xt, (see (4.9)). Since the class
of x € § only depends on the class of det x in K*\I,/det A, ((n) = K*\I,/ O} —=, Pic A,
we see:

(8.3.9) Let the unramified place v correspond to the prime ideal p of 4. If p is prin-
cipal, the Hecke operator T, respects the decompositions in (8.3.7) and (8.3.8).

This holds more generally for Hecke operators T,, where a is not necessarily prime
but is a principal ideal of A coprime with n. Such operators 7, will be called admissible.

(8.3.10) Now let pry e End(W,,(#;Q)) be the projection onto Q¢g. Thus pry lies
in the Q-subalgebra generated by the Hecke operators and therefore corresponds to a
projector also labelled by pr; e End(J,(n)) ® Q. Its image is an abelian sub-variety E’ of
Jo () that (a) has dimension one and (b) is defined over K. Here (a) holds since

HI(E',@t) = Q, ¢ ® sp,

as a Gal (K:?/K )-module, and (b) since pr is defined over K. Since the Galois represen-
tations of E and E’ coincide as sub-Gal(K*?/K)-modules of H'(M x C,Q,), E and E’
are isogeneous. Thus we have found E as a factor (up to isogeny) of J,(n). Applying the
machinery of automorphic forms, the above construction yields bijections between

(8.3.11) (a) the set of isogeny classes of elliptic curves over K with conductor n - co,
and which become Tate curves over K ;

(b) the set of one-dimensional factors (up to isogeny) in the K-decomposition of the
new part Jg'*¥(n) of J,(n); and

(c) the set of normalized Hecke eigenforms with rational eigenvalues in

W™ (Ao (M) X 1)

Here we have omitted the obvious definitions of the “new parts” J3°" (i) and W ¥,
respectively, in (b) and (c). So the established fact (8.3.11) is perfectly analogous with the
conjectural correspondence (8.1.2).

(8.3.12) Remark. The procedure sketched allows one to find up to isogeny all the
elliptic curves E over K with (8.3.1) as factors of J,(n). The “Tate condition” on E/ K
presents no serious restriction: If E is not a twisted constant curve (those E are easily classi-
fied), its j-invariant has a pole at some place v of K. Thus E/ K, will become a Tate curve
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after a finite extension, and is then covered by our theory, since we are free to choose v
as our place oo.

(8.4) Let E/K be as above, and let prg:J,(n) > E be a non-zero K-morphism.
According to (8.3.7), its base extension pry X K splits into components

prg ,:Jac(M) X K, > ExXK_,
which are related by
8.4.1) Prgq° Ty =PI, (0,7€Gal(H/K)).
Here
1, : Jac(M) Hﬁt K, — Jac(M) 11).(« K,
is the isomorphism derived from . This finally yields for every x € .S a map

pry, .1 J (C) = E(C)

of analytic spaces over C (or even over K). In the next section, we will describe prg ,
and the associated Weil uniformization pg, .: M; (C) - E(C).

More precisely, we will construct the strong Weil curve E in the given isogeny class,
which by definition is the curve E maximal in its class with respect to diagrams

Jo(n) > E - E’.

The existence and uniqueness of E are easily seen; e.g., E can be characterized as the
unique abelian subvariety of J,(n) in the given isogeny class. It results from (8.4.1) that
this property may be checked locally, i.e., for x € S, E is maximal w.r.t. diagrams

(8.4.2) J, -2 ExC
Plg,x
E'xC.

As usual, we did not distinguish between algebraic and analytic morphisms, labelling both
by the same symbol.

8.5 Letpe W (#,Q) =, xC—i—)S H,(7,Q)'= be an eigenform for the Hecke algeb-

rawith rational eigenvalues, e.g. ¢ = (})E for some E/K. If ¢ = ), ¢, with ¢, € H,(7, Q)
then: xe§

8.5.1) @, is an eigenform for the admissible Hecke operators,
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as follows from (8.3.9). We further note that projection to the x-component yields a de-
composition

(8.5.2) Wi (A, Q) —= @ B (7, Q)"
x€S

Now it is well known that the Hecke algebra #° ® Q restricted to WV (4, Q) is a semi-
simple and maximal commutative subalgebra of End(ngew(.%”, Q)). We put #, for the
Z-algebra generated by the admissible 7, restricted to H,(Z,Q)". Then H"(7,Q)" is
H-stable, and #, ® Q restricted to H*" (7, Q)'* is semi-simple and maximal commuta-
tive. This implies '

(8.5.3) H¥(7,Q)" is a cyclic #, ® Q-module.

9. Construction of the Weil uniformization

(9.1) We keep the set-up of the last section. Since up to (9.6), we will be working
only on one fixed component that corresponds to x € S, we put I' for I, ¢ for ¢, J = J;,
and o for #, (see (8.3) and (8.5)). We assume that ¢ € H,(7, Q)" satisfies: )

01.1) eeH™(Z,Q)";

(9.1.2) ¢ is an eigenform for s# with rational (hence integral) eigenvalues; and

(9.1.3) @ is primitive, i.e., is normalized such that ¢ € j(I') but ¢ ¢ nj(I") for n> 1.
The last condition determines ¢ up to sign.

Our aim is to construct the strong Weil curve attached to ¢ as a Tate curve over K.

(9.2) Let a = (a) be a principal ideal coprime with the conductor n of I', and put

0

7 = 1, for the element (g 1> of G(K). Let further

9.2.1) At =4 =Tnt 'Tt,

A~=4; =TIt !,

which are congruence subgroups of I'. If e.g. I'= GL(2, 4) then

A+=Fo(a)={<: :)'CEO(mOdCl)} and A'={<: l:)]bEO(moda)}

are the standard Hecke congruence subgroups. Note that 4™ and 4~ contain I'nZ(K),
so there is no need to distinguish between e.g. A~ \I" and 4~ \I. If a is prime, a simple
calculation (based on (4.5.4), and left to the reader) yields the following expression for T,
restricted to elements ¢ of H,(7,Q)":
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9.2.2) (Lo)®= Y o 'ng.

ajed~\I'

It is analogous to the adelic description (4.9.2), but involves only data at co. Recall that
@ is a I-invariant function on Y (7 )= G(K,)/ %, - Z(K,), so in particular is a function
on G(K_). The formula remains true for admissible 7, with a not necessarily prime, as
can be verified by expressing 7, as a polynomial in T, with p|a prime.

(9.3) The Hecke action on I. We next define for a as above (principal, coprime with
1) a Hecke operator T, on I" and show that it is compatible with j: I’ — H (7, Q)". Let

T=T,.T > T be the composition Tox o ¥ of the transfer map V:I — 4, the map
k: A~ —=- A* induced from conjugation y+1 1y7: 4~ —=- A*, and the canonical
map I: A* — I induced from the inclusion. Explicitly,

(9.3.1) Tw=1t" [ aaet,

ajed~\I'

where « and the right hand side are to be read as classes in I, «; runs through a system
of representatives of 47\I, and o is the permutation of {i} such that o; oo,y € 4.

(9.3.2) Lemma. Let T=T, a€cl, and ¢,=j(a)€ H(Z,Z)". Then o1, = T(p,).

Proof. In view of T=TokoV, it suffices to trace the effect of I, k, and ¥ on
H\(Z,Z)". For T and V, it is given by (6.2.4) and (6.2.5), while k corresponds to

o 0 H(T, T =5 H(Z, )"

with ¢_(g) = ¢(tg). Together,
Prw(8) = Y 0, (th8).

pieda*\I'

Since ¢ is Z(K_)-invariant, this sum is easily verified to agree with the expression for
(Te,)(g) given by (9.2.2). O

(9.3.3) Proposition. The Hecke operator T =T, on I is formally self-adjoint with
respect to the bilinear map (a, ) c,(B).

Proof. Consider the exact sequence of I-modules (thus of 4~ and 4*-modules)
0> C* > 0,(Q* > HI,Z) - 0

given by (1.7.2). The long exact cohomology sequences with respect to the actions of I,
47, A" are related by the following maps:

restriction: H*(I,:) - H*(4%,"),
conjugation by t: H*(4%,") - H*(47,"),

corestriction: H*(47,-) » H*([,").
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Their composition on the H°-level yields

T:H°(ILH(7,2)) - H°(I,H(7,2))

| I
H(7,2)" -  HZD",

as follows from (9.2.2). On the H!-level, we obtain

(T**)*: HY(I,C*) - H(I,C*)
I 1

Hom (I'**,C*) — Hom(I'**,C*),
cr>coT?®

where T2: I'*®* — I'®® is given by the same formula (9.3.1) as T: I’ - I, and which induces
T on I'. Combined with the boundary operator d, we have a commutative diagram

H(Z,Z)" —%— Hom(I'**, C¥)
(9.3.4) T Lo
H(7,7)" —% Hom(I'*",C*).

Let a e I. The homomorphism c,: I'*™® — C* factors through I' and is given as d(¢,).
Therefore, by (9.3.2), ¢r = d(@1u) = d(T(9,) = (T*®)*(d(9,) = (T*)*(c,) =c¢,°T.

In other words, for each BT, cr(B) = ¢,(T(B)), as was to be shown. O
(9.4) Next, consider the exact sequence
1 — T —%> Hom([,C*) — J(C) — 0

of (7.3.3). Each of its three terms is equipped with an action of #, given by (9.3.1) for
I,f foT for fe Hom(I, C*), T € #, and the extension of the canonical J#-action on
M, to Jp, respectively. By the proposition just proved, ¢ is compatible with this J#-action.
The same holds for the projection Hom (I, C*) — J-(C), due to the description of J
given in (7.4.1) and its proof. We leave the details to the reader.

(9.5) The strong Weil curve.

(9.5.1) Proposition. Let ¢ €j(I') & H\(Z, Q)" be as in (9.1), regarded as the class of
some element, also labelled by @, of I'. Put A for the subgroup {c,(¢)|oa€I'} of C*. Then
there exists t € C* such that |t| <1 and t? has finite index in A.

Proof. Consider j as an embedding, and let '"*¥:=I n H"(Z, Q)" and

I_-'old :=fﬁ]_{!°ld(,7, Q)I‘,
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respectively. Then I' ™% @ I'°' has finite index in I'. Thus it suffices to show the statement
for the subgroup of A that corresponds to '™ @ I'". We first show that the contribution
of '™ to A is finite. Let a € I be such that its class in I" belongs to "', Now I'° is that
part of I' which comes from strictly larger arithmetic groups I 2 I' defined by weaker
congruence conditions (see (8.3.6) and (4.5.3)). After possibly replacing « by some power
a”, we may therefore assume that o = V(«,), where V: I, — I is the transfer. Then by
(6.2.1), c (@) = cr.,(®) = cr, ,,(®). Since g e I' is orthogonal to ", it is contained in

ker7:T - I,

which implies ¢, , (¢) = 1.

We have seen that {c,(¢)|e € I'"*"} has finite index in 4 = {c,(p)|a e I'}. Now since
H" (7, Q)" is a cyclic # @ Q-module, the Z-lattice I'"*" contains a sublattice = of full
rank (= of finite index) which is cyclic under #, i.e.,Z = #f S—— I'"*forsome ffe '™
Let o € E be written additively

aed nT,(f), n,eZ, T, some admissible Hecke operator .

Then by (9.3.3),

c2(@) = ¢ (X n.T,(9)) = ¢;(ng) = ¢4 (¢)" (some ne ),

since ¢ is an eigenform for the T, with integral eigenvalues. Hence {c,(¢)|x € £} = % with
t = cz(¢@). By virtue of [c,(p)|>1, |f] # 1, so we may choose || <1, which establishes
the result. O

Recall that A is actually a subgroup of K*. Let w:= g, — 1 be the order of the group
of roots of unity in K. Taking |¢#| maximal yields the

(9.5.2) Corollary (see remarks (9.8)). Let ¢ be as in (9.1) and A = K% as in the pro-
position. There exists a divisor d of w and t € K* with |t| <1 such that A = p, * t* (u, = d-th
roots of unity in K¥).

Note that groups of this type give rise to Tate curves. Viz,

(9.5.3) C*A —= C*12,

z —> z¢

which says that 4 uniformizes the Tate curve Tate(z?) over K, with period ¢% We thus
have constructed, starting with an eigenform ¢ € H,(, Q)" subject to the conditions (9.1),
an elliptic curve over K

(9.5.4) E, —=— Tate(t)
together with a map pr,: J. — E,. Here te K} and the divisor d of w = ¢, — 1 depend

on ¢ as described by (9.5.1) and (9.5.2). The projection pr,, is given on C-valued points by
the diagram
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I — Hom(I,C*) — J.(C) —> 0
(9.5.5) ! lev | pro(©
A — c* — E,(C) — 0,

1 —

1 —

where the first line is (7.3.3) (having identified A, with J, as in (7.4.1)), ev is the map
“evaluation on ¢”: f+ f(¢), and E,(C) = C*/A. Due to (9.4), we can state:

(9.5.6) Each admissible Hecke operator T induces an endomorphism on E,,, which
agrees with multiplication by 4 on E,, where /1 = eigenvalue of T on ¢.

Hence the isogeny class of E,, is the one that corresponds to the subspace Q,¢ ® sp,
of H(7,Q)" ® sp, = H'(Jp, Q). Next, recall that M. is defined over the Hilbert class
field H and the admissible Hecke operators restricted to J, = Jac(M,) are H-rational
endomorphisms. By its very definition, (E,, pr,) is maximal in the sense of (8.4.2), so is
H-rational by standard arguments. (See e.g. [46], Thm.1; E, = quotient of J. by the
connected H-rational abelian subvariety that corresponds to the orthogonal of pr, in
H o End(Jp).)

Finally, choose w, € Q with class P, in I'\Q = M (C), let k;.: M} < J; be the em-
bedding as in the proof of (7.4.1), and put p,: M - E, for the composite map pr,, k.
From (9.5.5), (7.4.2) and (5.4.4) we get the following description:

P, M (C) —  E,(C)

I I
(9.5.7) (r\Q) —  C*4,

z > u,(2)/u,(w,) -

Here, as usual, u, is the theta function associated to a representative of ¢ in I'. If dw/w
is the invariant differential form on E, that comes from a coordinate w on C*,

(9.5.8) p* (d—w> LAC

w u,(2)

which “is” (compare (6.5.1)) the reduction of ¢ € H,(7, Z)" modulo p = char F,-

(9.6) Now remember that I' =TI, ¢ = ¢,, ... etc. with xe § as in (8.3.6)—(8.3.8).
We can perform the above construction on all the components J, for all

xeS=GKN\G)/Ap  (n).

If now ¢ = ) @, is a new eigenform for the full Hecke algebra # as in (8.5), it results
X€eS
from (8.3.8) that the individual ¢, satisfy simultaneously the normalization condition

(9.1.3). Let E, /K be the global strong Weil curve attached to ¢, which is characterized by
(8.4.2). Then E, x H must be isomorphic with E, /H for x € S; in particular, all the E,,_
are H-isomorphic and come from the curve E, defined over K.
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(9.6.1) Summary. Starting with an eigenform ¢ as in (9.1), for example the form
¢ attached to an elliptic curve E/K subject to (8.3.1) and (8.3.3), diagrams (9.5.5) and
(9.5.7) provide an analytic description of E, x C, where E,/K is the strong Weil curve that
corresponds to ¢.

(9.7) Examples. We present some examples that illustrate how properties of E, may
be read off from the newform ¢. We assume that (K, 4, o) = (F,(T), F,[T], «) as in (0.4).
Then since 4 is a principal domain, the Hilbert class field H coincides with K, and S col-
lapses to one point. We are therefore reduced to considering Hecke congruence subgroups
I' =T, (n) of GL(2, A), where n is an ideal of 4 = F,[T]. In this case, the map

ir - H(Z, D

is known to be bijective [34].

Furthermore, we let ¢ = 2, such that w=¢q_ —1= ¢ —1 =1, and we need not worry

about the divisor d of w that appears in (9.5.2). Another consequence of these requirements
is the following:

(9.7.1) Let E = Tate(¢) and E' = Tate(¢') be isogeneous Tate curves over K with
v, (t) = v, (t"). Then E and E’ are isomorphic.
b
Now put n=(n), ne A=F,[T], [ =I(n) = {(? d>eGL(2, A)|n|c}. Up to co-

ordinate changes in 7, there are precisely two different n such that M, has genus one,
given by n = T*(T —1) and n = T?. For this and the following explicit numerical results,
we refer to [9], notably Tabelle 10.2.

(9.7.2) n=T?*(T—1)(Typ (4) of loc. cit., note that Abb. 3 and Abb. 5 unfortunately
have been interchanged!) The graph I' \J is

]

¥

where from each vertex emanates a cusp (= half-line) indicated by - -- = . The scalar product
(.,.)on I = H,(7,Z)" is the obvious one (volume of each non-oriented edge = 1), which
leads to (¢, @) = 6 for a basis vector ¢. By (9.5.4) we thus have M = E, —=— Tate(?),
where v, (1) = 6. Now let E/K be the elliptic curve with equation

Y24+ TXY+TY=X?,
Jj-invariant T®/(T — 1)? and conductor T2(7T — 1) - co. It has split multiplicative reduction
at oo and is therefore isomorphic with Tate (), where v, () = — v, (j) = 6. By (9.7.1) it is

K_-isomorphic and hence also K-isomorphic with M.

9.7.3) n= T3 (Typ (5) of loc. cit.).
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- . . L4

' ' with a cusp
r\g = emanating from each
B .. vertex

&’ “a

Writing H,(7, Z)" = Z ¢, we have (¢, ) = 4, thus M, —=— Tate(t) with v_(f) = 4. An
equation is given by

Y24+ TXY=X3+T2

with j-invariant T4

(9.74) n=T(T*+ T+1) (Typ (2) of loc. cit.). Here the genus is two, and

- v

-~ : ) -
again with the obvious scalar product on harmonic cochains.

Let y, and y, be the two cycles of length 4, oriented counter-clockwise, and w,, w,
the involutions (on A, thus on H,(7, Z)") attached to the prime divisors

p,=(T) and p,=(T*+T+1)

of n. We regard y, and y, as elements of H,(, Z)". Then the Hecke eigenforms ¢, :=y, + y,,
P21=—71+ 7, satisfy

wi(@) =@, =—w,(0y),

Wy (@2) = @9 = — w1 (9,) .

Hence J; = Jac(M}) is isogeneous to E, X E,, where E; is the elliptic curve (in fact, the
strong Weil curve) M /w;. We have (¢, 9,) = 6, (¢,,9,) = 10, (¢, »,) = 0. Furthermore,
the minimal products >0 of ¢, and ¢, are given by (¢,, y,) = 3 and (¢,, y,) = 5, thus
E; ~ Tate(¢;) where v_(t,) = 3 and v, (¢,) = 5. Equations are given by

E: Y’+(T+DXY+Y=X3+T(T*>+T+1),
J(E) = (T+1)"?n?,

E,: Y’+(T+1)XY+Y=X*+X>+T+1,
J(E) = (T+DY2TS(T*+T+1).

Note that ¢, = ¢,(mod2) and Z¢, + Z¢, has index two in H,(7, Z)" = Z¢, + Zy,. Cor-
respondingly, E, and E, intersect in J in their common subgroup scheme of two-
division points (compare [57], section 5). In view of (6.5.1) this means that the weight
two modular forms u;/u; (u;:=u,,, i =1, 2) for I agree. As a result, the Hecke action on
the two-dimensional space M7 | (I, C) is not semi-simple.
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(9.8) Concluding remarks. Quite generally, the Néron type at oo of the strong Weil
curve E, (i.e., v, (Tate period)) associated to ¢ may be read off from (9.5.4). Whereas

V., (1) = min{(¢p, a)|a € T, (¢, x) > 0}

may be easily calculated from the graph I'\ 7, the divisor d of g, — 1 is more difficult to
control. Its determination requires studying the effect of pr, : J. — E, on Néron models.
In [12] it is shown that d =1 at least when A is a polynomial ring F,[T].

We expect that our explicit description of E, will catalyse progress in classical questions
on the arithmetic of elliptic curves over function fields. Among these we mention:

— the conjecture of Birch and Swinnerton-Dyer (or rather of Artin and Tate [49]),
and the K-analogue of Kolyvagin’s results [28];

— formulae of type “Gross-Zagier” [21] that relate heights of Heegner points on E,
with values of the L-functions Lg(y, s);

— Mazur’s conjecture on the modular element (as e.g. reported in [48]).

Another important problem is the relationship of congruence numbers of eigenforms
¢ (i.e., n € N for which there exists y orthogonal with ¢ but ¢ = y(mod n)) with the degree
of the corresponding Weil uniformization. In the classical case, and if the level is prime,
Zagier showed coincidence ([57], Thm. 3). The same assertion holds (even without the
primality assumption on the level) if the base ring A4 is a polynomial ring ([12], Thm. 3.2),
but the general case still resists. Note that some aspects of the game look rather differently
in our context. E.g., p = char(F,) itself may appear as a congruence prime, as is shown by
the last example (9.7.4), and so the differential form pulled back by a Weil uniformization
doesn’t suffice to determine a strong Weil curve.

We would also like to give a similarly satisfactory description of Drinfeld modular
forms of higher weight through automorphic forms as the one achieved by (6.5.1) for
forms of weight two.

Finally, it needs to be determined under which conditions the endomorphism ring of
Jr is generated by Hecke operators, i.e., the analogue of Mazur’s Proposition II, 9.5 in
[30] holds.
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