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0. Introduction

Let I' be the group GL(2, A), where A is the polynomial ring F,[T'] over a finite
field Fg, and A C I' a congruence subgroup. As is described in J.-P. Serre’s “Trees”
(10], the study of A and its group theoretic properties is largely the same as the
study of the natural action of A on the Bruhat-Tits building 7 of PGL(2, Koo ),
where K, is the completion of K = Quot(A4) at the infinite place. For example,
the abelian rank dimg(A® ® Q) equals the number g(A \ 7) of independent cycles
on the quotient graph A\ 7 of 7 by A. Further, the homology H1(A \ T,C) is
(essentially) a space of automorphic forms over the global field K (see e.g. [7]),
and carries information about the arithmetic of K. We also mention that some
of the graphs A \ T have interesting combinatorial properties that deserve further
investigation [8].

It is therefore desirable to dispose of a) general assertions about the structure
of the graph A\ 7, depending perhaps on the type of A; b) formulae on numerical
invariants like genera g(A \.7), numbers of cusps, of endpoints, . ..; c) procedures
that allow, A being specified, to automatically calculate the associated graph A\ 7.

Most of this is achieved in the present article, for A one of the congruence
subgroups I'(n), T'i(n), I't(n), To(n) of ' (definitions below). The case of the
Hecke congruence subgroups I'g(n), arithmetically the most interesting, turns out
to be the most complicated. This is why the largest part of the paper is dedicated
to this case.

The contents are as follows: In the first section, after introducing the relevant
concepts, we describe the graph A\7 by means of its fibering over ['\'T. We also col-
lect some properties proved in (7] and needed later on. In Sec. 2, we turn to the case
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690 E.-U. GEKELER and U. NONNENGARDT

of the Hecke congruence subgroup I'y(n). Propositions 2.10, 2.11, 2.14 state
structural properties of the associated graph, Theorem 2.17 gives a formula for
9(To(n)\ T). These results have been known before [4, 5], but were given there in
a somewhat disguised and less coherent form.

In Sec. 3, we prove (Theorem 3.3) the bijectivity of the canonical map j, from
Hi(A\T,Z) to H(T,Z)3, the canonical integral structure in the space of auto-
morphic forms attached to A = Iy(n). (It is easy to show that 7, is injective with
finite cokernel; the surjectivity comes out by a detailed analysis of A\ 7.) We also
present an algorithm (3.8), highly specific to A = To(n), that exhibits a maximal
subtree of A\ 7. It is particularly useful since it also gives a basis for H,(7,C)4,
and thus enables numerical investigations of e.g. Hecke operators on this space.
Section 4 is devoted to a remarkable observation, so far not fully understood, on
multiplicities of automorphic representations. In the fifth and last section, we give
neat descriptions and formulae for the graphs A \ T, for A =T'(n), Ty (n), T}(n).
Here we have omitted proofs, since these follow largely the same lines as in the case
To(n) (but are easier).

The paper is based on the second author’s Diplomarbeit [9]. It was finished dur-
ing a visit of the first author at Université Paul Sabatier, Toulouse, whose generous
hospitality is gratefully acknowledged.

The following notation is used throughout the paper:

F, = finite field with ¢ = p" elements

A = F,[T] polynomial ring in the indeterminate T,
with degree function “deg” (deg0 = —o0)

K = Fy(T) = Quot(A)

Koo = Fy((7)) completion at infinity, where
=771

Oce = Fy{[]] co-adic integers
G = group scheme GL(2) with center Z - G,,
K = G(0s) = GL(2,0o,)
T = {(}) € K|c = 0(modn)} Iwahori subgroup
I' = G(A4) = GL(2, A)
T = Bruhat-Tits tree of PGL(2, K.)

If n is a non-constant element of 4, ['(n) — Iy(n) = I'}{n) & Ty(n) — I denote
the subgroups of matrices that are congruent to ((1, . ((1] 0 Gn, (5*) modulo
n, respectively.

For a graph S, we let X(S) and Y(S) be the sets of vertices, of oriented edges,
respectively. For e € Y(S), o(e), t(e) € X(S) and & € Y(S) denote its origin,

'l
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terminus, and inversely oriented edge. For all properties of graphs not explicitly
cited, we refer to [10].

1. The Tree 7, Fundamental Domains, Harmonic Cochains
The tree 7 is described in [10, Ch. II, Sec. 1}. It is (g + 1)-regular and provided
with a transitive action of G(K ). Its vertices and edges are given by

X(T) = G(Kx)/K Z(Kw)

Y(T) = G(Kw)/T Z(Ko),
where by our choice of orientation, the canonical map Y (7) — X (7T} associates
with each edge its origin. For ¢ € Z, let v; (resp. e;) be the vertex (resp. edge)
represented by the matrix (”;‘ (1’) Then o(e;) = v, t(e:) = viy1. Since I' is
discrete in G(K ), stabilizers in I" of edges or vertices are finite. More specifically,

put

1.1)

Go = G(F,) =T
G; ={(8 Z) EI‘[degbgi} (i >1). (12)

Then for = > 0, G; = stabilizer of v; in I" and G; N G;4; = stabilizer of e;. Note
that G;NG,41 = G, if © > 1 and Gy N Gy = {upper triangular matrices over F,}.

1.3. As is easy to prove ([11] or {10]), the subgraph formed of the v; and e; with
1 > 0 is a fundamental domain for T', i.e., maps isomorphically onto the quotient
graph T\ 7.

1.4. Next, let A be a congruence subgroup of T, which means it contains some I'(n),
n € A. We try to recover the quotient A\ 7 by examining the “ramified covering”

A A\T —T\T7T,

from which we calculate X{(A\7) = A\ G(Kw)/K - Z(Keo) ar~1d Y(AN\T) =
A\ G(Kw)/T Z(Ks). It suffices to know the edges e of A\ 7 oriented such that
ma(e) = e;, some i. We thus define fore € Y(A\7T), v e X(A\T)
type(e) =1 & male) =€
type(v) =i & malv) = v;, (1.5)
X, = XA\ T) = {vltype(v) =1}, Y; := V;(A\T) = {e|type(e) = i} .
From (1.2) we get the bijection
A\T/G; = XA\ T)
v ()

and similarly for Y;. For reasons that become apparent later, we choose the opposite

identifications -
G:\T/A — X;(A\T) (1.6)

(G:nGi)\T/A 5 Y(ANT)




692 E.-U. GEKELER and U. NONNENGARDT
induced by v — v~ (v;), v~ (e;), respectively.

1.7. Put £ = X, for the set I'/A, on which G; acts from the left. Thus the orbits
of the various G; or G; N G4, correspond to the vertices or edges of A\ 7T of type
1. For o € ¥ we put

(o) = class of 0 mod G; vertex of type i of A\ 7,
[0)iie1 = class of 0 mod G; N Giyy = edge of typei of A\ 7.

We have canonical maps (the origin and terminus maps):

0;:Y; — X; and t;:Y; — Xin
[o)iyir = Lol [0)i,i01 +— [o]ita-

For i > 1, o; is bijective, and

pi: Xi — Xina
{oli — loliss

is well-defined.

1.8. Let n have minimal degree d such that I'(n) is contained in A. Since G; acts
on ¥ via p, : G; — T/T(n) and p.(Ga-1) = pn(Ga} = ..., t; and p; are bijective
for i > d— 1. Hence the subgraph of A\ 7 consisting of the edges of type > d—11is
a disjoint union of X4—1(A\T) = Gg—1\ T half-lines &—@—@— -, called the
cusps of A\ 7. We often identify the set cusp (A) of cusps with X4_;. Our primary
interest is in the genus g(A\ T) (= rank of the first homology group Hi1(A\T,Z))
and in constructions of maximal subtrees of A\ 7. Now g(A\ T) certainly doesn’t
change if we cut off all the edges of type > d (i.e., essentially the cusps). The Euler
formula then gives

g(A\ T) = 1 + f{non-oriented edges} ~ fi{vertices}
of the truncated graph
=14 ) W(ANT) = 30 IXG(ANT) (1.9)
0<i<d—1 0<i<d

=1+ V(AN T) — §Xo(A\ T) — ficusp(A)

in view of the bijectivity of o0;, i > 1. To that numerical identity corresponds the
geometrical fact that A \ 7 is homotopic with the graph (A \ T)* obtained by
collapsing each edge of type > 1 to one vertex. Note that (A \ 7)* is a bipartite
graph with vertices Xo(A \ 7) and cusp (A) and edges Yo(A \ 7). Hence:

1.10. A maximal subtree of A \ 7 may be obtained by deleting certain edges of
type zero.

1.11. Let v € I" and ¢ > 0. The stabilizer T, of v :=v~1(%;) in Tis G = y71Gs7,
the stabilizer in A is G N A. On the other hand, the stabilizer of YA € £ in G is
G; N~yAy~1, conjugate to G N A. Hence the fixed groups A, of vertices v (and,
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similarly, A, of edges e} may be detected through the action of the G; on the finite
set 5. Note that A acts on 7 via its quotient A by the finite group A N Z(Ke)-
For edges e of 7, we therefore define the weight as

w(e) = A, = [A. 1 AN Z(Koo)l-

1.12. We let H(7T,Z) be the group of alternating harmonic maps ¢ : Y(T)—Z,
i.e., maps that satisfy

(1) o(e) +¢(e) =0Vee Y(7) and
() > wle) =0VveX(T).

o(e)y=v

Further, H(7T, 7)2, the group of harmonic cochains for A, is the subgroup of
those ¢ that are A-invariant and have compact support modulo A (i-e., vanish on
the cusps of A\ 7). Similar notation will be used for maps @ with values in Q, R,

C....
Proofs of the next three results may be found in {7).

1.13. Proposition. (loc. cit. 3.2). Let A = A /tor(A%) be the mazimal torsion-
free abelian quotient of A. There is a canonical isomorphism of A with Hy(A\T,Z),
the first homology group of A \T, and a canonical injection with finite cokernel

ja: Hy(AN\T,Z) = H(T,Z)%,
@ = p*

the harmonic cochain p* being defined through o*(e) = w(e)ple).

(Recall that Hi(S,Z) of a graph S is the set of ¢ : Y(S) — Z that have finite
support and satisfy (i) and (i) in (1.12).)

1.14. Proposition. (loc. cit., 3.4.5). ja 15 bijective whenever A=A/ANZ(Ke)

has no non-p-torsion elements.
This applies in particular to the congruence subgroups ['(n) and T'1(n).

1.15. Proposition. (loc. cit,, 3.3.3). ja is bijective whenever there ezists a
mazimal subtree S of A\ T such that all the edges e € Y(A\T) = Y(S) have weight
w(e) = 1.

Later on we will see that (1.15) may be applied to the groups I'#(n) and Lo(n).

1.16. In what follows, we shall focus on the cases where A is one of the groups
I'(n), T1(n), Ti(n), To(n). Let n € A be given as

e I fr= T0 m

1<i<s 1<i<s
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fwhere the f; are different monic primes with deg f; = I; degn = Sr,l; = d. We
urther put ¢; := ¢" = §4/f;. We will have n o o, me ari tic func

: i eed f i i
related 0 7, viz., r some arithmetic functions

on) = I ¢¥ Ma:i-1)
1<i<s

en) = I1 ¢F g+1)

1<i<s

oo(n) = I (ri+1) (1.17)
1<i<s

w(n) =TI (@703 4 )
1<i<s

. .Herfa [ denot.es the “greatest integer” function. Note that all of these are mul-
tllphcatxve, ¢(n) is the order of the multiplicative group (A/n)*, e(n) the order of
P (A(n), the projective line over the finite ring A/n, and oo(n) is the number of
(monic) divisors of n.

2. The Fundamental Domain for Hecke Congruence Subgroups

1 In this section, A is a Hecke congruence subgroup I'o(n) with n as in (1.16). We
o .16).

P:=P'(A/n) = {(u: v)|u,v € Afn, (Afn)yu + (A/n)v = A/n}, (2.1)
where as usual, (v : v) is the equivalence class of (u,v) modulo (A/n)*. It is easy

to see that
rra =p

(8 §) — @0

as I'-sets, where the action of I" on P is (:s)(u 1 v) = (au + bv : cu + dv). Here

a,nd‘ in the sequel, we write representatives for residue classes, well-definedness being
0?v1ous. Thus ©5 = P. Furthermore, P splits according to the prime decomposition
of n:

(2.2)

P PHA/ny) x - x P(A/n,) (2.3)
with diagonal I-action. Each component may be represented as
Pl(A/m) = | PHA/n)(h), (2.4)
0<h<ry;

where

PH(A/n)(R) = {(u: fP)|umod f7™", (u, fi) = 1 1 < h < rs — 1)

(we require that w = 1 for h = r;).

The number 4 is called the height h(z) of z = (u : fF). Note that each z with
h(x) > 1 may also be represented as £ = (1:v) with fil;. Each z = (z z5) €
P = ITP*(A/n;) has a well-defined height (h,, ..., he) with 0 < h:: h(z»l), <1: sand
each component P! (A/n;) contains PYF)={(u:Duec qu}CJ{(l :0)} ; ]I*:(,L;ioo}.
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For describing A \ 7, we have to calculate the orbits of several groups on P,

notably those of Gg, Go N Gy, and G41.
In order to simplify notation, we now put

G = Gy = GL(2,F,), B:i=GonGy, ZZ:Z(]Fq)—E-*]F;,
U .= {(é';)'bequ}, Tz:{(ggﬂﬂquF;}, Tns EIF;;

a fixed non-split maximal torus in G {any two of these are conjugate). The following
intersection properties are well-known and easily proved.

(2.5)

2.6. Lemma. Let g, h,k € G and 29 = g7 'zg.
i) J(B*NU") > 1= Uk C BY;
i) B # B* = 3k € G such that T* = B n B%;
iii) B¢, B", B* pairwise different = B0 Bhn B* = Z;
iv) BINT™ = Z;
W) (T™)9 # (T = (T N (T™) = 7.

We now first treat the primary case.

2.7. Lemma. Let T = (u: v) € P = P}(A/n), where n = f7, f prime of degree
I. The stabslizer of x in G = GL(2,F,) is conjugate to one of the following groups:
a) B;b)T™,¢c)Z-U= {(SZ)Ia eF;be ]Fq}; d) Z. We have
case a & z €PYF,) —P.
There is one orbit of this type, of length ¢ +1;
caseb & 1 is even and x € P1(Fp2) — PL(F,) — P.
There is one such orbit, of length g(q —1);
casec & 7€ {(u:1l)ueA/n—"F,3e€eF, st (u—e)® =0}
{(1:v)|0#v € A/n s.t. v} =0},
There are (q%’m ~1)/{q — 1) such orbits, of length ¢* — 1 (g1 := q');
case d & none of a, b, c. Orbits have length q(g® —1).

Proof. Let £ € P be fixed under v = (‘C’db) € G- Z. Suppose first that h(z) =0,
z = (u:1). Then
cul+(d~a)u—b=0. (%)

If (%) is quadratic irreducible, v € Fpz — Fy — A/fr, | = deg [ is even, and
the two solutions are uniquely determined in A/f” by Hensel's lemma. Conversely,
each u € B2 — F, — A/ satisfies some irreducible equation (*). The stabilizer of
such an z = (u:1)isasinb).

If ¢ = O then u € F,, case a); if (*) is reducible with ¢ # 0, there exist e, €’ in
F, s.t. (u—e)(u —e€') = 0. Thus, without restriction, (u — €) is a zero-divisor, i.e.,
(u—e) € fA/f7, which implies either v = e € F,, case a), or u ¢ Fg, e = €', case

c).
If h(z) > 1, z = (1 : v), then bv? + (@ — d)v — ¢ = 0, which implies ¢ = 0. Then

either v = 0, case a), or v #0, a —d =v> =0, i.e, case c).

The numbers and lengths of orbits of a given type come out by counting. ]
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Next, we study how G-orbits split into B-orbits.

2.8. Lemma. The orbits in (2.7) split as follows into B-orbits:

(a) two B-orbits al) {(1:0)}, a2) {(v:1)|u € F};

(b) one B-orbit;

(c) two B-orbits cl) of length g — 1, given by the elements of height > 1, ¢2) of
length q(q — 1), given by the elements of height 0, for each G-orbit of type c;

(d) ¢+ 1 B-orbits of length g(g — 1) for each G-orbit of type d.

The stabilizers B; of elements z € P are conjugate to B in case al, T in case
a2, Z in cases b, c2 and d, and Z - U in case cl.

Proof. The cases a, b, d are obvious. For c note that such a G-orbit is isomor-
phic with G/Z-U. Now use the Bruhat decomposition G = BU BwU withw = (J})

and the fact that each G-orbit of type ¢ contains elements z with A(z) = 0 as vxlrgll
as y with h(y) > 1. m]

Still in the primary case (notations as in 2.7), we calculate the G4_;-orbits on

P= . lEJ< P(h), P(h) = {z € P|h(z) = h}. Clearly, P(h) is stable under G4_;.

2.9. Lemma. P(h) splits as follows under G4_1:
(a) h-=0: One orbit of length |n| = qf, with order of stabilizer of an element
equal to (g — 1)%;
(b)y 1<h<[r/2): q;‘“lﬂqL__Tl orbits of length (q—1)gi =" with order of stabilizer

(g - 1)gt™;
(c) ET/Z] ; h <r: qf"h_l%}:—f orbits of length ¢ — 1, with order of stabilizer
q - 1)gf;

(d) h =r: One orbit of length 1, order of stabilizer (¢ — 1)%¢?.

Proof. Let G4y, — Ga_; be the subgroup {(;;’)IZE lggmodf") } In view

of (2.4),hthe G 4-1-orbits on P(h) correspond to the Gy_1 »-orbits on A/f7 (h = 0),
(A/f7=") (1 £ h <1 =1), {0} (h = 1), respectively, which acts through (gf)u =
au + b. The lengths and stabilizers come out by counting. a

Now we come back to the general case: n = rf/* asin (1.16), P = IIP*(A/n,;) =

[I U PHA/n)(k) asin (2.3), (2.4).

1<i<s 0<h; <y

Let us determine the “exceptional” cases where the stabilizer G, of z =
(z1,...,z5) in G is strictly larger than Z. If this is the case, then Z—Q G, =

1<ﬂ< G, where all the G, are of type a, b or c in (2.7).
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2.10. Proposition. Let € P be as above. The stabilizer G is conjugate to one
of the following groups: a) B; a*) T; b) T™; ¢) Z-U; d) Z. We have

casea & g €PYF,) =33
There is one orbit of this type, of length ¢ +1;
case a* &  there ezists a non-trivial partition SUS' of {1,2,...,s} and
utvEPHF) st.oi=uifi€S o, =vif1€ S’
There are 2°=1 — 1 orbits of this type, corresponding to the
partitions, each of length g(q + 1); '
caseb & fori=1,2,...,s,l; is even, and there ezists an
irreducible quadratic equation X2 + aX + b over Fy s.t.
each z; is a root. In this case, there are 2°~1 orbits of
this type, each of length q(g — 1).
casec & z&PF,) 8 P, but there exists e € PL(F,) such that for
i=1,2,....s: ife=(c:1) then z; = (u; : 1), (u; — e)> =0,
ife=(1:0) then z; = (1:v), v2 = 0. There are
(g-0 1 I1 (qy"/zl — 1) orbits of this type, each of
1<i<
length ¢* — 1;
cased < none of a, a*, b, c. There are precisely

e(n) — (g + 1)i(a) — a(g + DH(a") — glg — DI(b) - (g* — 1)H(c)
9(g® - 1)

orbits of this type, each of length q(¢* — 1).
(f(x) = number of orbits of type T)

Proof. Our list of possible stabilizers is complete by (2.7) and (2.6). Cases a
and a* are then immediate from (2.7) and (2.6) (ii) + (iii). The z with G conjugate
to T™ are those whose components z, satisfy an irreducible quadratic equation (the
same for all 7, (2.6) (v)). Since, again by (2.7), there are precisely 2 solutions in each
A/n;, there are ﬂq—;—ll .2% such z, which split in 2*~* orbits of length g(g —1). This
gives b). Case ¢ holds for gz if and only if for all 4, the components z; are of type a
or ¢ in (2.7), where the distiriguished element e € P1(F,) is the same for all 4, and
c) appears for at least one ¢ (i.e., z; # e). There are ql-"/zl elements z; € P1{4/n;)

“sufficiently close” to a given e € PL(F,), and therefore (g + 1)( I glr/3 — 1)
1<i<s
O

elements z giving rise to case c.

2.11. Proposition. The G-orbits in (2.10) split as follows into B-orbits:
(a) two B-orbits al) {(1:0}}, a2) {(u: 1)]u € Fe};
(a*) the G-orbit associated with the partition SUS' = {1,..., s} splits into three
B-orbits consisting of £ with

al*)z;=00,1€ 5, T;=u, 1€ 5,
a2¥)z; =o00,1€ 5, i =u,1 €S,
a3*)zi=u, 1€5, T, =v,1€5,

(u # v € Fy) of lengths q,q,q(g — 1), respectively;
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(b) one B-orbit of length q(q — 1);

(¢) two B-orbits c1) of length q — 1, gwen by the elements z with h;(z) > 1, all
i, €2) of length q(q— 1), given by the elements x with hi(z) =0, alli, in the
given G-orbit of type c;

(d) ¢+ 1 B-orbits of length q(q — 1) for each G-orbit of type d.

The stabilizers are conjugate to B in case al, to T in cases a2, al*, a2* to Z
in cases a3*, b, ¢2, d, and to Z - U in case cl.

Proof. Clear from (2.10) and (2.8). 0

Recalling that the orbits given in (2.10) and (2.11) describe the vertices X (A\T)
and edges Y5(A \ 7) of type zero of A\ 7, we see:

2.12. The vertices of type 0 of A\ 7 (A = Ty(n)) together with their adjacent

edges have the following shape:
c) <
a2

a) <
al*

a*) < 2* .
* d) : } g+ 1 edges.
ad*

b)

al cl

c2

[ S—

2.13. By similar (but less complicated) considerations, one gets for the vertices of
types ¢ > 1 the following possible shapes, which all occur:

——

~—

g edges

This will however not be used
in what follows.

edges of  edges of
typei—1 type 1

There rests the description of the cusps, i.e., of Ga1 \P. Let b = (hy,...,hs),
0<hi<rifori=1,2,...,s, and

P(h) = {z € Plhi(z) = h;¥5}.
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2.14. Proposition. P(h) splits as follows under Gy-1:
(a) Each h; =0 orr;: one orbit;
(b) There ezists 1 such that 0 < h; < 1 number of orbits is
(g-1) H (gi — Vg™t with m; = min{h;,7; — h;} .

1<i<s
0<h; <r;

In case a, the stabilizer of an element is T X p-group, in case b, it is Z X p-group
(semi-direct products).

Proof. Case a is clear. Thus assume h is as in b). P(h) has

O & I @-vg?

i<i<s 1<i<s
hi=0 or r; O0<hi < i

elements, and Gy4_; operates on it through a faithful action of a factor group of

order
@-v JI ™ I &™
hi=0i0r T 1gh;i5r.-/2
(see proof of (2.9)). The quotient gives the stated formula. ]

2.15. Cusps corresponding to G4_;-orbits of type a above are called regular; there
are 2° of them. Cusps of type b are called irreqular. We let Ga—1\P = (Ga—1\P)reg
U(G4—1 \P);:: be the associated decomposition and select representatives as follows: b
For h = (hy,...,h,) consider the set of all z = (z;,...,z,) € P for which

(0:1), if h; =0,
o ghy wmod S f) =1 o 1
T; = (u‘l'fi ): m; as in (214) 1f0<h1, < T, .

(I:O)v if hi‘—'—“'l‘i.

The multiplicative group F; acts diagonally on this set; if A is irregular (ie., 3is.t.
0 < h; <r;), we choose representatives mod F,. The resulting z form a system of
representatives (k) for G4—1 \P(A), and thus a system X = X;eg U Xirr for Ga1 \P
if b varies. We further label the regular cusps represented by ({0 : 1),...,(0: 1))
and ((1:0)...,(1:0)) by cusp (0) and cusp (00), respectively.

2.16. Lemma. The number of irregular cusps of A\T is given by (g—1)"(s{n)— [t
2%). (See (1.17) for k(n).)

Proof. Let £ h 0
o(hyi) = 1, ifh;,=00rm;,

= (i~ Vg™ i 0 < by <1y

A straightforward calculation yields
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Now the number in question is (¢ — 1)~! times the folowing:

> o =3 TTeti-2

b irregular ¢ all h 1
=11 3 othiy-2o= [T5r) —2° = k(n) - 2°
i 0<hi<n; i
since k is multiplicative. . [}

We have now accumulated all the ingredients to calculate the genus of A\ 7.

2.17. Theorem. Letn = T[] f7 be the prime decomposition of n € A and
1<i<s
A =Tg(n). The genus of A\ T is given by

o(ANT) =14 ) =g+ Dr(n) — 25“;[;(_71)14@ — D+ (g+1)(¢-2)

Here r(n) = 1 if the prime divisors f; all have even degree, and r(n) = 0 otherwise.
The quantities e(n) and x(n) are defined in (1.17).

Proof. We apply (1.9), where the relevant cardinalities of Xo(A\T), Yo(A\T)
and cusp (A) = X4.1(A\ T) are given by Propositions 2.10, 2.11, 2.14 and Lemma
2.16, respectively. 0

2.18. Corollary. g(A\T) = ¢4 4 o(¢%-9).

2.19. Corollary. Let n be square-free. Then

e(n) — 2" g[r(n)(¢ — 1 1
oA\ 7) =1+ L2 q[fzﬁf(‘j )+a+1]

In particular, if n is prime of degree d then g(A\NT) = (¢* - 7%)/(g* = 1) for even
and (¢¢ — ¢)/{q* = 1) for odd d.

2.20. Corollary. We have g(A\T) =0 d =degn < 2 and g A\T)=1&g=
2, d =3 and n divisible by f2, where deg f = 1 (i.e., n one of TXHT +1), (T +1)2T,
T3 (T +1)% over Fy).

Proof. The “if” direction is immediately verified. For the other direction,
we apply e(n) = ¢ + o(¢*!), k(n) = o(¢¥/?) and perform some case
considerations. 0

In the list to follow, we give the genera for all n of degreé d < 4. The symbols
f, 9, h, k denote different prime polynomials in A; their subscript indicates the
degree.
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2.21. Table of genera. g(A\ 7), A =T4(n), degn < 4.

Splitting type of n degree  g(A\T)
degn < 2 <2 0
firg1-hi, fargn fa 3 q
f12'gl7f? 3 g-1
fhog ok 4 7 +4q
forgi-hy g +2q
f2-92, f4 2
fa-; @ +q
Zog @ +3¢-3
) @+g-1
297 ¢ +q-2
23 ¢ +2¢-3
5 P’ —q
4 q2__1

2.22. Remark. As follows from the theorem, g(A\7") depends only on the splitting
type of n, as do the numbers of vertices, edges and cusps given by (2.10), (2.11),
(2.14). But even with the same splitting type of n and n’, the graphs I'g(n)\ T and
To(n)\ T are in general not isomorphic. As an example, we draw without further
explanation the graphs forn = T* + T + 1 and n’ = T* + T? + 1 € F,(T}, both
prime, with g(A\ 7) = 4. Vertices are ordered with type 0,1,2,... from the left to

the right.

n=T*+T3+1

3. A Maximal Subtree Algorithm

n=T'+4+T+1

We keep the setting of the last section and develop an algorithm for a maximal
subtree of o(n) \ 7.

3.1. Lemma. The edges of type al, a2, cl, c2 in Yo(A\T) (see (2.12)) are situated
on cusps of A\T. More precisely, deleting an edge of type al or cl disconnects the
graph, where the component not containing the attached verter € Xo is a half-line.

Proof. It suffices to show that the corresponding B-orbit on P is actually stable
under G4_1. This is clear from the description given in (2.10) and (2.11). m]
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As follows from the above, any ¢ € H,(A\ 7, Z) vanishes on edges e € Yo(A\T)
of type al, a2, cl, ¢2, and it vanishes a priori on those of type b.

3.2. Proposition. Let ¢ € H(A\ 7,Z) be zero on all e € Yo(A\T) of type d.
Then ¢ = 0.

Proof. Asin (1.9), let (A \ 7)* be obtained from A \ T by collapsing the
edges of type > 1. We consider the canonical isomorphism of Hy (A \ T,Z) with
Hi({A\ T)*,Z) as an identification. Then the support of ¢ is contained in the
subgraph C of (A \ 7)* generated by the edges of type a* (i.e., al*, a2* a3*) in
Yo(A\ T). Now C is connected since the G4_;-orbits determined by B-orbits of
type a3* are those of ((0: 1),...,(0:1)) € P, i.e., all the vertices of C are connected
to the regular cusp cusp(0) (see (2.15)). .

By Euler’s formula, we thus have g(C) = 1 + fY(C) - §X(C) with Y (C) =
3(2°71 - 1). Further,

classes € Gq—; \ IP represented
§X(C) = H{v e Xo(A\ T)|type of v = a*} +§ { by those z € IP described in
Proposition 2.10, case a*
=2°"1 — 1 + {regular cusps different from cusp(oo)}
=2"1142 1.

Together, this yields g(C) = 0. Hence ¢ lives on the tree C, and must therefore
vanish identically. O

3.3. Theorem. The canonical map ja : Hy(A\T,Z) — H(T,Z)» of (1.13) 18
an tsomorphism.

Proof. By the proposition, a maximal subtree of A \ 7 may be obtained by
deleting certain edges € Yp(A \ 7) of type d. By Proposition 2.11, the associated
stabilizers are Z = Z(F;) — G, and so the weight of these edges (1.11) is one. We
conclude by Proposition 1.15. ]

3.4. Now consider the system of representatives X for G4, \ P chosen in (2.15). Tt
defines maps, depending on %,

VG \P— Yo(A\T)
[z]a—1 = [z]o1 =class of zmod B=GyNG; and
\I’_—‘OOO‘I”IGd_l\P‘—’XQ(A\T).

3.5. Lemma. The map ¥ restricted to (Gy_; \ P)isr is injective.

Proof. (i) ¥ is injective since Gy N Gy — Gy_;.

(ii) The edges e € Yo(A \ T) with e # [z]o1, o(e) = o([z]o;) are represented by
wy(z) with w = (‘1’ 3), 7 € U (notations as in (2.5); consider the Bruhat decompo-
sition G = B U BwU). But for z € ¥, each component w+y(z;) has height 0 or 7;,
so [wy(z)]a—1 € (Gu \ Preg-
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(iii) So let ¥([z]a—1) = ¥([ya—1) with z,y € Xir,. By (ii) we have ¥ ([z]a—1)

\I”([E])) so by (i), z = Y. g

3.6. We now define certain sets of edges and vertices that will be distinguished in
our algorithm, see below. Let

Y(A\T) :={e € Yo(A\ T)|e a B-orbit of type d in (2.11)} N ¥ ((Gue1 \ Pixr)

and
X(A\T) == 0g(Y(A\T)).
3.7. Lemma. X(A\7T) and Y(A\ T) both have precisely

k{n) — 2° — (HQET'/zl -1
g—1

elements.

Proof. As directly follows from the description of G-orbits on PP given in (2.10),
elements of ¥;,r can never represent orbits of type a, a*, or b. On the othe.zr hand,
each G-orbit of type c is represented by some element of X;,.. The assertion now

follows from (2.16) and (2.10), case c. ]

Let now S be the subgraph of A \ T obtained by the following

3.8. Algorithm. For each v € Xo(A\ T) of type d, do:
—v g X(A\ T): Delete g of the ¢+ 1 edges adja.gent to v.
—v e X(A\T): Delete g — 1 of the g edges e ¢ Y(A\ T) and adjacent to v.

3.9. Theorem. S is a mazimal subtree of A\T.

Proof. (i) Clearly, S contains all the vertices of A\ 7.

(ii) S is connected.

Since each vertex of S is connected to a cusp of A\ 7, it suffices to show that
all the cusps of A\ T are connected in S to the cusp cusp(0). Now: cusp(co),
represented by al), is connected to cusp(0) through the edge of type a2; regular
cusps # cusp(0), cusp(co) are connected to cusp(0) through vertices v € Xo(A\T)
of type a* (through the edge of type a3*); irregular cusps cusp(?) are connected to
cusp(0) through ¥(cusp(?)). .

(ifi) We can easily count the number of edges omitted in 5, using (2.10) case 'd
and (3.7). The result is that precisely g(A\ T) edges have been deleted. Thus S is
a tree, and therefore a maximal subtree. 0O
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3.10. Example. The following example exhibits (except for the lack of “isolated”
vertices of type b in Xo(A \ 7)) all the features of the general case. We let g = 3,
n=T)T?+T+2) € A=FT],s=2 fi =T, f=T2+T+2 The graph
Lo(n) \ 7 has genus 11, it is represented by

n=T*T?4+T+2)

where vertices are of type 0,1, 2, ... from left to right. Representatives of X (A\T)
in P are given by

Xo(A\NT)={{1:0,1:0),(T:1,T:1),(1:0,T:1),(T:1,0:1),
(T:1,T+2:1),(1:0,0:1),(1:T,1:0)}

X (A\NT)={(1:0,1:0),(0:1,0:1),(0:1,1:1),(0:1,T:1),
(0:1,T+1:1),(0:1,T+2:1),(1:T,0:1),

(0:1,1:0),(1:0,0:1),(1:T7,1:0)}
X(ANT)={(1:0,1:0),{(0:1,0:1),(0:1,7:1),(1:T,0: 1),

(0:1,1:0),(1:0,0:1),(1:T,1:0)}
X3(ANT)={(1:0,1:0),(0:1,0:1),(1:7,0:1),(0:1,1:0),

(1:0,0:1),(1:T,1:0)}

ordered “from top to bottom” in the picture. The dotted lines are edges deleted by
our algorithm.

4. An Observation on Multiplicities of Automorphic Representations

Again, A =T'¢(n). Asindicated in the introduction, the C-vector space H(n) :=
H\(T,C)? is a space of automorphic cusp forms (of a rather special type) in the
sense of Langlands. In particular, it is provided with Hecke operators T}, (meA
monic) and a Petersson scalar product (.,.) with the usual properties. All of this is
described in detail in [7, Ch. IV]. For the moment, we only need the scalar product,
defined by

() =870 > wle)ple)le). (4.1)

e€Y(A\T)
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The normalization is such that (i, ) is compatible with the inclusions H(n) —
H(n'), n' a multiple of n. Next, let m be a divisor of n and a one of n/m (always
assumed to be monic), and

'L'a.,m : H(m) i H(TL) °
iam(@)(€) = ¢ ((20)e)

We put
H*"(n) o= HP(T,C)°) =[5 3 im(a,m)* (4.2)
min eln/m
m#En

(orthogonal complement in H(n)).
Then H™¥(n) is the space of newforms (loc. cit.) of the automorphic represen-
tations determined by H{(n).

4.3. Proposition.

H(n) = @ @ z’a,mH“ew(m)

m|naln/m

(orthogonal direct sum).

Proof. This is obvious from the automorphic description of H(n): We can first
orthogonally decompose H(n) according to different automorphic representations
#. Then we split 7 into a tensor product of local representations, thus reducing the
problem to a local one. The assertion then follows from [2, Cor. to Theorem 1], see
also (3, Theorem 2.2.6]. O

Presumably, an elementary direct proof in the spirit of {1] can be given for the

proposition, but most likely it will be unpleasant.

4.4. The dimensions

g(n)- =dim H{(n) = g(To(n) \ 7) and
g**¥(n) := dim H**"(n)
are therefore related by
g(n) =3 ao(n/m)g"™(m),
min

which allows to recursively calculate g°** from g. We let

gt n) =3 g (m),

min

which counts the number of automorphic representations attached to H,(7,C)To(™),
i.e., those whose conductor is a divisor of (n) - co, and whose co-component is the
special representation of PGL(2, K ) ([7], Ch. IV).
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4.5. Proposition. If n is square-free of degree d, g**** is given by
d_ 2
g**2t(n) = (flz —ql , d even
d
9 —9q
= ——=, d odd.
¢?-1

In particular, it does not depend on the splitting of n.

Proof. This follows by an easy induction on the number s of prime divisors of
7, using (2.19) and Mébius inversion. ]

4.6. Remark. Using the results of [6], we can get rid of the special role of the
place oo, i.e., consider divisors n of K = F¢(T) not necessarily divisible by oo, for
which a generalization of (4.5) remains true. The assertion is then, vaguely, that
the number of automorphic representations of conductor a divisor of n does only
depend on the degree of n, provided that n is square-free. For this numerical fact
we presently have no “structural” explanation.

5. Results on Other Groups

The congruence subgroups A = I'(n), I'1 (n), ['}(n) of ' may be treated following
the same line of argument as in the case A = Ty(n). That is, we have to calculate
Gi-orbits (1 =0,01,d— 1) on £ :=T'/A. This will yield g = g(A \ T), and a closer
look on the Gy;-orbits on T shows that the proof of Theorem 3.3 also applies to
.the other cases; i.e., a maximal subtree of A \ 7 may be obtained by deleting edges
€ Yo(A\ T) of weight one. We restrict to write down the results, whose proofs are
left to the reader. We use the notation G, B ... introduced in (2.5).

5.1. Let first A = I'{(n). Then

B =T/T{(n) = {(v,v) € A/n x A/n|(A/n)u+ (A/n)o = Afn},
(20 — (a,0)
which we regard as an identification. Note that T has ¢(n)e(n) elements. Since

all the groups G; contain the center Z = ]F;, it suffices to determine the orbits on
L/Z = {classes [u,v] mod F; of elements (u,v) € £}.

5.2. Proposition. (i) The orbits of G on 5/Z are as follows:
(a) ‘24_33 orbits of length (¢ + 1), given by the elements [u,v] € ©/Z such that u
and v are Fo-linearly dependent. The stabilizer of [u,v] in G is conjugate to

B;
(b) ﬂ%‘%[&(ll‘&;{%%ﬂ orbits of length (q* — 1)q, with stabilizers Z.

(ii) Splitting into B-orbits:

(a) Each G-orbit of type a splits into two B-orbits al) of length 1, represented
by [u,0], with stabilizer B, and a2) of length g, represented by [0,v], with
stabilizer T, respectivley;

FUNDAMENTAL DOMAINS OF SOME ARITHMETIC GROUPS OVER FUNCTION FIELDS 707

(b) Each G-orbit of type b splits into q¢ + 1 B-orbits of length (g — 1)q, with
stabilizer Z.

(it1) The orbits of G4y on /2 are:

(a) %(_312 orbits, each consisting of one element (u,0], u € (4/n)*;

(b) Let h = (h1,...,hs) be an irregular height vector, i.e., 0 < h; < r; fori =
1,2,...,8, b #(0,...,0), (r1,...,7s). The set {[u,v][h(v;) = h;} s Ga-y-

stable and splits into ——(—g-g‘a_" [1 %=L orbits, each of length (g—1) [ ™
(¢—1 1gics i

and with stabilizer of order (¢ — 1) [T ¢. (R(v;) € {0,1,...,r:} is the trun-
cated valuation of v;). Summing over the og(n) — 2 irregular height vectors
h, this yields

¢(n) i —1
(] (ev1-=—2)-2]
(q - 1)2 1<i<s qi
orbits of Gg—1 of type b;
(c) %(_1'12 orbits on {[u,v]|v unit inA/n} each of length q¢, and with stabilizer

conjugate to T. )

5.3. Corollary. The genus g(A\ T), where A =T'}(n), is given by

T.,'—l

p(n) _ b1 — .
AANT) =14 g = lem) — (g + 1)(a 2+1SI{[SS( i+ 1= =)
Proof. (1.9) + (5.2). @]

We see that e.g. g(A\T) = ¢*? % +0(¢?* %) and g(A\T) =0 d < 2.

As in the case of I'g(n), edges of type al, a2 are situated on cusps of A\ 7.
Thus a maximal subtree is obtained by deleting edges of type b, which have weight
w(e) = 1. Thus:

5.4. Corollary. The map ja : Hy(A\T,Z) — H,(T,Z)® is bijective for A =

5.5. We now treat the case of I'1 (n) and study orbits on I'/T'y (n) - Z via its quotient
mapping p onto I'/T}(n) - Z, which has degree ¢ — 1.

5.6. Proposition. The inverse image p~' (W) of one of the orbits W of G, B, Ga—1
mentioned in (5.2) splits into g — 1 orbits except for the following:
i) p"1(W) = one G-orbit if W is a G-orbit of type a;
ii) pX (W) = one B-orbit if W is a B-orbit of type al, a2;
iii) p~1(W) = one Gg_y-orbit if W is a Ga_1-orbit of type a or c. ]

Inserting the cardinalities of Xy, Yy, X4—; so obtained into (1.9) yields:

5.7. Corollary. The genus g(A\ T), where & =T\ (n), is given by

Q(A\T)=1+_‘§ﬂ[e(n)_(q+1) H (Tf+1—rif1
-1 1<i<s qi

).
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Let now finally A = I'(n). Here, G, B and G4_; are subgroups of & = I'/T'(n) =
{7 € GL(2, A/n)|det~y € F;}. Hence the numbers of orbits are just the indices. We
get

5.8. Corollary. The genus g(A\T), where A = T'(n), is given by
n)e(n
sta\T) =14 ey,

As in the preceding cases, we could use (1.15) to show the bijectivity of j, for
A =T(n) and 1 (n). It is however easier to refer to (1.14), since these two groups
have no non-p-torsion. In these two cases, the genus can also be calculated by the
formula in Ex. 2, p. 136 in [10], provided the number of cusps is known.
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1. Introduction

In [14, 15} we have found irreducible compact holomorphic symplectic manifolds
of dimension 2n for n > 2 which do not admit any Kihler structure. Those mani-
folds can be either simply connected or not simply connected. In this work we will
consider deformations of some of them, thus producing more examples. We can see
the effect of topological argument in the proof of the nonkihlerness. We also give
a poisson-symplectic proof of a generalization of the Bogomolov unobstricted the-
orem. By applying the same argument one can prove the unobstructed theorem for
other holomorphic symplectic manifolds, e.g., see the Remark 3 in Sec. 4. Further
results will be found in [16].

Let M be a complex manifold of dimension 2n. A holomorphic. symplectic
structure or form is a closed holomorphic 2-form w on M with maximal rank (see
[18, p.47]).

One might ask that under what condition a compact holomorphic symplectic
manifold is Kahlerian, i.e., admits a positive closed (1,1) form. For example, by
(25] and [22], we know that every K-3 surface is Kihlerian. In [24], Todorov asked
if every irreducible compact holomorphic symplectic manifold of dimension more
than 4 is Kéhlerian. Some counter-examples have been found in [14, 15]. To get
more examples, we first generalize the method in [15], then prove that many of their
deformations are holomorphic symplectic manifolds which are not Kahlerian.
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