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ABSTRACT 

This note presents a qualitative improvement to the algorithm presented 

in [DG] for computing Stark-Heegner points attached to an elliptic curve 

and a real quadratic field. This  algorithm computes the Stark-Heegner 

point with a p-adic accuracy of M significant digits in t ime which is 

polynomial in M, the prime p being treated as a constant, rather  than 
the O(p M) operations required for the more naive approach taken in 

[DG]. The key to this improvement lies in the theory of overconvergent 
modular symbols developed in [PS1] and [PS2]. 

Introduction 

Let E be an elliptic curve over Q of conductor N and let p be a prime which 

divides N exactly. Since E is modular, it corresponds to a cusp form f of 

weight two on Hecke's congruence group F0(N). The pth Fourier coefficient of 

this modular form, denoted ap, is equal to 1 (resp. -1)  if E has split (resp. 

non-split) multiplicative reduction at p. Let 7/p := P1 (Cp) -I~1 (QB) denote the 

p-adic upper half plane, and fix a real quadratic field K in which the prime p is 

inert, together with an embedding o f / (  into Qp C Cp. 
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Using certain periods attached to f ,  the article [Darl] associates to any 

~- E ?-/p M K a so-called Stark-Heegner point Pr E E(Kp) and conjectures that 

this point is defined over a specific abelian extension--more precisely, a ring 

class field--of K. Stark-Heegner points appear to behave like classical Heegner 

points in many ways, except that the imaginary quadratic base field is replaced 

by a real quadratic field. An algorithm for computing them, in the case of el- 

liptic curves of prime conductor, is described in [DG], where it is used to test 

the conjecture of [Darl] numerically. 

The calculations in [DG] raise the question of whether Stark-Heegner points 

lead to an efficient method (conditional on the conjectures of [Darl]) for finding 

global points on elliptic curves comparable to the approach based on classical 

Heegner points, as it is described in [El] for example. The major obstacle to 

putting Stark-Heegner points to such a "practical" use is that the definition 

of P~ rests on certain p-adic integrals whose direct evaluation as a limit of 

Riemann sums has exponential running time--namely, the number of arithmetic 

operations required to perform this evaluation with an accuracy of M significant 

digits is proportional to pM. Since each extra digit of desired accuracy multiplies 

the running time of the algorithm roughly by p, the evaluation of P~ following 

the approach of [DG] becomes intractable for even moderate values of M. This 
explains why [DG] was only able to verify the conjectures of [Darl] to at most 8 

or 9 digits of p-adic accuracy. In particular, the calculation of P~ could almost 

never be used to independently discover a global point on E(K),  except in some 

instances where this point is of small height, when it could have been found 
just as easily by inspection. So while [DG] did produce convincing numerical 

evidence for the conjecture of [Darl], by no means could the algorithms that it 

used be touted as a practical method for constructing global points on elliptic 

curves. 

The main purpose of this note is to present a significant improvement to the 

algorithm of [DG] which runs in polynomial time, where the size of the problem 

is measured by the number M of desired p-adic digits of accuracy, the prime p 

being treated as a constant. This answers in the affirmative the question raised 

before Remark 1.7 in Section 1.2 of [DG]. 

The key to this new approach lies in the theory of overconvergent modular 
symbols developed by Glenn Stevens [St] (see also [PS1]) together with the ex- 

plicit algorithms to compute with these symbols given in [PS2]. These modular 

symbols generalise the classical modular symbol Ij:  F1 (Q) × ]P1 (Q)---+Z defined 
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in terms of f by the rule 

( / / )  l /{r  ~ s} := Re 27rif(T)d'c , r,s E FI(Q), 

where f~+ is a suitable real period which can be chosen so that ly becomes 

Z-valued. This modular symbol defines the Mazur-Swinnerton-Dyer measure 
#y on Z~ by the rule 

(1) I t f ( a  q -prZp)  := ap  r . I f { - a / p  r ~ (x3}, a E ~ .  

Let [x] denote the floor function of the real number x, and set 

(2) M' := sup{n such that ordp(pn/n) < M}; 

(3) M" := M + [log(M')/log(p)]. 

A by-product of the theory of [PS1] and [PS2] is a method for computing the 

first M t moments of the measure pf, 

(4) w ( a , k ) : = f  ( t -a)kd#/( t ) ,  0 < a < p - 1 ,  k = 0 , 1 , . . . , M ' ,  
Ja q- pZ p 

to an accuracy ofp -M'' in time which is polynomial in M. Section 1.3 explains 

how this data is enough to efficiently compute the Stark-Heegner points at- 

tached to E to an accuracy of p-M--in fact, after the moments (4) have been 

precomputed and stored, the number of arithmetic operations required to eval- 

uate one of the p-adic integrals involved in the definition of PT is O(pM), a 
complexity which appears to be best possible. 

The main contribution of the present paper resides in bringing together the 

ideas of [PS1], [PS2] and of [DG], and in the detailed glimpse into the phe- 

nomenology of Stark-Heegner points and Mordell-Weil groups over ring class 

fields of real quadratic fields made possible by the computational tools that 

emerge from this combination of ideas. 

Section 1 recalls the definition of Stark-Heegner points and describes the new 

polynomial-time algorithm for computing them, while Section 3 describes the 

implementation of this algorithm as a Magma package called shp that can be 

downloaded from the world-wide web. Section 4 revisits the calculations of 

[DG], verifying them to hundreds instead of just 8 p-adic digits, filling in most 

of the mising data which the authors of [DG] were unable to supply due to 

the severely limited accuracy of their computations, and extending the range of 
positive discriminants for which the calculations are successfully performed. 
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We remark that the original motivation for the theory of overconvergent mod- 

ular symbols arose from Coleman's generalisation of Hida's theory of p-adic 

families of ordinary eigenforms to the non-ordinary case. Since Dasgupta's 

thesis (cf. [Das], [DD]) it has become clear that Hida families are intimately 

connected to the theory of Stark-Heegner points. (That such families can be 

used to shed light on the theoretical, and not just computational, aspects of the 

Stark-Heegner point construction is a theme of the series of articles [BD1] and 

[BD2].) 

1. Computing Stark-Heegner points 

As in [DG], we confine our attention to the simplest case where the elliptic curve 

E has prime conductor p, so that K is any real quadratic field in which p is 

inert. As in the introduction, denote by f the weight two eigenform on F0(p) 

that is associated to E by Wiles' theorem, and write 

w / : =  27rif(T)dT 

for the corresponding F0(p)-invariant differential on the Poincar6 upper half- 

plane 7/. Let F := PSL2(Z[1/p]), which acts on both 7 /and 7/p on the left by 

M5bius transformations, according to the rule 

(5) 7T - where 7 = • 
cT + d '  c 

The Stark-Heegner point construction 

r \ ( 7 / p n g )  ~E(A~), T ~ P~, 

can be described in several stages. 

1.1 MODULAR SYMBOLS. The group F := PGL2(Z[1/p]) D F is equipped 

with a homomorphism arising from the determinant 

get: F-----~Z [l/p] × / ( Z [1/p]×) 2 . 

The target of this homomorphism is isomorphic to Z/2Z × Z/2Z, and given 

3' E F we define ]~]p, ]~[oo e {0, 1} by the rules 

{ 0 if ordp(det('~))is even; { 0 if det(7) > 0; 
[7]p := 1 ifordp(det(7)) is odd, [71oo := _ 1 if det(7) < 0, 

so that 7 E F belongs to F if and only if ]7[p = 17tc¢ = 0. 
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In addition to the left action by M6bius transformations given by equation (5), 

it will occasionally be useful to consider the right action of the group PGL + (Q) 

of matrices with positive determinant on either 7-/p or 7-/given by the rule 

(a :) b + dr where 7 = r7  = - 7 - 1 ( - r )  - a + c r '  c 

Let Eo(p) C M2(Qv) denote the semi-group of matrices defined by 

r 0(v) = { ( a  b × c d ) E M2(Zp)Ia e Zp,c  e pZp, a d -  bc # 0}, 

and let V be any Z-module equipped with a right action by Eo (p). 

Detinition 1.1: A V-valued modular symbol is a map ~: ~I(Q) x I?I(Q)---+V, 

denoted by (r, s) ~ ~{r --+ s}, satisfying 

~{r --+ s} + ~{s --+ t} = ~{r --+ t} for all r, s, t e p1 (Q). 

The space of all V-valued modular symbols, denoted by Symb(V), has the 
structure of a right Eo (p)-module by the rule 

(~lT)(r ~ s) : - -  ~(Tr -~ ~s)l~, 

where ~ E Symb V and 7 E Eo (p). If G is any subgroup of E0 (p) x, a V-valued 

modular symbol is said to be G-equivariant, or to be on G, if G fixes it under 

this action. The space of all such modular symbols is denoted Symbc(V ). 

We will focus mainly on the case where G = F0 (p) = Eo (p) N F. The space 
Symbro(p ) (V) is equipped with a right action by the Hecke operators Te (~ # p) 
and Up defined by the formulae 

p-1  
° l a 1 ;) 
1) el,  fu, := Z I( 0 

a=O a=O 

The Fo (p)-invariant differential form wf gives rise to a C-valued modular symbol 

if  on Fo (p) (where C is equipped with the trivial Eo (p)-action) by viewing ]P1 (Q) 

as the boundary of the extended upper half plane 7/* := 7-/U ~1 (Q), and setting 

l ]f{r --+ s} := wf, r,s e ~I(Q). 

Note that the integral in this formula does converge, because f is a cusp form. 

The following theorem of Manin and Drinfeld makes it possible to convert I] 

into a Z-valued modular symbol. 
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PROPOSITION 1.2: There exist unique periods ~+ and f~- in ]R >° with the 
property that the functions I ]  and I f  on l~ 1 (•) X ]~1 (Q) defined by 

take values in Z and in no proper ideal of Z. 

The functions / ] a n d  I}- belong to Symbpo(~)(Z ) C Symbr0(p)(Zp), and are 

called the even and odd modular symbols attached to f respectively. The termi- 

nology of even and odd is justified by the further transformation properties 

(6) ~ { - r  -+ - s}  = I ]  {r --+ s}, I ) - { - r  --+ - s }  : - I f i  {r -+ s} 

Fix once and for all a choice of a "sign at infinity" 

/ I ]  if w o o = l ;  
(7) I f  

I}- if woo = -1 .  

The case where woo = 1 will be referred to as the even case, and that  where 

woo = -1 ,  as the odd case. 

1.2 p-ADIC MEASURES. A p-adie measure on ]PI(Qp) is a continuous Cp-linear 

functional on the space of continuous Cp-valued functions on ~1 (Qp) (equipped 

with the supremum norm). If # is such a measure, and h is a continuous function, 

we write 

fp h(t)dp(t) := #(h). 
l(Qp) 

The measure # is completely determined by the values it takes on the character- 

istic functions 1u of the compact open subsets U C IPI(Qp), and it is customary 

to write # 

#(U) := #(1v) =: ]rr d#(t). 

In this way # gives rise to a finitely additive Cp-valued function U ~ #(U) on 

the set of compact open subsets of ~1 (Qp), which is p-adically bounded. The 

measure # is said to be integral if it satisfies the stronger (and somewhat artifi- 

cial, from the point of view of p-adic functional analysis, although this condition 

turns out to be useful in the Stark-Heegner point construction) condition 

#(U) belongs to Z, for all compact open U C ?l(Qp). 

Write M(?I(Qp))  for the Z-module of integral measures on ?I(Qp). 

satisfied by I ]  and /7 .  

woo E { 1, - 1 } and set 
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PROPOSITION 1.3: There is a unique system #:{r  ~ s} of integral measures 

on ~1 (Qp), indexed by r, s E ~1 (~), and satisfying the rules 

1. # f { r  --+ s} + , : { s  --+ t} = #:{r  -~ t}, for all r , s , t  E I?I(Q); 

2. Igf{r --~ s } ( ~ I ( Q p ) )  = 0, fo r  all r , s  • ]~I(Q); 

3. # :{r  ~ s}(Zp) = U{r  ~ s}, for all r, s • FI(Q); 
as well as the following invariance property under 7 • F: 

(s) #f{~r  --+ ~s}(~U) = al~l"w I~1°~ p oc • # f { r  ~ s } ( U ) ,  

for all compact open subsets U C l?l(Qp). 

Proof'. The proof of this proposition is identical to that of Proposition 2.5 of 

[DD], which treats the case where f is replaced by certain weight two Eisenstein 
series. Crucial to both proofs is the fact that the eigenvalue of the Hecke operator 

Up acting on f is ap ---- t l .  Some of the motivation for introducing the system 
of measures # /{r  --+ s}, based on the theory of p-adic integration and on an 

analogy with periods of Hilbert modular forms, is explained in [Darl], Sections 
1.1 and 1.2. | 

Given the system # f { r  --+ s}, write 

(9) , :  := , : { 0  e 

The following lemma shows that this notation is consistent with the definition 

given in (1) of the Mazur-Swinnerton-Dyer measure attached to If .  

LEMMA 1.4: For all a C Z, 

#:(a + p~Zp) = ap r.  b { - a / p  ~ --+ oc}, 

so that the restriction of #/  to Zp is the Mazur-Swinnerton-Dyer measure 

attached to I f  by equation (1). 

Proof." This follows by letting "y = (~  1) E F and noting that 

#:(a +prZp) = #:{0-----+c~}('~Zp) = ap r .  # : { - a l p  r --+ ~}(Zp) 

= a / .  b { - a / :  

where the second equality follows from equation (8) in Proposition 1.3, while 

the last follows from the defining property 3 of pf{r  --+ s} in that Proposition. 
| 
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1.3 DOUBLE INTEGRALS. The measures #f{r  --+ s} can be used to define 

certain C_~-valued double integrals by choosing a p-adic logarithm 

log: C~ ---+C 9 

and setting, for r,s 6 IPI(Q) and T1,T2 6 ?qp, 

F// (10) w I := log ( ~ - ] d # / { r  -+ s}(t) 
1 l ( Q p )  k l ;  - -  r 1 / 

(11) := lim ~ - ' l o g / G - T 2 ~  

where the limit of Riemann sums in (11) is taken over finer and finer coverings 

of F1 (Qp) by mutually disjoint compact open subsets Us, and G is a sample 

point in Us. This p-adic "double integral" satisfies the additivity properties 

that  are suggested by the notation 

fT IV IV 0 2 f  .~U WI = W I ,  
1 aT 1 '18 JTI tit 

fT FT fT Calf -4- (.Of : OJ f , 

I . / T  2 a r  I 

(12) 

(13) 

as well as being invariant under translation by F: 

f T  Ff (14) w S = w ~ l ~ a )  Ip . w/ 
~' ~ r l  a "7?" 1 

for all 3' E ['. 

Because the measures # l{ r  --+ s} are integral, a multiplicative refinement of 

(10) can be defined as in [Darl] by formally exponentiating (11): 

/2 ~s = ( ~ - J a ) e . s l r  -~ s}(t) 
f f Q p )  ' ,  ~ - 7"1 / 

(15) ~ ( G  - r2~ "~{r-~s}(U°) 
:= lim - -  , 

c={v~} \ G  - r~ ] 

so that  the expression appearing on the right of (15) is a limit of "Riemann 

products" instead of Riemann sums. Note that  the multiplicative integral is a 

more precise invariant, since the additive integral can be recovered from it by 

the rule 

fT (//T) w S = log w S , 
1 1 

while the p-adic logarithm is never injective on C~, even modulo torsion. 
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If n is any integer, we also define the integrals 

fS //7/ nw$, nw$ 
1 1 

in the natural way by replacing the measures # /{ r  ~ s} by n.  p /{r  --+ s}. 

Since the p-adic "double integral" attached to f plays a key role in the deft- 

nition of Stark-Heegner points, it becomes important to evaluate this integral 

to high accuracy in an efficient way. 

The calculation of the double integrals. Let Qp2 denote the quadratic unramified 

extension of Qp, let Co denote its ring of integers, and let 

red: ]~1 (Qp2) ----")']I)1 (]~p2) 

denote the natural reduction map. Consider the subsets of 74p defined by 

(16) 7 4 ~ ( ~ ) : = ~ ( Q ~ ) - ~ ( Q ~ ) ;  

(17) 74o :__ {7 E ]~l(Qp2) such that red(r) ~ ]PI(Fp)} C 7 4 p ( Q p 2 ) .  

We will content ourselves with explaining how to calculate the double integral 

and its multiplicative counterpart when the p-adic endpoints of integration T1 

and T2 belong to 74pO, which turns out to be sufficient for our purposes. 

LEMMA 1.5: If T1 and T2 belong to 740, then 

~ ' " / / w / b e l o n g s t o O  ×. 
1 

In particular, to compute it to an accuracy of p -M, it is enough to compute 

/mod / 
1 

(18) 

and 

(19) f ~:~w s (mod pM-1). 
1 

The proof of this lemma is a direct consequence of the definitions. It is the 

main reason why it is convenient to work under the assumption that T1 and T2 

belong to 74 0 . 

The calculation of (18) can be carried out in O(p) operations using the formula 

(20) w / =  H \ t  _--~-'~1 ] (mod p). 
1 t=O 
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This running time is quite good when p is of reasonable size, and there is reason 

to believe that its efficiency cannot be improved upon in practice. We now turn 

to the more serious issue of calculating (19). 

Continued fractions. Two elements [a/b] and [c/aq of P1 (Q), represented by 

fractions in lowest terms, are said to be adjacent if ad-bc = +1. The convergents 

in the continued fraction expansion of t E Q yield a sequence of adjacent rational 

numbers joining t to c~; hence any two elements of ]71 (Q) can be joined by such a 

sequence. (The usefulness of this elementary fact for calculations with modular 

symbols was already observed in [Man].) The additivity property (12) reduces 

the problem of evaluating (19) to the special case where r and s are adjacent 

elements. But any pair of adjacent elements of ]?I(Q) is PSL2 (Z )-equivalent to 

the pair (0, c~): 

7 r = 0 ,  7 s = c ~ ,  for s o m e v E P S L 2 ( Z ) .  

Therefore by (14), we have 

(.Of = Odf .  
z d T r  1 ,tO 

Since the subset H ° is preserved under the action of PSL2(Z), the problem 

of evaluating (19) has been reduced to that of efficiently evaluating to high 
accuracy, for any ml, ~-2 E 7-/°, the double integral 

fZ L (21) J (u , r2 )  := aJS= log(t-T2"~ 1 l(Qp) \ t  - "0 ] dpf(t), 

where p / i s  defined by (9). 

The main departure from the algorithm of [DG] lies in the approach that is 

followed to compute J(TI,r2). In [DG], the region ]?I(Qp) was broken up into 

(p + 1)p M-1 residue discs modulo pM, and it was shown that the corresponding 

Riemann sum yields the integral of (21) to an accuracy of M significant p-adic 

digits. Since there are exponentially many discs on which the integrand needs 

to be evaluated, this approach quickly becomes intractable when M is even 

moderately large. 

For any integers k _> 0 and 0 < a < p - 1 ,  define the kth moment of#/ around 
a by the rule 

w(a, k):= / ( t -  a)kd#/(t). 
Ja +pZp 

Our polynomial-time algorithm starts with the observation that J(Vl, ~-2) can 

be expressed succintly in terms of these moments. To see this, first break up 
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J(Vl, T2) as a sum of p + 1 contributions arising from the p + 1 residue discs on 

~1 (Qp): 
p-1 

J(T1, T2) = J~(T1,7-2) -k- E Ja(T1,7-2), 
a : 0  

where 

jfp log ( t - "r2 J~(T1,T2) := a(Q,,)-Zp \t -- T 1 dpi(t), 

Ja(Tl,T2) := ~ log ( ~ ) d p s ( t ) .  
+pZp 

To evaluate the t e r m  Joo(T1,7"2) , observe that 

dpy(-1/t) = dpy{O ~ c~}(-1 / t )  = d#s{c~ --+ O}(t) = -d#y(t). 

Hence we can make the change of variables t ~ -1 / t  to obtain 

fp {l+tT2hd "t' Jco(T1,T2) : - -  log [ ~ )  #f[  ) : J~(T2) -- J~(T1), 
Zp 

where 

oo 

Joo(7)=- ~p log(1 +tT)dttf(t)=- i E ( - 1 ) n + l  (tT)nd~tf(t) 
Zp Zp n = l  ?2 

( o )  ~--~( 1)nw ,n  Tn" 
n n=l 

Recall the integers M'  and M"  of (2) and (3). Since w(0,n) - 0 (mod pn) 
and since ~- belongs to O × , it follows that  

M t 

(22) J~(7)  = E(--1)nW(O'n)T n (mod pM). 
n n~l 

Formula (22) makes it possible to evaluate J ~  (T) in time which is polynomial 

in M, provided the values of the first M t moments w(0, n) are known in advance 

to M" significant p-adic digits. 

The evaluation of the term Ja (71, T2) is similar. More precisely, we may write 

= - 
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where 

f 
A(~) = l log(t - m)d#y(t) 

Ja  +pZp 

----w(a,O)log(m-a)+ L log(1 t--~_aa)dlzf(t  ) 
-~pZp T 

oo 

n ~ " 
f~..~l 

As before, since w(a, n) - 0 (mod pn) and since 1/(7- - a) belongs to 0 x , 

M' 
Ja(T) =w(a,O)log(7---a)- E w(a,n) ( 1 )n n ~ (mod pM). 

n=l 

Just as for J~(7),  the evaluation of J~(T) can therefore be carried out in time 

which is polynomial in M, given the data of 

(23) 

w ( a , j ) = f  (t-a)Jd#y(t) (modpM"), 0 < a < p - 1 ,  j=O,  1 , . . . ,M' .  
J a  +pZp 

A procedure to calculate this (finite amount of) data in polynomial time via the 

theory of overconvergent modular symbols is explained in Section 2. 

1.4 INDEFINITE INTEGRALS. Assume that E is the strong Well curve in its 

Q-isogeny class. Let q be the Tate period of E, and let n = #E(Q)tors. As 

is explained in [Darl], the following conjecture can be viewed as a refinement 

of a conjecture of Mazur, Tate and Teitelbaum [MTT] which was proved by 

Greenberg and Stevens in [GS]. 

CONJECTURE 1.6: There exists a unique Q~2 IqZ-valued function on 7-~p(Qp2 ) x 
]~I(Q) X 1~1(~), denoted 

(24) i7" (~, r, s) ~ n~s,  

and satisfying 
1. 

iL ff i f  n w f  × n w f  = n W f  , 

i7" nwy + nwy = nwy, 
1 

. 

for all r,s,t  E I~I(Q); 

for a11 rl, r2 E 7/p(Qp~ ). 
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° 

vV f// nwf = nwf , for all "~ E F. 
J , J " f r  

This function is called the indefinite integral attached to f .  Its uniqueness 

is not hard to establish. It is the existence which is more subtle: it implies 

the "exceptional zero conjecture" of [MTT] and the tame refinement of this 

conjecture that is explored in [Ds], but is in fact a bit stronger than these 

conjectures. 

Following [DG], we now explain how (24) can be calculated in practice, as- 

suming that it exists, in the special case where the p-adic endpoints T1 and v2 

belong to 7/0. Firstly, the continued fraction trick discussed in Section 1.3, using 

the additivity property i of Conjecture 1.6, reduces the evaluation of (24) to the 

case where r and s are adjacent elements of P1 (Q). By property3 of Conjecture 

1.6, it is enough to evaluate expressions of the form 

/ ~ o  ~ n w f ,  with TE 7/0. 

The following manipulation reduces these expressions to the the double integral 

whose calculation was already discussed in Section 1.3: 

nwf = nwf × nwf 

f - 1 / T f  -1 i ' - - ~  00 ~iV--1 ~ c¢ = nwf × nwf = nwf. 
* ]  g O 0  J J 0  - - 1 / T  

1.5 DEFINITION OF Pv- Let F+ denote the group of matrices in PGL2(Z[1/p]) 

with positive determinant. We are now ready to define the map 

underlying the Stark-Heegner point construction. The following lemma shows 

that in defining this map, one can restrict one's attention to the T E 7/°. 

LEMMA 1.7: The inclusion 7/0 C 7/p induces a bijection 

(25) PSL2(Z)\(7/°  M K)--+F+\(7/p M K). 

Proof." The injectivity of the map (25) follows from the fact that the subgroup 

of F+ which preserves 7/p0 is PSLu(Z),  while the surjectivity is a consequence 

of the fact that any element of 7/p (Qp2) is F+-equivalent to an element in 7/o. 
Both of these facts are elementary. I 
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Since it is more convenient from a computational point of view to work with 

~- E 7{ °, given any T E ~'~p n K,  we will assume, after replacing it by an appro- 

priate f'+-translate, that T belongs to this subset of 7-/p. 

Let F~ be the unique primitive integral binary quadratic form F~(x,y) = 
Ax 2 + Bxy + Cy 2 satisfying 

FT(T, 1 ) =  0, A > 0 .  

The discriminant of this quadratic form is called the discriminant of r. If D is 

a fixed (not necessarily fundamental) positive discriminant and K = Q(x/D) is 

the associated real quadratic field, then the set 7-I ° of T E 7/0 of discriminant 

D is stable under the action of PSL2(Z), and 

n = U 
D 

where the union is taken over all discriminants of orders in K of conductor prime 

to p. Let OD denote the order of K of discriminant D, defined by 

{7/,[-~ -~]  if D --- 0 (mod 4); 

(gD:= Z [ @ ]  if D - 1  (rood4). 

The group LO~) and its subgroup (OD)~ of elements of norm one are free of 

rank one modulo torsion. Let UD be a generator for O~ in the even case, and 

a generator for (OD)~ in the odd case, and write 

UD : ~t -~- v v / D ,  w i t h  u, v E Q. 

The matrix 
( u  + vB -2vC ) 

% := 2vA u - v B  E PGL2(Z)  

fixes T under MSbius transformations, and the properties of the indefinite 

integral spelled out in Conjecture 1.6 imply that the period 

/5 := nw S E K~ /qZ 

does not depend on the choice of the base point r E ~1 (Q). 

DeIinition 1.8: The Stark-Heegner point P~ attached to ~- is the image o f / 5  

in E(Kp) by the Tate uniformization attached to E. 

We now make a precise conjecture about the fields of definition of the Stark- 

Heegner points. Let Pic(OD) denote the Picard group of rank one projective 
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modules over OD, and let Pic + (OD) denote the group of oriented modules over 

OD. Class field theory identifies these groups with the Galois groups of certain 

abelian extensions of K, via the Artin map: 

rec: Pic(OD)-----+Gal(HD/A'), Pic+(OD) > Gal(H+/K). 

The extensions HD and H + are called the ring class field and narrow ring class 
field attached to D respectively. The extension HD is totally real, while H + is 

an extension of HD whose Galois group is generated by complex conjugation. 

(Therefore it is of degree either 1 or 2, the latter case occurring if and only if 

the fundamental unit UD of O~ has norm 1.) 

Let h = [HD : K] be the class number of D, i.e., the number of SL2(Z)- 

equivalence classes of primitive binary quadratic forms of discriminant D. Let 

F1, . . . ,  Fh denote representatives for these quadratic forms, let r l , . .  •, Vh denote 

the corresponding elements of 7/p D/PSL2 (Z), and let Pj := P~j be the associated 

Stark-Heegner points. The following conjecture is a slightly more concrete 

reformulation of Conjecture 5.3 of [Darl]. 

CONJECTURE 1.9: 

1. In the even case, the h points P1, . . . , Ph belong to E( H D ) and the natural 

action of Gal( H D / K) preserves this collection of points. 

2. In the odd case, the 2h points ±P1, . . .  ,±Ph belong to E(H +) and the 

action of Gal(H+ / HD ) preserves this collection of points. Furthermore, 

if Too denotes complex conjugation, 

(27) ~ooPJ = - 5 "  

(In particular, the Pj are of order 1 or 2 when HD + = HD.) 

Conjecture 1.9 is the statement which we have attempted to verify numerically. 

1.6 RECOGNIZING p-ADIC NUMBERS AS RATIONAL NUMBERS. The ideas 

developed in the previous sections allow us to compute the points 

Pj -- (xj,yj), j = l , . . . , h ,  

of Conjecture 1.9 to a p-adic accuracy of p-M in time which is polynomial 

in M. 

In testing Conjecture 1.9, two types of experiment are typically performed, 

for a given E and D. 

1. Trace computations. In the even case, attempt to recognize the local point 

(27) P(D) := P1 + " "  + Ph 
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as a global point in E(K). 
2. Class field computations. In this type of experiment, which is most inter- 

esting when HD is not abelian over Q, the polynomial 

h 

(2s) h (t) := 1 ] ( t -  xj) 
j = l  

with coefficients in hp  is tentatively identified as a polynomial with coef- 

ficients in K.  It can then be checked whether the resulting polynomial in 

Kit] has HD as splitting field, and whether the roots of this polynomial 

are the x-coordinates of global points belonging to E(HD) in the even 

case, and to E(H +) in the odd case. 

In both types of experiment, it is crucial to be able to efficiently recognize a 

rational number a given a p-adic approximation a of it satisfying 

la/  - 11 _< 

for some M. In the archimedean setting where c~ is a real instead of a p-adic 

number, this can be dealt with using the continued fraction expansion of a 

(cf. [Co], Sec. 1.3.4 for example). While "p-adic continued fractions" have been 

proposed in the literature and used to recognize rational numbers of small height 

(cf. Section 3.2 of [Ru], for example), such methods do not appear to work in 

general and their range of applicability is not well understod. 

The process for recognizing a number modulo pM as a rational number is 

known as rational reconstruction, and is described in [Kn, pp. 656-657]. This 

approach is based on lattice reduction in the p-adic setting. 

To explain it, write 
a := pe/7, 

where/7 is an element of Zp which is known to an accuracy of p-M. (I.e., only 

the image /3 of/7 in (Z/pMZ) × is given.) The problem of recognizing/7 as a 

rational number b = r/s is tackled by letting (r, s) be a shortest vector in the 

lattice LB,M C Z 2 defined by 

LB,M := {(x,y) such that  pM divides x - /Ty} 

spanned by the vectors (/~, 1) and (pM 0), where/~ E Z is any representative of 

the congruence class/3. Note that  LB,M contains at most one primitive vector 

(r, s) (up to sign) satisfying 

l__~_,MI2 Irl, Isl < 
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If the coordinates of a shortest vector v0 = (r, s) in LI3,M are smaller than 

this bound by at least a few orders of magnitude, then one can be reasonably 

confident that  fl = r/s, although of course the program can never actually prove 
such an equality, fl being only given with finite accuracy. 

Finding the shortest vector in a rank two lattice of discriminant pM is a task 

which can be handled efficiently via the LLL algorithm (cf. [Co], Sec. 2.6 and 

2.7.3), which in our context where the lattice has rank two amounts essentially 

to the Euclidean algorithm. This procedure is so efficient that  recognizing p-adic 

numbers as rational numbers takes up a negligible part of the Stark-Heegner 

point calculations. 

2. C o m p u t i n g  t h e  m o m e n t s  of  M a z u r ' s  m e a s u r e  

Thanks to the previous section, the problem of efficiently computing Stark- 

Heegner points has been reduced to that  of calculating the data  

(29) 

w ( a , j ) = f  (t-a)Jdpf(t) (modpM"),  0 < a < p - 1 ,  j = 0 , 1 , . . . , M ' ,  
Ja +pZp 

attached to the measure #y, in polynomial time. An algorithm for doing this 

has been discovered by Pollack and Stevens, and is described in [PS2]. This 

algorithm is based on the notion of overconvergent modular symbols due to 

Stevens. The scope of [PS2] is more ambitious than the present paper in that  

it applies to higher slope modular forms. For the convenience of the reader, the 

present section briefly describes the main ideas of [PS2], specialising them to the 

ordinary setting which is technically simpler than the more general case treated 

in [PS2]. The reader is still advised to consult [PS1] and [PS2] for a fuller 

discussion of the definitions and main properties of overconvergent modular 

symbols, which are stated here mostly without proof. 

2.10VERCONVERGENT MODULAR SYMBOLS. The measures on Zp that  were 

considered in the previous chapter can be embedded in the larger space of locally 
analytic distributions on Zp, whose definition we now recall. For any r > 0, let 

B[Zp, r] denote the affinoid region defined over Qp whose Cp-points are given 

by 

B[Zp, r] := {z E C_.p such that  there exists x E ZB with [z - x I < r}. 

The Tate algebra A(r) Aover Qp attached to B[Zp, r] is a Banach space under 

the sup norm. The space of locally analytic functions on Zp, denoted .A(ZB), is 



336 H. DARMON AND R. POLLACK Isr. J. Math. 

the direct limit of the .4(r) as r --+ 0, where the direct limit is taken relative 

to the natural restriction maps. This space inherits a topology (the direct limit 

topology) from the topology on each of the A(r). 
The continuous Qp-dual of A(Zp), denoted/9(Zp), is called the space of locally 

analytic Qp-valued distributions on Zp. It is equipped with the structure of a 

right Eo (p)-module via the rule 

(#lT)(h(t)) = p(h(t3,)). 

De!qnition 2.1: An overconvergent modular symbol of level p is a/)(Zp)-valued 

modular symbol on Fo(p). 

The space Symbro(p)(/)(Zp)) of overconvergent modular symbols is an (infinite- 

dimensional) p-adic Frechet space equipped with a Hecke-equivariant map 

p: Symbro(p)(/)(Zp)) - > Symbro(p ) (Qp) 

to the space of Qp-valued modular symbols by taking "total measure", i.e., by 

setting for ¢ E Symbro(p ) (/)(Zp)), 

:= ¢ { r  -+ s} (Zp)  = -+ s } ( t ) .  p(O){r --4 8} 
g/z ,  p 

The map p will be referred to as the specialization map. 
If X is any Cp-vector space equipped with an action of a linear operator Up, 

let X (<h) denote the subspace of X on which Up acts with slope less than h, 

i.e., the direct sum of all pseudo-eigenspaces for Up whose associated eigenvalue 
satisfies ordp(,~) < h. The following proposition gives control on the subspace 

of overconvergent symbols of slope strictly less than 1. 

THEOREM 2.2 (Stevens): The Hecke-equivariant map 

p: Symbr0(p)(/)(Zp))(<l) > Symbr0(p)(Qp) (<1) 

is an isomorphism. 

Proof: See [St, Theorem 7.1]. | 

The modular symbol If defined in Proposition 1.2 and equation (7) after it 

can be viewed as an element of Symbr0(p)(Qp), where Qp is endowed with the 
trivial E0(p)-action. Since f is an eigenform, If is a Hecke eigensymbol with 

the same eigenvalues as f; that is, 

b I T e = a e / / ,  for alle?~p, a n d b [ U p = a p b .  
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In particular, since ap = +1, I f  is an eigensymbol of slope zero. One obtains 
the following corollary of Theorem 2.2. 

COROLLARY 2.3: The symbol I f  E Symbro(p)(Qp ) lifts uniquely to a 
Up-eigensymbol ~ /  E Symbro(p ) (13(Zp)), satisfying 

p(¢: )  = b ,  ¢:lUp = ap*: .  

The following proposition relates the locally analytic distributions ¢ /{ r  -~ s} 
on Zp to the measures #:{r  --+ s} on ]?l(Qp) defined in Proposition 1.3. 

PROPOSITION 2.4: For all r, s e ]PI(Q) and all locally analytic g on Zp, 

g(t)dO:tr  --+ s}( t )= ~ g( - t )d#y{r  ~ s}(t). 
p p rid5 

Proof." Let tt}~{r --+ s}: I?I(Q) × l?l(Q)---+zl(zp) be defined by the rule 

#~{r  ~ s}(g(t)) := fz g( - t )dpy{r  ~ s}(t). 
p 

A direct calculation shows that p}t belongs to Symbro(p ) (l?(Zp)), and that 

p(#~) = I i ,  ,~[Up = ap#~. 

It follows from Corollary 2.3 that #~t = Of, as was to be shown. | 

COROLLARY 2 .5 :  ~tf = Wc~@f{O ~ (:X~}. 

Proof: This follows from the transformation property for I: under the matrix 
( o 1 t °) given in equation (6). 1 

Thanks to this corollary, the data (29) is equivalent to the corresponding data 
for the distribution Of{0 --+ c~}. In order to lighten the notations, let us ignore 
the sign discrepancy between #f and Oy{0 --+ co} that arises in the odd case 
and simply write 

a :  := ,I,:{0 

from now on. 
Computing (29) is clearly equivalent to computing 

a tJd#i(t) (modpM"), 0 < a < p - 1 ,  j = 0 , 1 , . . . , M ' .  
+pZp 
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To extract this data from ¢ : ,  note that 

and therefore 

1 The matrix (0 
so that 

1 a). 
# f  = ~ / { 0  --+ c~} = O:{a/p  }1(0 p 

a p) sends 79(Zp) to the space of distributions supported on a+pZp, 

(30) f~ tJdp:(t) = l (o:{a/p-~ c~}l(lo ~))(t j) 
+pz,, ap 

1 
(31) = -+ cx~}((a + pt) j) 

ap 

(32) = --1 ~ (~)aJ_rpr~l{a/p__+oo}(t~). 
ap r = 0  

Note the factor of pr occurring in the above formula, which implies that to 
compute (29), it suffices to compute 

O:{a /p~  oo}(t ~) (mod pM"-r), r = O,I,. . . ,M'. 

In what follows, we will explain how to compute this data, with {a/p --+ oo} 
replaced by an arbitrary path {r --+ s}. 

2.2 ITERATING Up. The symbol 4~y is efficiently computed by realizing it as 
the limit of a sequence of symbols obtained by repeatedly applying Up to an 
initial approximate solution ~. 

Let 790(Zp) be the subspace of 79(Zp) consisting of distributions all of whose 
moments are integral; that is, 

790(Zp) = {~ e V(Zp)lp(t ~) e Zp for all j > 0}. 

PROPOSITION 2.6: Let • be any element of Symbro(p)(7)0(Zp) ) satisfying 
= b.  Then 

apnOlUp ~ - Of belongs to p~ Symbro(p ) (790 (Zp)). 

In particular, the sequence { a ; ~ l U ;  } converges p-adically to ~ :. 

Proof: A direct calculation (see [PS2]) reveals that if k~ E Symbro(p)(79O(Zp)) 
is in the kernel of the specialization map p, then 

• lUp belongs to p Symbro (p) (790 (Z p)). 
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Since the symbol • - Of lies in the kernel of the specialization map and since 

aplOflUp = (I)f, it follows that 

apnOIu~ - Of = apn(O - Os)lU  belongs to pn Symbro(p)(790(Zp)) ' 

as was to be shown. I I  

Proposition 2.6 forms the basis of the following polynomial time algorithm to 

compute the data (29). 

STEP 1: Find any symbol • in Symbro(p)(/)(Zp) ) lifting If. 

STEP 2: Apply the operator aplUp to • repeatedly. Each application produces 

an improved lift of I /  that is p-adically closer to Of. In fact, each iteration 

introduces at least one extra digit of p-adic accuracy. 

STEP 3: Evaluate such a lift at the paths from a/p  to ec to yield approxima- 

tions to the moments of the original measure #f. 

We discuss each step in turn. 

2.3 LIFTING MODULAR SYMBOLS. The first step of the algorithm is to find 

some symbol • of Symbro(p)(7)(Zp) ) lifting If. This is achieved by means of 

the following explicit presentation of the space of V-valued modular symbols on 

to(p). 

THEOREM 2.7: Assume that the image of Co(p) in PSL2(Z) is torsion-free. 

Then for some m _> 1, there exist 

r i , s ~ E ~ l ( Q ) ,  7iESL2(Z) ,  i = l , . . . , m ,  

such that: 

1. A n y  modular symbol qo E Symbro(p ) (V) satisfies the relation 

1 1 m 

~{0--> e~}[((  0 1) - 1) = E ~ { r i - +  s~}l('7~ - 1). 
j = l  

2. Conversely, given elements vl ,  . . . , Vm, Voo C V satisfying 

1 1 m 

v l(( 0 1) - 1) = E v i l ( 9 , i -  1), 
j = l  

there is a unique modular symbol  ~ E Symbro(p)(V ) such that 

- ,  = - ,  = 

Proof'. This is proven in [St, Theorem 7.1]. See also [PS2]. | 
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Remark 2.8: The proof of Theorem 2.7 is constructive, and gives an efficient 

way of producing the ri, s~ and 7i. There is also a more general version that  

does not assume that  the image of F0(p) in PSL2(Z) is torsion-free. Instead of 

having a list of paths satisfying one relation, two or three additional relations 

may appear depending on the order of the torsion subgroup of F0 (p). For the 

remainder of this section, it will be assumed for simplicity that  we are in the 

torsion-free case. However, all of the constructions of this section can be made 

to work in the presence of torsion (see [PS2] for details), and it is this more 

general version that  has been implemented in the shp package. 

To produce a :D(Zp)-valued modular symbol from Theorem 2.7, it is necessary 

to solve the "difference equation" 

(33) #IA = ~, 

where A = (1 11)_1 a n d # , v E : D ( Z p ) .  Sincep(#lA) = 0 f o r a n y # E  D(Zp), 

a necessary condition to solve this equation is for v to have total measure zero. 

Unfortunately, in :D(Zp) this condition is not also sufficient. To fix this problem, 

we will pass to a larger space of distributions where this condition does in fact 

become sufficient. 

For r a real number greater than 1, let A[ZB, r] denote the space of power 

series with coefficients in Qp that  are convergent on the disc of radius r in Cp 

around 0. Let D[Zp, r] denote the (continuous) Qp-dual of this space. Finally, 

s e t / ) t  := inj limr> 1 :D[Zp, r]. 

The span of the functions {t j }~=o is dense in the space of locally analytic 

functions on Zp and in A[Zp, r] for any r. Thus, a distribution p in /)(Zp) 

or in :D t is uniquely determined by its sequence of moments {#(tJ)}~__o . One 

advantage to working in 7) t is that  there is a simple criterion to test when a 

sequence of elements in Qp actually arises as the moments of p E T)~. 

PROPOSITION 2.9: Let { gn } be a sequence of elements Of Qp such that for every 

r > l ,  

le~lp is o(r n) as n -~ c~. 

Then there exists a unique distribution # E ~)t such that p(t n) -- 0n. 

We are now in a position to present a solution to the difference equation 

in 79t. 
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PROPOSITION 2.10: I[v 6 19i is a distribution of total measure zero, then there 

is a unique solution # 6 1:) t of equation (33). Moreover, 

L ~ ( V + ' ) ( j ) B ~ _ j  
~ ( t n )  = s + 1 

j=0 

where Bk is the k-th Bernoulli number. 

Proo£ See [PS2] | 

Remark 2.12: The presence of denominators in the formula of Proposition 2.10 

is the reason why (33) may fail to have solutions in :D(Zp). This is because any 

# • / ) (Zp)  has bounded moments, while the distribution solving the difference 

equation need not share this property. 

Theorem 2.7 and Proposition 2.10 allow a Qp-valued modular symbol to be 

explicitly lifted to an overconvergent modular symbol. Namely, if ~ belongs to 

Symbro(~ ) (Qp), set 

where 5o is the Dirac distribution based at zero. Then set 
m 

v = E ~'i l(?i- 1), 
i = 0  

By Proposition 2.10, there exists a unique which has total measure zero. 

distribution voo 6 / ) t  such that 

and, by Theorem 2.7, there exists a unique symbol ~' 6 Symbro(p)(:D t) 

satisfying 

• '{r~ -+ s J  = a and ~ ' { 0 - ~  ~} = vo~. 

Unfortunately, it is not necessarily the case that p(~') = ~, since the fact that 

p(¢'){ri ~ si} = ~(ri -+ si) for i = 1 , . . . , m  

does not imply that 

p(~'){o ~ oo} = ~{o ~ o0). 

To fix this problem, it is verified in [PS2] that p(~') - ~  is an Eisenstein modular 

symbol. Thus, choosing any prime g such that at # 2+ 1 (which is possible since 

f is a cusp form; in fact, the choice ~ = 2 would always do), the symbol 

:- (a~ - (£ + I))-I(1)'I(T~ - (£ + i)) 
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produces the desired lift of ~. 

Remark 2.12: While our goal was to find a lift of I I to a symbol in 

Symbro(p)(D(Zp)), we have only described how to lift it to an element of the 

larger space Symbro(p ) (Dr). However, it is easy to see that  the proof of Propo- 

sition 2.6 remains valid if 7)(Zp) is replaced with D ~. Thus, no generality is lost 

by working in this larger space of modular symbols. 

2.4 FINITE APPROXIMATION MODULES. Carrying out our algorithm in prac- 

tice requires a method of approximating an overconvergent modular symbol by 

a finite amount of data, so that  it can be stored on a computer. Theorem 2.7 

represents a V-valued modular symbol ~ by a finite list of elements of V. What  

is needed is a way to approximate # E 7)1. 

Our current characterization of a distribution is by its sequence of moments. 

Of course, such a description contains an infinite amount of data  in two different 

ways: there are infinitely many moments and each moment is a p-adic number 

which requires an infinite amount of information to be given to full accuracy. 

Consider the subspace Do C_ D t of distributions all of whose moments are 

integral. A natural at tempt to approximate an element of Do would be to fix 

an integer N and consider the first N moments of the distribution mod pY. 
Unfortunately, the action of E0(p) does not preserve these approximations; that  

is, for -y E Eo(p) and # E 7)0, the data  

#(t j) (modpg) ,  j = 0 , 1 , . . . , N - 1  

does not determine the corresponding data for #1% 

The basic problem with this approach is that  the subspace of 7)0 consisting of 

distributions whose first N moments vanish is not preserved by Eo (p). However, 

in [PS1], the following Eo(p)-stable filtration of 7)0 is introduced: 

Filr(7)0) := {p e 7)o]#(t j) • pr-jZp}. 

The stability of this filtration implies that  

IT(N) := 7)0/FilN(7)0) ~ (Z/PNZ) × (Z/PN-tz) ×""  × (Z/pZ) 

is naturally a 20(p)-module. In other words, the data  of 

#(t y) (modpg- J ) ,  j=O,  1 , . . . , N _ I  

determines the corresponding data for #I'Y for all ? • Zo(p). The module be(N) 

is referred to as the N-th finite approximation module attached to Do. 
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Because of the denominators that appear in solving the difference equation, 

we will also need to consider approximations of distributions whose moments 

are not all integral (or even bounded!). To do this, let 

t:0 := e :Dtlf (t¢) e zp}. 

Note then that 

jr(N) := 790/Filg(:D0) ~ 790/7)0 N pg lCo -~ (:Do + PN ICo ) /pN1Co. 

Thus, to represent a distribution tt E :Dr on a computer "to accuracy N ' ,  we 

find the smallest integer r such that the first N moments of pr# are all integral. 

Since pr# belongs to :Do +pNICo, it then makes sense to project this distribution 

to jr(N). 
The following proposition describes how to lift symbols with values in these 

finite approximation modules. Set r(N) : flog(N)/log(p)]. 

PROPOSITION 2.13: If p belongs to pr( N) Symbro(p) ( Z /pNZ ), then there exists 
a symbol • E Symbro(p ) (Jr(N)) such that p(@) = ~. Moreover, this lift can be 
explicitly described by the formulas of Proposition 2.10. 

Proof'. See [PS2]. | 

2.5 COMPUTING THE MOMENTS. We now describe an algorithm that computes 

the data of (29) in polynomial time. The time complexity of this algorithm will 

be analyzed in section 2.6. 

Let N be the smallest integer such that 

N - r(N) >_ M" >_ M' + I 

and let 7 / b e  the image of the symbol If in Symbro(p ) (Z/pN•). By Proposition 

2.13, we can explicitly form some lift 

C Symbro(p ) (Y(N)) ~:°° 

of pr(g)~f. Repeatedly applying the operator aplUp to ~ produces a sequence 

of elements of Symbro(p ) (Y(N)) which stabilizes to some element @y in no more 

than N + 1 iterations (by Proposition 2.6 and Remark 2.12). The element ~y 

is precisely the image of p r ( g ) o f  in Symbro(p ) ( jr(N)).  

Next, we evaluate #if at the paths {a/p --> oo} for each a between 0 and p -  1. 

Because of the way in which the distributions are stored, -~y{a/p -> oo} is just 

the sequence of values 

pr(N)@/{a/p--+ oo}(t j) (mod pg-j),  j = 0 , . . . , N -  1. 
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Canceling the extra powers of p yields the values @f{a/p --+ oo}(t j) modulo 
pg-r(N)-j for 0 ~ j _< N. Since N - r(N) >_ M" >_ M r + 1, the moment 

M " - j  _ _ M'. • f {a /p  ~ ~ } ( t  j) has therefore been computed modulo p , for 0 < j < 

Formula (32) can be used to relate this data to the moments fa+pzp tJd#f mod 
M II 

p , from which the data (29) is readily recovered. 

2.6 COMPLEXITY ANALYSIS. We now analyze the running time complexity of 

computing (29) following the strategy described in Section 2.5. 

PROPOSITION 2.14: The procedure described in Section 2.5 computes the 

moments 

M II M ! w(a,j) (modp ), 0 < a < p - 1 ,  j = 0 ,  l , . . . ,  

in O(M3p 3 log M logp) arithmetic operations on integers of size on the order 
of p M. 

Proof'. The most time-consuming part in this computation lies in the iteration 

of the Up operator; that is, the number of arithmetic operations required to 

iterate Up on a lift of If  (measured as a function of p and M) dominates the 

number of operations required to carry out the other parts of the algorithm. 

Moreover, the most time intensive part of iterating Up is accounted for by the 

right actions of elements in E0(p) on distributions. For this reason, we will 

simply count the number of right actions performed and then analyze the time 

complexity of a single right action. 
We first compute the number of right actions required to apply Up once to an 

9V(N)-valued modular symbol ~. To do this, we must compute (~lUp){ri ~ si) 
for the paths {ri --+ si} of Theorem 2.7. (Note that there are on the order of p 

such paths.) For each i, we have 

p - 1  

a : 0  

a where % = (~ p). To compute O{%r~ --+ %si}, we use Manin's continued 

fraction algorithm to write 

¢{7~ri --+ 7aSi} = ~ O{aij --+ bij}, 
J 

where aij and bij are adjacent rational numbers. The number of terms in the 

above sum is on the order of log(p). By the proof of Theorem 2.7 in [PS2], for 
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arbitrary adjacent rational numbers r and s, we have 

i 

for ai E Z[F0(p)], where each a~ is composed of a sum of no more than 2 basic 

elements in F0(p). Thus to apply Up once to an 9~(N)-valued modular symbol 

requires on the order of p 3 log(p) right actions by elements 7 6 Eo(p). 

The operator Up needs to be iterated at most N + 1 times in order to form a 

~(N)-valued Up-eigensymbol. To compute the moments with enough accuracy 

to obtain the associated Stark-Heegner points to accuracy p-M, we can take N 

to be some integer with size on the order of the size of M. Thus, to complete 

this part of the algorithm requires on the order of Mp 3 log(p) right actions on 

elements in 5~(N). 

Finally, an efficient method for computing #]7 for # 6 l) t is given in [PS2]. 

The main idea is that there is a Eo (p)-equivariant isomorphism between ~pt and 

the space of log-differentials on the complement of the unit disc in Cp. One has 

that a distribution # E ~pt corresponds to 

oo dz 
w = ~ a j z  - j -  

z 
j=o 

where aj -- #(tj). To act by 7 on w, one simply acts on the variable z and 

then expands out. To do this in F(N) takes N e log(N) arithmetic operations. 

Moreover, since we are working in ~(N),  we never need to work with integers 
greater than pN. 

Proposition 2.14 follows from this analysis. | 

3. The shp package 

The Stark-Heegner point package has been implemented in the language Magma 

and can be downloaded from the address 

http ://www. math. mcgill, ca/darmon/programs/programs, html. 

After following the instructions for downloading the shp package, the user will 

have a copy of the necessary programs and data, stored in a directory called 

shp_package. 

A. To compute Stark-Heegner points on any elliptic curve of prime conductor 

p = N _< 100 (and, in particular, to repeat any of the calculations that are 

reported on in Section 4), the user simply needs to go into the shp subdirectory 

in shp_package, invoke magma, and type 
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load shpN; 

from the Magma command prompt. The script file shpN instructs magma to load 

certain programs and data (such as a table of pre-computed moments) needed 

to carry out the calculations of Stark-Heegner points on the strong Weil curve of 

conductor p = N. After being prompted to enter some of the parameters for the 

computation, the user then has access to a number of functions, such as those 

allowing the computation of p-adic double integrals. All of these are described 

in the on-line documentation for the shp package. The main command that can 

be used to test Conjecture 1.9 is 

HP, P, hD := stark_heegner_points(E, D, Qp), 

which takes as input the elliptic curve E of prime conductor p, a positive discrim- 

inant D satisfying (D) = --1, and a fixed precision p-adic field Qp, and returns 

the following data: 

1. A vector HP of length h = h(D) containing the h distinct Stark-Heegner 

points P1,..., Ph in E(Qp(x/D)). 

2. In the even case, the point P = P(D) of equation (27). The program 

attempts to recognize the x and y coordinates of P(D) as elements of K, 

and tests whether the resulting pair corresponds to a global point in E(K). 
If this identification is not successful, the point P(D) is returned as an 

element of E(Qp2 ) and a warning message is printed. Otherwise the global 

point in E(K) that was found (and which is, with overwhelming likelihood, 

the point P(D), although the program of course cannot guarantee this!) 

is returned. (In the odd case, the point P(D) is set to be the point at 

infinity, a definition that is motivated by equation (27) in Conjecture 1.9.) 

3. The variable hD is assigned the value of the degree h polynomial hD (t) of 

equation (28). The program attempts to identify hD (t) as a polynomial in 

K[t], and returns such a polynomial satisfied by the xj to the calculated 

degree of acuracy. 

B. To work with elliptic curves of conductor > 100, or to increase the accuracy 

of the calculations beyond 100 p-adic digits, the user will first need to compute 

the sequence of moments attached to Mazur's measure for the desired elliptic 

curve. This can be done by going into the moments subdirectory in shp_package, 

invoking magma, and typing 

load moments ; 

from the Magma command prompt. The user will then be prompted to supply 

the parameters for the computation such as the prime p, an identifier for the 

elliptic curve following the conventions of the tables of Cremona if there are 
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several isogeny classes of elliptic curves of conductor p, and the number M ot 

digits of desired accuracy. The program produces the data  (29) and stores it in 

an array. Typically this array of moments will be stored in a file where it can 

later be accessed repeatedly for different Stark-Heegner point calculations (on 

the same curve, but with varying real quadratic discriminants). 

4. N u m e r i c a l  e x a m p l e s  

This section summarises some of the new experimental evidence for Conjecture 

1.9 that  was obtained with the help of the shp package, with special emphasis 

on discriminants of class number > 2 for which points defined over the relevant 

class field would be difficult to compute without the algorithms of this paper. 

T h e  c u r v e  X0( l l ) .  Let f be the unique normalised cusp of weight 2 on Fo( l l ) .  

The first M = 100 moments of the corresponding l l -adic  measure p /  were 

computed to an l l -adic  accuracy of 11-1°1, taking around 2 minutes on a fast 

workstation. The curve X0 (11), also denoted by l lA1 in the tables of Cremona, 

is described by the Weierstrass equation 

l l A  : y2 + y = x 3 _ x 2 _ 1 0 x -  20, 

and is the curve on which the Stark-Heegner points appear to be the best 

behaved (i.e., to be of smalles t  height). 

The shp package was used to verify the data  in Tables 1 and 2 of [DG] to 100 

digits. It was also used to fill in many of the missing entries in Table 2 that  

the authors of [DG] were previously unable to identify as global points. For 

example, for the first missing entry of this table, corresponding to D = 101, 

the command stark__heegner_points  (E, 101,Qp) produces, in a few seconds, 

the point PI+ ~¢r6r with an accuracy of 11 - l°°  and recognizes it as an l l -adic  
2 

approximation to the global point ( x / t  2, y / t3 ) ,  with t = 15711350731963510 and 

x = 1081624136644692539667084685116849, 

y = - 1939146297774921836916098998070620047276215775500 

- 450348132717625197271325875616860240657045635493~/i-~. 

The large height of this point explains the difficulties encountered by [DG] in 

recognizing it as a global point. Thanks to the shp package, the traces to K 

of the Stark-Heegner points were efficiently identified as global points for all 

values of D _< 200, with the notable exception of D = 173, which has narrow 

class number one. After increasing the l l -adic  accuracy from 100 to 200 digits 
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(necessitating a moment pre-computation that took roughly 20 minutes), the 

programs were also able to successfully identify the point PI+ ~,/w~. 
2 

The smallest positive discriminant of class number 3 in which 11 is inert is 

D = 316 = 2279. The x-coordinates of the three distinct Stark-Heegner points 

attached to this discriminant appear to satisfy the polynomial with (relatively!) 

small coefficients 

h316(x) =72766453768745463520694728094967184x 3 

- 71914415566181323559220215097240264940x 2 

+ 2653029535749035413574464896382331270516x 

- 15333781783601940675857202851550615143803, 

whose splitting field is indeed the Hilbert class field of Q(x/7-9). A number of 

calculations of a similar sort were performed with larger discriminants, relying 

occasionally on an accuracy of up to 400 significant ll-adic digits; the scope of 

these calculations is summarized in Tables 2 and 3 below. 

The numerical investigations of Stark-Heegner points on X0 (11) suggest that 

the logarithmic height of these points grows quickly as D increases, in contrast 

to what happens with some of the other curves that were considered, such as 

the curve )(o(37) + of conductor 37, as is illustrated by Table 1 below. 

The  curve X0(37) +. The modular curve Xo(37) is of genus two, and its 

quotient X+(37) by the Atkin-Lehner involution is an elliptic curve, denoted 

by 37A in the tables of Cremona. Given by the equation 

E : y2 ÷ y  _~_ x 3 _ x ,  

it is notable for being the elliptic curve of smallest conductor for which the 

sign in the functional equation of L(E,  s) is -1,  and for being unique in its 

Q-isogeny class. (All the elliptic curves of prime conductor less than 37 are 

equal to the Eisenstein quotients of the corresponding modular curve, and in 

particular have non-trivial rational isogenies.) This last fact may explain why 

the Stark-Heegner points, which this time were computed to only 50 significant 

37-adic digits, are of small height, so that they can be recognized as global 

points even for large discriminants with sizeable class numbers, as is illustrated 

in Table 1. 

It is interesting to contrast these calculations with what occurs for the elliptic 

curve 37B described by the Weierstrass equation 

E : y2 ÷ y  = x 3 + x ~ _ 2 3 x -  50, 
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D h 

257  3 

316  3 

328  4 

401 5 

473  3 

505 4 

520  4 

568 3 

577 7 
621 3 

624  4 

672  4 

680  4 

689  4 

697  6 

1093  5 

1129 9 

1297 11 

1761 7 

1996 5 

2029  7 

2308  7 

3604  12 

T h e  p o l y n o m i a l  hD(x) 
x 3 - 6 6 x  ~ - 2 4 x  + 8 

x 3 - 4 x  2 - 2 x  + 4 

4 x  4 - 2 0 x  3 - l l x  2 + 8 x -  1 

8 1 x  ~ - 6 5 7 x  4 + 1 1 9 5 x  3 - 1 7 3 x  2 -- 9 7 6 x  + 527  

1 6 9 x  3 - 1 2 0 x  2 - 1 8 0 x  + 136 

1 2 8 8 8 1 x  4 - 6 3 5 4 7 5 x  3 - 5 8 0 8 0 1 x  2 - 6 6 7 9 5 x  - 1495 

x 4 - 2 9 0 4 x  3 + 1 2 6 x  2 + 3 4 5 6 x  + 1296 

x 3 - 7x  2 + 1 0 x -  2 

x 7 - 2 9 x  6 + 2 4 5 x  5 -- 6 3 3 x  4 + 5 1 5 x  3 - 15x  2 - 18x  -- 1 

9 x  3 - 9 x  2 - 2 4 x -  4 

x 4 - 3 0 x  3 + 1 2 0 x :  - 126x  + 9 

9 x  4 - 6 x  3 - 14x  2 - 2x  + 1 

8 1 x  4 - 3 4 0 x  3 + 3 2 8 x  2 - 9 

4 9 x  4 - 1 7 5 1 x  3 + 9 9 2 5 x  2 - 8 4 9 3 x  - 1017  

1 6 0 0 x  6 - 7 8 4 x  5 - 7 2 8 x  4 + l l l x  3 + 53x2  - 3 x  -- 1 

2 5 6 x  5 - 1 0 1 6 0 x  4 + 3 5 6 9 x  3 + 1 6 3 x  2 - 1 2 2 x  + 4 

2 7 8 8 9 x  v - 1 0 2 6 6 2 0 0 x  s + 7 1 3 8 5 9 3 8 x  7 + 2 0 1 4 9 6 3 7 2 x  6 

+ 7 7 3 8 5 4 3 6 x  ~ - 8 3 3 3 9 8 7 6 x  4 - 1 7 3 6 6 8 0 2 x  3 + 1 9 1 6 1 2 2 6 x  2 

- 3 9 2 5 2 3 3 x  + 2 5 1 6 6 9  

9 6 1 x  11 _ 4 0 3 5 x  10 - 3 8 6 8 x  9 + 1 9 3 7 6 x  s + 1 3 2 2 9 x  7 - 2 7 9 6 6 x  6 

- 2 1 6 7 5 x  5 + 1 1 4 0 3 x  4 + 1 1 8 5 9 x  3 + 1 3 9 1 x  2 -- 3 6 9 x  - 37  

x 7 - 8 4 x  6 + 1 2 9 4 x  5 - 2 4 0 6 x  4 + 4 9 x  3 + 1 0 2 0 x  2 + 1 0 2 x  - 27  

16x  ~ - 2 9 7 x  4 + 1 9 5 6 x  3 - 5 5 7 4 x  2 + 7076x - 3 2 9 3  

2 5 6 x T - 2 2 8 8 x  6 + 3 4 0 9 x  5 + 5 5 6 8 x  4 - 8 4 4 4 x  3 -- 5 1 5 0 x  2 + 4 5 1 5 x  

+ 1 8 6 2  

2 2 0 9 x  7 - 1 2 4 7 6 6 3 x  6 - 8 9 7 8 8 5 x  5 + 3 8 7 4 0 1 5 x  4 + 3 9 0 5 0 2 3 x  3 

- 1 5 8 9 8 4 5 x  2 - 2 5 5 9 4 1 4 x  - 5 9 7 4 1 5  

1 8 7 3 3 3 9 6 9 x  12 - 1 7 9 4 8 3 9 0 1 0 2 x  11 + 3 3 5 6 8 5 0 3 2 5 9 x  1° 

+ 2 2 3 5 4 9 7 8 1 6 8 x  9 - 6 4 8 3 0 2 1 6 0 8 1 x  s + 1 1 5 4 8 3 6 3 5 9 0 x  7 

+ 2 8 5 3 7 9 1 1 0 0 9 x  ~ - 1 4 6 2 6 9 4 0 6 8 4 x  5 + 1207770356x 4 
+ 5 1 0 2 6 0 9 9 6 x  3 - 8 5 4 7 2 6 4 4 x  2 - 2 3 2 4 8 1 6 x  + 722036  

T a b l e  1: S o m e  v a l u e s  o f  hD(X) fo r  E = X 0 ( 3 7 )  + .  

w h o s e  L - f u n c t i o n  h a s s i g n  1. F o r  e x a m p l e ,  t h e  p o l y n o m i a l  h577(x)  f o r t h i s  c u r v e  

a p p e a r s  t o  b e  g i v e n  b y  

h577(x) = 2 9 3 6 2 3 1 5 2 8 5 9 0 3 8 6 4 8 1 x  7 - 4 8 3 3 9 3 7 0 9 8 0 1 5 6 9 3 2 3 9 7 8 0 x  6 

+ 2 1 8 6 5 2 7 3 2 8 0 2 7 9 6 1 7 9 9 9 9 9 8 2 x  ~ - 2 3 5 9 6 8 4 6 3 6 8 4 7 7 6 2 5 0 2 9 8 0 2 8 x  4 

- 8 0 2 3 9 7 3 3 8 4 3 8 6 3 2 4 5 6 6 2 1 0 7 5 7 x  3 - 1 1 9 3 4 8 3 9 8 0 4 9 5 3 9 0 6 1 9 1 3 9 4 6 2 x  2 

+ 88739970511784784264668460x + 136157854070067067382671979, 
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with coefficients significantly larger than those appearing on the line D = 577 

in Table 1. 

S u m m a r y  o f  c a l c u l a t i o n s  for  o t h e r  cu rve s .  In addition to the elliptic curves 

of conductors 11 and 37 already discussed, our numerical experiments focussed 

on the following strong Weil curves, designated following the conventions of the 

tables of Cremona: 

17A : y2 + x y  + y = x 3 - x 2 - x - 14, 

19A : y2 + y = x 3 .~_ x 2 _ 9x - 15, 

43A : y2 + y = x 3 + x 2, 

53A : y2 + x y  + y = x ~ - x 2, 

61A : y2 + x y  - x 3 - 2x + 1, 

67A : y2 + y  = x 3 _ 1 2 x -  21, 

73A : y2 + x y  = x 3 - x 2 + 4 x  - 3, 

83A : y2 + x y  + y = x 3 + x 2 + x ,  

389A : y2 + y = x 3 + x 2 _ 2x. 

Table 2 summarises some of the calculations that  were done to test  Conjecture 

1.9 numerically for each curve. 

P 
11 
17 
19 
37 
37 
43 
53 
61 
67 
73 
83 

389 

E 
11A 
17A 
19A 
37A 
37B 
43A 
53A 
61A 
67A 
73A 
83A 

389A 

M 
400 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
20 

8 

1 
1 
1 

- 1  
1 
1 
1 
1 

1 
1 
1 

D 
< 200 
< 100 
< lo0 

200 
< 50 
< 5O 
< 50 
< 5O 
< 50 
< 50 
< 5O 
< 50 

19 
19 
37 
9 
11 
10 
10 
11 
10 
7 
8 

1 h~02 

3 
3 
8 
0 
0 
0 
1 
0 
1 
0 
1 

h 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

T a b l e  2: Range of numerical verifications for small D. 

The fourth column of Table 2 lists the sign s in the functional equation for 

L ( E / Q ,  s ) ,  and the fifth gives the range of positive discriminants in which p is 

inert for which Conjecture 1.9 was tested. The last three columns indicate the 
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number of values of D in the tested ranges with class number 1, 2 and 4, these 

being the only class numbers that occurred in these ranges. 

Table 3 below lists, next to each curve, the first few discriminants of class 

number three for which p is inert, and for which Stark-Heegner point calcula- 

tions, carried out to an accuracy of p-M, led to a successful identification of 

the polynomial hD(t) and of the Stark-Heeegner points themselves as points in 

E(HD). Tables 4 and 5 do the same for discriminant D of class number 5 and 

> 7 respectively. 

P 
11 
17 
19 
37 
37 
43 
53 
61 
67 
73 
83 
389 

E 
l lA  
17A 
19A 
37A 
37B 
43A 
5 3 A  
61Ai 
67A ' 
73A 
83A 
389 

M 
400 
100 
100 
100 
100 
100 
100 
100 
1001 
loo I 

D 
316,321,404 
148,316 
148,257,316,469 
See Table 1 
257,316,473 
148,257,321,469 
257,316,321,404,469 
148,316,404,592,621 
229,316,321,404 
229,321,404,469 
257,316,321,404,469,473 
148 

Table 3: Some numerical verifications with h(D) = 3. 

P 
37 
37 
43 
53 
61 
67 
73 
83 
389 

E 
37A 
37B 
43A 
53A 
61A 
67A 
73A 
83A 
389A 

100 
100 
100 
100 
100 

100 I 
loo 

D 
See Table 1 
401 
1093 
401,817,1093 
401,817,1393,1429,1604 
401,817 
817 
1093,1429 
401 

Table 4: Some numerical verifications with h(D) = 5. 
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P 
37 
37 
43 
53 
61 
67 
73 
83 

389 

Table 5: 

Remarks: 

E M 
37A 100 
37B 100 
43A 100 
53A 100 
61A 100 
67A 100 
73A 100 
83A 100 

3s9A 1 20 
Some numerical 

D 
See Table 1 
577 
577, 1009, 1297 h=11 
1009 
577, 1009, 1761, 1129 h=9 
577 
577, 1009 
577, 1009, 1129 h=9, 1297 h=u 
577 

verifications with h(D) > 7. 

1. Generally speaking, the Stark-Heegner points seem to be of smaller height 

on the curves with s = -1,  than on those for which the sign s is equal to 1. But 

they are also notably small on the curve 389A with s = 1, in spite of the larger 

size of this conductor. 

2. The curve E = 398A was singled out because it is the elliptic curve of 

smallest conductor whose rank over Q is equal to 2. For any value of D, the 

point P(D) is expected to be a torsion point on E(K), by analogy with what 

happens with classical Heegner points (and as should occur if, as conjectured 

in [Darl] and [DG], Stark-Heegner points satisfy an analogue of the Gross- 

Zagier formula). All our experimental results agree with this prediction, to the 

calculated degree of 389-adic accuracy. Note that when h(D) > 1, the Stark- 

Heegner point calculations, carried out to 20 significant 389-adic digits, always 

resulted in finding a point of infinite order on E(HD), for the values of D listed 

in the last lines of Tables 3, 4 and 5. 

3. It would have been too tedious to list the polynomial hD(X) corresponding to 

each entry in the rightmost columns of Tables 3, 4 and 5. However, the reader 

can repeat these calculations independently after downloading the shp package, 

using the script files that are included to facilitate this task. For example, 

experimentally verifying Conjecture 1.9 for the second entry in the penultimate 

line of Table 5 can be accomplished by typing the sequence of two commands 

load shp83; 

HP, P, hD:=stark_heegner_points(E,577,Qp); 

from the magma command prompt. The calculation in this case, which is fairly 

typical, takes about two minutes (with 20 significant 83-adic digits, a precision 

that apparently turns out to be sufficient in this case for identifying both P and 

hD(t) as global objects). 
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4. In [DD] it is observed that  when the cusp form f is replaced by the logarithmic 

derivative of a modular un i t - - a  weight two Eisenstein series--the Stark-Heegner 

point construction leads to a refinement of the p-adic Gross-Stark units in ring 

class fields of real quadratic fields. The last chapter of [Das] gives polynomial 

time algorithms for computing these p-units. Because the periods of Eisenstein 

series can be written down explicitly, the approach followed in [Das] does not 

rely on iteration of the Up operator and is even more efficient than the method 

described in this paper. 
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