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1 Introduction

The present article intends to be a survey of some recent developments on
a particular aspect in the arithmetic of function fields, in which the present
author was and still is involved. It is not intended to be a survey on all
recent developments, of which there are many, nor on all the foundations of
the subject, for which there is a number of good references available, such
as [A196], [Ge86], [G0o96]. The main emphasis, as expressed by the subtitle
is to advertise some developments that are based on a cohomological theory,
introduced by R. Pink and the author, [BP04].

This survey is aimed at a reader who has some familiarity with the arith-
metic of elliptic curves over number fields, with algebraic geometry and étale
sheaves, and has perhaps some (vague) ideas about motives, and who wants
to learn more about parallel aspects in the arithmetic of functions fields.

Our starting point in Section 2 is a short review of the similarities between
elliptic curves on the one and Drinfeld modules on the other hand. We empha-
size motivically interesting information that is encoded in them, namely their
analytic and étale realizations. The subsequent section, gives a rapid intro-
duction into some aspects of Anderson’s theory of t-motives. It generalizes the
theory of Drinfeld modules and thereby provides some additional flexibility.

Section 4 introduces the cohomological viewpoint introduced by R. Pink
and the author, cf. [BP04]. It is a natural generalization of Anderson’s theory.
The construction starts with a theory that looks very much like the theory
of coherent sheaves, where as an additional piece of data the sheaves are
equipped with an endomorphism. (The endomorphism itself needs the abso-
lute Frobenius endomorphism which is present in the characteristic p situation
we consider. A similar type of object in characteristic zero would be a vector
bundle with a connection.)

Then comes a crucial point. We localize this first category at a suitable
multiplicatively closed subset. The resulting category is called the ‘category
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of crystals over function fields’. The reader should not be deterred by this two
step construction, but instead realize all the improvements of the theory that
result from the localization. The motivation for the construction is that in
[BP04] we realized that in the localized category there would exist a functor
‘extension by zero’ which is not present in the original category. The intro-
duction of crystals is perhaps the main novelty in comparison to some earlier
concepts generalizing Drinfeld modules.

As a test case, we compare the theory of crystals over IF), with the theory
of constructible étale sheaves of IF,-modules over schemes of characteristic p,
and establish an equivalence of categories.

The following section gives two applications of the cohomological theory.
The first is a rationality proof for L-functions that can be attached to fam-
ilies of t-motives or of Drinfeld modules. An analytic proof had previously
been given by Taguchi and Wan, cf. [TW96], using Dwork style methods. A
similar development had taken place in the rationality proofs of L-functions
of varieties over finite fields. There again, it was first Dwork who gave an
analytic and then Grothendieck who gave an algebraic proof. It was precisely
this parallel that motivated the construction of the theory of crystals and led
to [BP04].

The second application in Section 5 is the proof of the existence of a
meromorphic continuation of global L-functions attached to t-motives by Goss
to a mod p analog of the complex plane. Here again, the poineering work
[TW96] of Taguchi and Wan had yielded a first p-adic analytic proof (at least
in an important special case).

In the last section, we explain yet another application, namely the con-
struction of something that could be called a motive for Drinfeld modular
forms. This ‘motive’ is an arithmetic object whose analytic realization is the
space of Drinfeld cusp forms for a fixed weight and level. Its étale realization
allows one to attach Galois representations to Drinfeld cusp forms.

There are many interesting open problems in this subject, and throughout
the last two sections, we describe a number of these. It is hoped that they will
further stimulate the interest in the arithmetic of function fields.

Much of the work presented here, even that which did not involve a direct
collaboration with R. Pink, nevertheless was influenced by his comments,
ideas and interest, and it is a great pleasure to thank him for this. There is a
large number of people whose work was foundational, inspirational, or directly
related to the contents of this survey, and that I would like to mention here
in the introduction, namely, in alphabetical order, G. W. Anderson, V.-G.
Drinfeld, F. Gardeyn, E.-U. Gekeler, D. Goss. U. Hartl, Y. Taguchi, D. Wan.

Particular thanks goes to G. v. d. Geer and B. Moonen for organizing
the Texel conference in 2004, and for giving me the opportunity to write this
survey article for the conference proceedings. Also many thanks to B. Buth,
D. Goss (again!), and N. Stalder for many helpful comments on earlier versions
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of this manuscript. Finally I would like to thank the referee for a number of
helpful suggestions.

2 The basic example

Let us first recall some arithmetic properties of an elliptic curve E over Q
which are basic for its realization as a motive.

1. Via Q — C the curve E becomes an elliptic curve over C. Its first Betti
homology is A := Hy(E(C),Z), and one has a pairing

A % HO(E((D),QE(@)/(D) —C: ()\,w) = /w
A

so that E(C) = Homge(H°(E(C), 25(c)/c), C)/A = C/A.

2. Furthermore for any rational prime ¢ of Z one has the ¢-adic Tate module
Tatey(E) of E. As a group it is isomorphic to Z?, and it provides us with
a representation of the absolute Galois group Gq = Gal(Q*"/Q) of Q on
Tate;(E), i.e., a homomorphism pg : Gq — GL2(Zy).

The Betti cohomology of E may be viewed as its analytic realization, the
Tate module of FE as its £-adic étale realization. (The motive of F in the sense
of Grothendieck also contains parts in degree 0 and 2 — but these are not
particular to E, and we therefore do not consider these.)

Let IF, be the finite field of ¢ elements, and let F' be a function field of
transcendence degree one over its constant field IF,. We fix a place, denoted
by oo, of F', and let A denote the ring of functions in F' which have a pole at
most at co. Then A is a Dedekind domain.

The completion F,, of F' at oo is a discretely valued field. By ¢o, the
cardinality of its residue field is denoted and by valy, its normalized valuation.
The latter extends uniquely to a valuation on the algebraic closure F22 of F,.
The completion €y, of F28 with respect to val,, remains algebraically closed.
Denoting the extended valuation again by val,, the expression |.|o 1= g8l
defines a norm on Co which is often abbreviated |.|. Finally, ¢ denotes the
composite homomorphism A — F — F, — Cx.

We fix a finite extension L of F' and a Drinfeld A-module ¢ of rank r on
L of characteristic ¢f,: A — F < L. (Below we recall these and some further
definitions.) To ¢ one associates:

1. Tts analytic realization, which is a discrete A-lattice A C C of rank r,
such that ¢ base changed to C., arises from A.

2. For every place v of L which is not above oo, its v-adic étale realization,
which is a representation of the absolute Galois group G of L on the
v-adic Tate module Tate,(¢) of ¢. If A, is the completion of A at v,
then Tate,(¢) is isomorphic to A?. The action of G, yields an A,-linear
representation on Tate, ().
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We owe, at least to the novice in function field arithmetic, some defi-
nitions. For any ring R over IF, one defines R{7} as the non-commutative
polynomial ring subject to the non-commutation rule 7r = r97 for any r € R.
An alternative description of R{7} is as follows. Let R[z]r, denote the set
of IF,-linear polynomials in the (commutative) polynomial ring R][z], i.e., of
polynomials of the form ), B;iz9". These are precisely the polynomials p with
plaz+y) = ap(x)+p(y) for all « € IF, and all z, y in some R-algebra, i.e., they
define IFg-linear maps on R-algebras. Then R[z]r, is a ring under addition
and composition of polynomials. Moreover the substitution 7% — 29" yields
an isomorphism of rings R{7} — R[z]r,. In the sequel, we will always use
a small Greek letter to denote a polynomial in R{7}, and the corresponding
capital one to denote its image in R[z]r, — for instance ¢, < P,.

A Drinfeld A-module ¢ on some field K is a ring homomorphism ¢: A —
K{r} : a — ¢, such that its image ¢(A) contains some non-constant poly-
nomial of K{r}. There is a unique positive integer r € IN, called the rank
of ¢ such that for any a € A the highest non-zero coefficient of ¢, occurs in
degree rdeg(a).

The composition tx: A — K of ¢ with the projection K{7} — K onto the
zeroth coefficient is a ring homomorphism which is called the characteristic
of ¢. The Drinfeld A-module ¢ is called of generic characteristic if v is
injective. Otherwise it is called of special characteristic. The case of generic
characteristic is the one analogous to that of an elliptic curve over a number
field. The other case corresponds to the case of an elliptic curve over a field
of positive characteristic.

If K — C is a field homomorphism, the base change of ¢ to C is
obtained by composing ¢ with the induced monomorphism K{7} < Coc{7}.
We will only consider homomorphisms « : K «— C,, such that aix agrees
with the homomorphism ¢: A — C, defined above.

A discrete A-lattice A C C is a finitely generated projective A-submodule
of Coo (via ¢) such the set {A € A | [A| < ¢} is finite for any ¢ > 0. Given such a
lattice A of rank 7, there is a unique power series e of the form Y >° anz?",
an € Cs, with infinite radius of convergence, with ayp = 1 and with simple
zeros precisely at the points of A. The entire function e, is IFy-linear and
surjective and hence one has a short exact sequence of IF -vector spaces

0—A— Co =5 Coo — 0.

Thus if we let a € A act by multiplication on the middle and left term, there
exists a unique IF -linear function @,(z) on the right such that the diagram

@OO z—en(z) C
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commutes. One verifies that @, lies in C[2]r,, and denotes by ¢, the cor-
responding polynomial in Coo{7}. Then A — Coo{7} : a — ¢, defines a
Drinfeld A-module of rank r. It is known that any Drinfeld A-module on C,
of characteristic ¢ arises in this way.

Suppose now that ¢ is a Drinfeld A-module on L of rank r and generic
characteristic ¢, : A — F — L. Fix a place v of A, and denote by p, the
corresponding maximal ideal of A. Then one defines

P[] = {\ € LM | Va € p} : @o(X) =0}

The derivative of @,(z) is the constant ¢z (a). Since ¢ is of generic charac-
teristic, ¢1,(a) is non-zero, and so the polynomial @, is separable. From this
one deduces that ¢[v"™] defines a finite separable Galois extension of L. The
module of v-primary torsion points of ¢ is

P> = Uq’)[v"] C L.

It is stable under the action of Gy and, as an A-module, isomorphic to
(Fy,/A,)", where F, is the fraction field of A,. Finally by Tate,(¢) :=
Homy (F, /Ay, $[v°°]) one denotes the v-adic Tate module of ¢.

Example 1. Let F := IF,(t), A := IF,[t] and L a finite extension of F. The
point oo therefore corresponds to the valuation vs, which to a quotient f/g
of polynomials assigns degg — deg f. A Drinfeld A-module ¢p: A — L{r} is
uniquely determined by the image of t. If 1, : A — F — L is the characteristic
of ¢ and if ¢ is of rank r, then ¢; must be of the form

t+a17+ ... +a.7" € L{7}

with a, € L*, and where we identify ¢ = ¢1,(¢). Conversely any such polyno-
mial defines a Drinfeld A-module of characteristic ¢;, and rank 7.

Suppose v is the place corresponding to the maximal ideal (¢). Then
Dy(2) =tz+a129+ ... +a,29 and

P[v>®] = {\ € L5P ’ In:dio...0P()\) =0}

n

To generalize the notion of a Drinfeld A-module to arbitrary schemes over
IF,, we now give an (equivalent) alternative definition of a Drinfeld A-module
on K. Let G, x be the additive group (scheme) on K. By Endp,(Ga x) we
denote the ring of IF,-linear endomorphisms of the group scheme G, g. This
ring is known to be generated over K by the Frobenius endomorphism 7 of
Ga, i, and thereby isomorphic to K{7}. Thus we may define a Drinfeld A-
module as a non-constant homomorphism

¢: A — Endp, (Gq k).
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Since the elements of a € A act as endomorphisms of the group scheme G, g,
they induce an endomorphism 0¢, on the corresponding Lie algebra. This is
called the derivative of ¢ and yields a ring homomorphism

0¢: A — End(Lie G, k) = I'(Spec K, Ospec k) = K. (1)

This homomorphism is precisely the characteristic of ¢.

Over an arbitrary IF;-scheme X one defines a Drinfeld A-module as follows:
Let £ denote a line bundle on X (i.e., a scheme which is an G,-bundle on X),
and Endp, (£) the ring of IF,-linear endomorphisms of the group scheme £
over X. A Drinfeld A-module of rank r on (X, L) is a homomorphism

¢: A — Endp, (L),

such that for all fields K and all morphisms 7 : Spec K — X the induced
homomorphism ¢: A — Endp, (7*£) is a Drinfeld A-module of rank r on K.

In the same way as (1) was constructed, ¢ induces a homomorphism 9¢:
A — I'(X,Ox). The corresponding morphism of schemes chary: X — Spec A
is called the characteristic of ¢. Via the characteristic, X becomes an A-scheme
(, i.e., a scheme with a morphism to Spec A).

A morphism from a Drinfeld A-module ¢ on L to ¢’ on L' is a morphism
a € Homp, (£, L") which is A-equivariant, i.e., such that for all @ € A one has

apy = ¢ a.

3 Anderson’s motives

In the preceding section we encountered an object defined over function fields,
namely a Drinfeld A-module, which has properties seemingly similar to those
of an elliptic curve. Therefore it seemed natural to look for a category of
motives which would naturally contain all Drinfeld A-modules (of generic
characteristic). In particular this category should be A-linear, it should allow
for constructions from linear algebra such as sums, tensor, exterior and sym-
metric products, and it should have étale as well as analytic realizations. It
was Anderson in his seminal paper [An86] who first realized how to construct
such a theory, perhaps motivated by the earlier definition of shtuka due to
Drinfeld. Some further details can be found in [vdHO03], Chap. 4.

We fix a subfield K of C containing F', denote by ¢ the Frobenius on K
relative to IF,, and set tx: A — F — K.

Definition 1. An abelian A-motive on K consists of a pair (M, T) such that

1. M is a finitely generated projective K @ A-module.

2.7: M — M 1is an injective o-semilinear endomorphism of M, i.e., for all
meM, e K anda € A one has 7((z @ a)m) = (7 ® a)T(m).

3. The module M/K7(M) is of finite length over K ® A, and annihilated by
a power of the mazimal ideal generated by {1(a) ® 1 —1®a |a € A}.
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4. M @ KPPt is finitely generated over KP™ {7}, where KP**! denotes the
perfect closure of K.

Using that KP"f{r} is a left principal ideal domain, it is shown in [An86] that
for any abelian A-motive M the module M @5 KP°™ is free over KPe{r}.
The rank of M @ KP™ over KP°™ {7} is called the dimension of M, its rank
over K ® A is called the rank of M.

If K is perfect, condition 3 can be simplified using M/K7(M) = M/7(M).
The maximal ideal in 3 defines a K-rational point of Spec(K ® A).

Definition 2. A pair (M, 7) which satisfies conditions 1 to 3 only, is called
an A-motive on K.

This definition differs significantly from [Go96], Def. 5.4.2, while Definition 1
is the same as in [Go96] and [An86]. One has the following obvious result:

Proposition 1. If (M, 1) and (M’,7") are abelian A-motives on K, then so
is(Me M ,to71').

If (M, 7) and (M',7") are A-motives on K, then so is their tensor product,
as well as all tensor, exterior and symmetric powers of (M, ).

To define the analytic realization of an A-motive, we have to introduce
some further notation. The Tate algebra over C, is defined as

Coo(t) := {Zant" ’ an € Coo, |an| — 0 for n — oo}.

Any monomorphism IF,[t] < A is finite and flat. Fixing one, any module M
underlying some A-motive can be regarded as a (free and finitely generated)
module over K[t]. We set

M(t) = M @k Coolt),

and define M (t)™ as the IF,[t]-module of T-invariant elements of M (t). The
module of T-invariants is a projective (left) A-module and satisfies

ranky M (t)" < rankgga M. (2)
Definition 3. If equality holds in (2), then (M,7) is called uniformizable.

Anderson gave examples of abelian A-motives of dimension greater than one
which are not uniformizable. If (M,7) is uniformizable, we regard the A-
module M (t)7 as its analytic realization. It is also shown in [An86], that for
any uniformizable motive M of dimension d and rank r, there is a related
short exact sequence

OHANIHC&%(D&HO,

where Ajs is a discrete A-lattice in @20 of rank r. Let 24 denote the module
of Kahler differentials of A over IF,,. Then by [An86], § 2, there is the following
isomorphism which relates Ay, with the analytic realization of M:
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HOHIA(M<IJ}>T,_QA) =~ A. (3)

Following Anderson, [An86], § 2, one has a fully faithful functor from Drin-
feld A-modules to uniformizable A-motives of dimension 1: Let ¢ be a Drinfeld
A-module on K of generic characteristic tx. Via left multiplication by K and
right multiplication by ¢, for a € A, we regard M(¢) := K{7} as a module
over K ® A. Left multiplication by 7 defines a o-semilinear endomorphism
T: M(¢) — M(9).

Theorem 1. The assignment ¢ — (M (), ) defines a functor which identi-
fies the category of Drinfeld A-modules of rank r with the category of abelian
A-motives M of rank r that satisfy M = K{t}. Any such A-motive is uni-
formizable. Moreover if K = Co and ¢ arises from a lattice A, then A and
M({t)™ are related via (3).

To define étale realizations, one proceeds as follows: Let p, be the prime
ideal of A corresponding to the place v of A. Then

M ®gga (K*P ® A/py)

is free and finitely generated over K®*P ® A/p”. By condition 3 for a motive,
the induced 7-action is in fact bijective. From Lang’s theorem, [An86], 1.8.2,
one easily deduces that

My = (M Qrea (K*P® A/Pﬁ)y

is a free A/pl-module of rank r. Because M is defined over K, the actions
of Gk and of 7 commute on M Q@xga (K5P ® A/p?), and so Gx acts A/p,-
linearly on M, ;. The inverse limit M, o := lim M, , is thus a free A,-module
of rank r with a continuous linear action of G. This we regard as the v-adic
étale realization of M. It exists independently of the uniformizability of M.
One has the following result due to Anderson:

Proposition 2. Suppose ¢ is a Drinfeld A-module of rank r and generic char-
acteristic, and (M, 1) := (M (¢), 7). Then there is a canonical isomorphism

Hom g, (My 0, limp, " 24 /024) = $[v™°].

4 A cohomological framework

In the previous section, we have seen that Anderson’s category of A-motives
has a number of very useful properties. It allows constructions from linear
algebra, it has realizations as one would expect them from motives, and it
contains the category of Drinfeld A-modules. Also pullback along morphisms
Y — X for families of A-motives on a scheme X is easily defined.
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Anderson’s theory does not, however, provide a cohomological theory of
A-motive like objects, which is also desirable and by which we mean the
following: On every base scheme X over IF, we would like to have a category
of objects similar to families of A-motives. For any morphism f: Y — X, there
should be (derived) functors R’f, between these categories, and perhaps also
other ones such as f*, ®, Hom, Rf), etc.

In [BP04] such a theory is developed in joint work with R. Pink. Much of
the material described in the previous section was inspirational for this. The
main motivation for the work in [BP04] was to give a cohomological proof of
a rationality conjecture by Goss, that had, by analytical methods, previously
been established in work of Taguchi and Wan, cf. [TW96]. This is discussed
in greater detail in Subsection 5.1.

An alternative construction of such a cohomological theory was recently
also described by M. Emerton and M. Kisin in [EK04]. The main reference
for the present section is [BP04].

Conventions: Throughout X, Y, etc., will be noetherian schemes over
IF,. By ox or simply ¢ we denote the absolute Frobenius endomorphism of
X relative to IF,. We fix a morphism of schemes f:Y — X.

The symbol B (or B’) will always denote an IF -algebra which arises as a
localization of an IF-algebra of finite type. Typically B will be A, or A/a for
some ideal of A, or the fraction field F' of A.

Whenever tensor or fiber products are formed over IFy, the subscript IF,
at ® and x will be omitted.

By pry: X x Spec B — X the projection onto the first factor is denoted.

4.1 T-sheaves

Definition 4. A 7-sheaf over B on a scheme X is a pair F := (F,7¢) con-
sisting of a coherent sheaf F on X x Spec B and an Ox xspec B-linear homo-
morphism

(o xid)*F —= F.

A homomorphism of 7-sheaves F — G over B on X is a homomorphism

of the underlying sheaves ¢: F — G which is compatible with the action of T.

We often simply speak of 7-sheaves on X. The sheaf underlying a 7-sheaf F
will always be denoted by F. When the need arises to indicate on which sheaf
T acts, we write 7 = 7.

The category of all 7-sheaves over A on X is denoted by Coh, (X, A). It is
an abelian A-linear category, and all constructions like kernel, cokernel, etc.
are the usual ones on the underlying coherent sheaves, with the respective 7
added by functoriality.

In this survey we focus on coherent objects. To alleviate our notation, we
deviate from the terminology in [BP04]. What is called a 7-sheaf here is a
coherent 7-sheaf in [BP04].
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On any affine open Spec R C X a 7-sheaf over B is given by a finitely
generated R ® B-module M together with an R ® B-linear homomorphism
R°®r M — M. The latter homomorphism corresponds bijectively to a o ®id-
linear morphism 7: M — M. The pair (M, 7) is also called a 7-module.

Ezxample 2. Due to properties 1 and 2 in the definition of a motive, any A-
motive on K is a 7-module, and thus yields a 7-sheaf over A on Spec K.
However the notion of 7-sheaf is less restrictive than that of A-motive, since
we impose no local freeness conditions, nor conditions on the kernel or cokernel
of 7.

4.2 Examples

We now describe some further examples of 7-sheaves. All but the first and
last of these correspond to families of A-motives (of fixed rank).

Most of the examples are locally free T-sheaves; by this we mean 7-sheaves
whose underlying sheaf is locally free. The rank of a locally free 7-sheaf is that
of its underlying sheaf. Locally free 7-sheaves had been considered already in
[TWO96], where they were called ¢-sheaves.

I. Any (coherent) sheaf F on X x Spec B can be made into a 7-sheaf by
setting 7 = 0. As we will see shortly, these 7-sheaves are not interesting to us.

II. The unit 7-sheaf, denoted by 1y g, is the free T-sheaf defined by the
pair consisting of the sheaf Ox xspec B together with the isomorphism

s 1)k
T: (J X 1d) OXXSpecB OXXSpeCB»

which via adjunction arises from o ® id: Ox xspec B — (0 X 1d)+Ox xSpec B-

ITII. The construction ¢ — M(¢) from Drinfeld A-modules to A-motives
generalizes in an obvious way to a functor (£, ¢) — M(¢) from Drinfeld A-
modules over a general base X to 7-sheaves over A on X. The rank of the
Drinfeld module becomes the rank of the locally free sheaf underlying M(¢).

Similarly any elliptic sheaf on X gives rise to a 7-sheaf over A on X, by
restricting it to X x Spec A. For details on this, we refer to the excellent article
of Blum and Stuhler, cf. [BS97].

IV. As we have seen earlier, one can define Drinfeld A-modules over a
general base. So it is natural to consider corresponding moduli problems. As
in the case of elliptic curves (or abelian varieties) these are not rigid, unless
one introduces some level structures. To define such, we fix a proper non-zero
ideal n C A. Then for any Drinfeld A-module ¢: A — Endp, (L) of rank r
over a scheme X, one defines the subscheme

Lofn) == () Ker(£ 2 £) € L.
acn

It carries an action of A/n and is finite flat over X. Its degree over X is the
cardinality of (A/n)". If the image of chargy : X — Spec A is disjoint from
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Spec A/n, we say that the characteristic of ¢ is prime to n. In this case L4[n]
is moreover étale and Galois over X.

For a finite discrete group G we denote by Gx the corresponding constant
group scheme on X.

Definition 5. A naive level n-structure on ¢ is an isomorphism

b (Afn) = Lon].

A naive level n-structure can only exist if the characteristic of ¢ is prime to
n. In that case it always exists over a finite Galois covering ¥ — X.

Let A(n) denote the ring of rational functions in F' regular outside co and
the primes dividing n. Then for any fixed r € IN one may consider the moduli
functor M"(n) which to an A(n)-scheme X assigns the set of triples (£, ¢,)
(up to isomorphism), where

1. ¢: A — Endp, (L) is a Drinfeld A-module of rank r, and
2. ¢¥: (A/n)% = Ly[n] is a naive level n-structure,

such that the composite of the structure morphism X — Spec A(n) with the
canonical open immersion Spec A(n) < Spec A is equal to charg.

Theorem 2 ([Dr76]). The moduli problem MT"(n) is representable by an
affine (noetherian) A(n)-scheme P (n). The line bundle L™ (n) in its universal
triple (L"(n), ¢"(n),¥"(n)) on Y (n) is isomorphic to G, gr ). The structure
morphism " (n) — Spec A(n) is smooth of relative dimension r — 1.

For later use, we record the following:

Proposition 3. The 7-sheaf M"(n) := M(¢"(n)) is locally free of rank r.

V. One can in fact define moduli spaces of more general types of A-motives
(which carry some polarization and level structure). The corresponding uni-
versal A-motive, then again yields interesting T-sheaves. The investigation of
some of these moduli problems is ongoing work by U. Hartl and, indepen-
dently, L. Taelman.

VI. An important notion to study the reduction of abelian varieties is their
Néron model. For 7-sheaves, Gardeyn in [Ga03] introduced and investigated
the following substitute:

Definition 6. Suppose j: U — X a dense open immersion. A T-sheaf G €
Coh, (X, A) is called a model of F € Coh, (U, A) with respect to j if j*G = F.
A model G is called o maximal model of F € Coh.(U, A) with respect to j if
for all H € Coh, (X, A) the canonical homomorphism

Homcon, (x,4)(H,G) — Homeon, (v,8)(H|v xspec 45 F) (4)

is an isomorphism. We write juF = G.
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If it exists, a maximal model is always unique up to unique isomorphism.
There always exists a direct limit of 7-sheaves G which satisfies (4). The
crucial requirement is that G be coherent.

As to be expected, if ¢: A — Endp, (L) is a Drinfeld A-module on X, and
j: U — X a dense open immersion then jueM(5*¢) = ju(*M(¢)) = M(¢).

Theorem 3 ([Ga03]). Suppose X is a smooth projective curve over IF,, and
Jj: U <= X is open and dense. Then for any locally free F € Coh, (U, A) with
TF injective, a mazimal model juF exists. It is again locally free.

Remark 1. Suppose now that ¢: A — K{r} is a Drinfeld A-module of rank
r over a complete discretely valued field K with ring of integers V', residue
field k£ and j: Spec K — Spec V. Suppose also that ¢ has reduction of rank
0 < v’ < r over k. (The latter means that over K the Drinfeld-module ¢ is
isomorphic to some Drinfeld-module ¢’ whose image lies in V{7}, and such
that the reduction of ¢’ to k is a Drinfeld-module of rank r’ over k.)
Drinfeld, cf. [Dr76], § 7, has shown that in this situation, after possibly
passing to a finite extension of K, there exist a Drinfeld module ¢’ of rank r’
over K, a discrete A-sublattice A C K (where A acts on K via ¢'), and an
“analytic” A-homomorphism e, : K — K, where on the left A acts via ¢’ and
on the right via ¢, such that there is a short exact sequence of A-modules

0— A — K?lg 24, gals ()

The transition from Drinfeld-modules to 7-sheaves is contravariant, so
the morphism e, turns into an “analytic” morphism between A-motives
M () — M*(¢') over K. It is again surjective, and its kernel is the

analytification of 1§ [ 4. So there is a short exact sequence
0 — (Lol )™ — M™(9) — M™(¢) — 0.

Gardeyn shows that: This short exact sequence can be extended to a left exact
sequence over a formal scheme attached to V' ® A. The left two terms of the
extended sequence arise via analytification from

0— 1g ccva — M)

The induced morphism Lg;:clk’A — *jxM(¢) on the special fiber over
Spec k is injective and some iterate of 7 vanishes on the cokernel.

The upshot of this longwinded explanation is that in the present situation
the maximal extension and the Drinfeld module ¢’ shed light on, so to speak,
opposite aspects of the bad reduction situation given. Also while ¢’ can be
obtained from ¢ only via an analytic morphism, the relation between ¢ and
J#M(¢) is algebraic. For more on this interesting topic, we refer to [Ga03]. In
this survey maximal extensions will reappear in Remark 2 and Subsection 6.8.
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4.3 Crystals

There is a large class of homomorphism in Coh, (X, B) which one would like
to regard as isomorphisms. Categorically, the correct way to deal with this is
to localize at this class, cf. [We94], § 10.3. The reason in [BP04] to pass to the
localized theory was a practical one: only there we were able to construct an
‘extension by zero functor’ as sketched below Theorem 4. First we describe
the localization procedure:

For a 7-sheaf F, we define the iterates 7™ of 7 by setting inductively
0 :=id and 7" ;= 70 (0 x id)*7": (6" F! x id)*F — F. A 7-sheaf F is
called nilpotent if and only if 7 vanishes for some n > 0. A corresponding
notion for homomorphisms is:

Definition 7. A morphism of T-sheaves is called a nil-isomorphism if and
only if both its kernel and cokernel are nilpotent.

It is shown in [BP04], Chap. 2, that the nil-isomorphisms in Coh.(X, B)
form a saturated multiplicative system, and so one defines:

Definition 8. The category Crys(X, B) of B-crystals on X is the localiza-
tion of Coh. (X, B) with respect to nil-isomorphisms.

The category Crys(X, B) is again a B-linear abelian category with the
induced notions of kernel, image, cokernel and coimage. Its objects are the
same as those in Coh, (X, A). However the homomorphisms are different.
Any homomorphism F — G in Crys(X, A) is represented by a diagram
F «— H — G in Coh, (X, A), for some H € Coh,(X, A), and where the
homomorphism H — F is a nil-isomorphism.

Let us conclude this subsection with the simplest functor that is based on
nilpotency. For a 7-sheaf F on X over B, define

FT:=T(X x Spec B, F)™ (5)

as the B-module of global 7-invariant sections of F. The following result is
an immediate consequence of Definition 8.

Proposition 4. The functor F — F7 from Coh.(X,B) to B-modules is
mwvariant under nil-isomorphisms. It therefore passes to a functor on the cat-
egory Crys(X, B), which is again denoted F +— FT.

4.4 Functors

On 7-sheaves, we now indicate the construction of four functors:

(a) f*:Coh,(X,B) — Coh,(Y,B) (pullback):
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For F € Coh,(X, B), we define f*F € Coh. (Y, B) as the pair consisting of
the coherent sheaf (f x id)*F on Y x Spec B and the o X id-linear endomor-
phism on (f x id)*F induced by functoriality from 7. This defines a B-linear
functor f*.

In an analogous way we define B-linear (bi-)functors

(b) Rif.: Coh,(Y,B) — Coh,(X,B) (push-forward) if f:Y — X is
proper, and ¢ > 0.

(¢) _® _ :Coh,(X,B)x Coh,(X,B) — Coh,(X, B) (tensor product).

(d) _ ®p B': Coh,(X,B) — Coh.(X, B’) (change of coefficients) for any
homomorphism B — B’.

Despite the notation, it is at this point not at all clear that the R'f, are
derived functors.

In the same way as the tensor product is defined, following [Ha77],
Ex. 11.5.16, for the construction on the underlying sheaf, one also obtains
higher tensor, symmetric and exterior powers of a 7-sheaf F. We denote these
by ®"F, Sym"™ F and A" F. The latter two are quotients of @".F.

The functors defined in (a)—(d) as well as ®", Sym™ and A" all preserve
nil-isomorphisms. Hence they pass to functors between the corresponding cat-
egories of crystals:

Theorem 4. The functors f*, R'f., ® and @B’ on T-sheaves induce B-
linear functors

(a) f*: Crys(X,B) — Crys(Y, B).

(b) Rif.:Crys(Y,B) — Crys(X, B) fori >0, if f is proper.
(c) _ ®__:Crys(X,B) x Crys(X, B) — Crys(X, B).

(d) __®p B': Crys(X, B) — Crys(X, B').

If f is proper, then f. and f* form an adjoint functor pair on crystals. More-
over @™, Sym" and \" induce functors on Crys(X, B).

Now we come to a main point, namely the construction of an extension by
zero in the theory of crystals. Such a functor is not present on 7-sheaves. We
shall see how localization affords this functor on crystals.

To explain the construction, let j: U <— X be an open embedding with
1: Z — X a closed complement, and denote by Zo C Ox the ideal sheaf of Z.
Then 7 := prj Zy is the ideal sheaf for Z x Spec B C X x Spec B. We wish to
extend any 7-sheaf F on U “by zero” to X.

By local considerations on X, one can alway construct some coherent ex-
tension F on X X Spec B of F. Such an extension is by no means unique, since
any sheaf Z™F, m € IN, is also an extension of F. To extend 7, we observe
that for some m € IN it extends to a homomorphism (o x id)*Z™F — F. The
identity (o xid)*Z = 77 inside Ox xspec  implies that for any m > 0 one has
an extension
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Tt (0 X 1d)*T"F — I F (E) I"F
of 7. By its construction, the pair fm = (Im]?, Tm) is a 7-sheaf on X which
extends F. The inclusion (*) implies that i*fm is nilpotent — in fact the
induced 7 is zero —, and so fm has the properties of an extension by zero.
Except the assignment F +— f m 18 in no way functorial since there are many
possible choices. The key observation is that all such pairs are nil-isomorphic.
Passing to crystals yields the following result:

Theorem 5. There is an exact B-linear functor
Ji: Crys(U, B) — Crys(X, B) : £ — jiF,
uniquely characterized by the properties j*jy = idorysv,By and i*j = 0.

Having an extension by zero, it is well-known how to define cohomology
with compact supports:

Definition 9 (qulomology with compact stport);Say f is compact-
ifiable, i.e., f = fj for some open immersion j:Y — Y and some proper
morphism f:Y — X. Then one defines

R'fy:= R'f, 0 ji: Crys(Y, B) — Crys(X, B).

Standard arguments show that the definition is independent of the chosen
factorization, e.g. [Mi80], Chap. VI, §3. Furthermore, due to a result of Na-
gata, any morphism f:Y — X between schemes of finite type over IFy is
compactifiable, and so in this situation the R’ f; exist, cf. [Lii93] or [CoDe].

4.5 Sheaf-theoretic properties

Since Crys(X, B) is an abelian category, one has the notion of exactness in
short sequences. There is also a good notion of stalk at a point x € X, where
iz : * — X denotes the corresponding immersion: The stalk of a crystal F
(on X ) at x is defined as £ F. The sheaf underlying the stalk i* F is in general
not the stalk at x of the sheaf F underlying F. The following result justifies
the definition of % F:

Theorem 6. 1. For any morphism f:Y — X, pullback along f is an exact
functor on crystals.
2. A sequence of crystals is exact if and only if it is exact at all stalks.
3. The support of a crystal F, i.e., the set of x € X for which i} F is non-
zero, is constructible.

We note that part 1 is established by showing that the higher right derived
functors of f* on 7-sheaves are all nilpotent.

Moreover crystals enjoy a rigidity property that is not shared by 7-sheaves,
but reminiscent of properties of étale sheaves:
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Theorem 7. If f is finite radicial and surjective, the functors

fr
Crys(X,B) — Crys(Y, B)

*

are mutually quasi-inverse equivalences of categories.

In particular the closed immersion f : X;oq < X yields an isomorphism
Crys(Xed, B) =2 Crys(X, B). It is this rigidity property which motivates the
name “crystal”: crystals extend in a unique way under infinitesimal extensions.

4.6 Derived categories and functors

A major part of [BP04] is to extend the functors (a)—(d) and extension by
zero to derived functors between suitable derived categories of crystals. This
yields derived functors f*, ®, Rfi, and change of coefficients.

There are various good reasons to do so. For instance only there one can
properly understand derived functors such as Rf. It can be shown that the
ad hoc defined functors R'f, for proper f are indeed i-th cohomologies of a
right derived functor Rf.. Moreover derived categories is the correct setting
to discuss the theory of L-functions needed in Section 5.

The objects introduced so far do not suffice to define derived functors.
The reader may recall that to properly define the cohomological functors on
coherent sheaves, one needs the ambient larger category of quasi-coherent
sheaves. Only there one disposes of Cech resolutions and resolutions by injec-
tives. Similarly, in [BP04], two auxiliary categories of 7-sheaves are introduced,
namely those of quasi-coherent T-sheaves, and of inductive limits of coherent
T-sheaves. In the presence of the endomorphism 7, these two and Crys(X, B)
are pairwise distinct. It is in fact an important result of [BP04], that the
corresponding derived categories of bounded complexes with coherent coho-
mology are all equivalent. Having good comparison results of the categories,
the treatment of the derived functors follows the usual path.

4.7 Flatness

An important prerequisite to discussing L-functions of crystals in Section 5 is
flatness. Only to flat B-crystals we can hope to attach an L-function which
takes values in 1 + ¢B[[t]]. Since flatness can only be fully understood in
derived categories, which we mainly avoid in this survey, we also introduce
the notion of crystal of pullback type, which is less natural, but technically
easier to handle.

Definition 10. A crystal F is flat if the functor F @ _ : Crys(X,B) —
Crys(X, B) is ezact.
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A crystal is called (locally) free, if it may be represented by a (locally) free 7-
sheaf. A locally free T-sheaf is acyclic for ® on 7-sheaves, and so it represents
a flat crystal. There are other flat crystals which are easy to describe:

A 7-sheaf F = (F,7) on X is of pullback type, if there exists a coherent
sheaf Fy on X such that F = pri Fy. For an affine scheme X = Spec R, a 7-
sheaf is of pullback type if its underlying sheaf is of the form My ® B for some
finitely generated R-module M. A crystal on X is called of pullback type, if
it can be represented by a T-sheaf of pullback type. This notion derives its
importance from the following proposition:

Proposition 5. Any crystal of pullback type is flat.

Being of pullback type is preserved under all the functors defined so far,
i.e., under pullback, tensor product (of two crystals of pullback type), change
of coefficients, the functors R'f, and @™, Sym™ and \".

Let us briefly explain the first assertion of the proposition: Since by Theorem 6
exactness can be verified on stalks, a crystal is flat if and only if all its stalks
are flat. From the definition of stalk for a crystal, given above Theorem 6, it
follows that if the crystal is represented by a 7-sheaf of pullback type, then
its stalk at any point x of X is represented by a 7-sheaf of pullback type over
A on Speck,. Over the field k, any module is flat, and hence the pullback of
such a module to k, ® A is flat as well. This shows that all the stalks of a
crystal of pullback type are flat, which we needed to verify.

Similarly, one has the following important properties of flatness:

Theorem 8. 1. Flatness of a crystal is preserved under pullback, tensor
product (of two flat crystals), change of coefficients and extension by zero.
2. If f is compactifiable and F* is a bounded complex of flat crystals on Y,
then RfiF* is represented by a bounded complex of flat crystals.
3. A crystal is flat if and only if all its stalks are flat.

We observed that any locally free crystal is flat. It is in fact not a simple
matter to understand precisely when, or in what sense a flat crystal may be
represented by a locally free 7-sheaf. This is relevant to us since we want to at-
tach to a flat crystal and a point € X with finite residue field an L-function
at x. Therefore it would be desirable that its stalk at x have a representing
T-sheaf whose underlying sheaf is free and finitely generated over A. Unfor-
tunately this is not true in general. However we have the following important
special case:

Theorem 9. Suppose that x = Speck, for some finite field extension k,
of Fy, that A is artinian and that F is an A-crystal on x. Then:

1. The crystal F has a representing T-sheaf whose endomorphism T is an
isomorphism.

2. The representative from 1 is unique up to unique isomorphism; we write
Fss for it and call it the semisimple part of F.
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3. The assignment F +— F is functorial.
4. If F is flat, then the module underlying Fss is free over k, ® A.

For later use, we also record the following:

Proposition 6. Suppose that X is the spectrum of a field, and B is regular
of dimension < 1 or finite. Then every flat B-crystal on X can be represented
by a locally free T-sheaf on which T is injective.

If F is represented by a torsion free 7-sheaf, then the proof in [BP04] shows
that Im(7%) has the asserted property for n > 0.

The most general representability result for flat crystals, shown in [BP04],
is that for any flat F and any reduced scheme X there is a finite cover by
locally closed regular subschemes X, so that on each X; some ‘j-th iterate’ of
F is representable by a ‘77-sheaf” whose underlying sheaf is locally free. Since
we will not need this, we will not give the details. Note however that this is
reminiscent of the definition of constructibility of étale sheaves.

4.8 A test case

Throughout this section we assume that B is finite (and an IF -algebra). Let
Et(X, B) be the category of étale sheaves of B-modules and Et.(X, B) its
full subcategory of constructible sheaves. By pr; : X x Spec B — X we denote
the projection onto the first factor.

It was long known that for such B there is a correspondence between -
sheaves on which 7 is an isomorphism and lisse étale constructible sheaves of
B-modules, cf. for instance [Ka73], Thm. 4.1.1, which we recall in Theorem 10
below. In [BP04], this correspondence was extended to an equivalence of cat-
egories with on the one hand Crys(X, B) and on the other Etc(X7 B). In this
section we describe the functor which provides this equivalence.

We would like to remark that - under the name of ‘Riemann-Hilbert cor-
respondence’ - M. Emerton and M. Kisin have, for regular X, constructed
another equivalence of categories between on the one hand EtC(X ,B) and
on the other again a category whose objects carry a o-semi-linear operation,
cf. [EK04]. It turns out, and this is currently under investigation by M. Blickle
and the author, that their category is dual to the category of crystals, with
the duality given by the duality of sheaves as described by Hartshorne in
[Ha66]. Emerton and Kisin have extended their correspondence to formal Z -
coefficients. It would be interesting to see, whether in some way one can extend
the concept of 7-sheaf to incorporate Z/(p™)-coeflicients.

Let F be a 7-sheaf over B on X. To any étale morphism v : U — X
we assign the B-module (u*F)7 of 7-invariants of u*F. This construction is
functorial in u and hence defines a sheaf of B-modules on the small étale site
over X, which we denote by Fe:.



Arithmetic over Function Fields 19

The construction is also functorial in F, that is, to any homomorphism
¢: F — G it associates a homomorphism ¢e : Fgr — Gst. Therefore it defines
an B-linear functor

¢: Coh.(X,B) — Et(X,B) : F — €(F) := Fa. (6)

Let us mention some obvious consequences of the definition of e. For any
T-sheaf F and étale u: U — X, one has a left exact sequence

0 — Feo(U) — (u*F)(U x Spec B) =% (u*F)(U x Spec B),  (7)

which induces a short exact sequence of étale sheaves. In the particular case
F =1y p,, sequence (7) specializes to the usual Artin-Schreier sequence

0— (lx,B)ét — OX 1;T> OX-

Thus (Lx g)et is the constant étale sheaf with fiber B.

As another example, suppose (M (¢),7) is the A-motive on K attached to
a Drinfeld A-module on K. Then we may apply the functor € to (M(¢),7)®4
A/n for any non-zero ideal n of A. Essentially by specializing Proposition 2
to finite levels, one obtains the isomorphism

¢[n] = Hom g /n(e((M(9), 7) @4 A/n)(K>P),n024/8224).

In particular, € can be used to define étale realizations of A-crystals.

Generalizing Artin-Schreier theory, the following result is proved by Katz
in [Ka73], Thm. 4.1.1:

Theorem 10. For a normal domain X the functor F — Fe defines an equiv-
alence between the categories {F € Coh.(X, B) : 7 is an isomorphism} and
{F € Et.(X,B) : F is lisse}.

Since for nilpotent 7-sheaves F one has F¢ = 0, one easily deduces that
€ passes to a functor Crys(X, B) — Et(X, B). Using this, [BP04], Chap. 9,
refines Theorem 10 to:

Theorem 11. The functor Crys(X,B) — Et(X,B) : F — Fe takes its
image in Et.(X, B). The induced functor
e: Crys(X, B) — Et (X, B)

is an equivalence of categories. It is compatible with all of the functors f*, ®,
®@pB’, Sym™, \" and R'f,, and preserves flatness.

Remark 2. The category Et (X, B) possesses no duality. Therefore it can nei-
ther exist for Crys(X, B). Also only the functors f*, ® and fi, which we
have constructed on crystals, are well-behaved on Et.(...). Therefore one
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should not expect that all the functors f*,®, fi, f., Hom, f', postulated by
Grothendieck for a good cohomological theory, exist for Crys(...).

In special cases, one may construct some further functors. For instance
in [B604] it is shown that for B finite or B = A and any open immersion
j: U — X there exists a meaningful functor

ju: Crys(U, A) — Crys(X, A) (8)

in the sense of Definition 6. It corresponds to j, in the étale theory. It is not
called j, since in [BP04] this name was reserved for a different functor.

5 First applications

As explained in the introduction, one of the initial motivations to introduce
the category of crystals was to give a cohomological proof of the rationality
of L-functions of 7-sheaves. The rationality had been conjectured — at least
in the case of families of Drinfeld modules — by Goss [Go91a], and a first
proof had been given by Taguchi and Wan in [TW96] using analytical tools.
Subsection 5.1 describes the cohomological proof from [BP04].

In addition to the rationality, the algebraic approach yields some extra
information. Namely the L-function is expressible in terms of cohomology with
compact support. These cohomology modules are in principle computable.
The main result described in Subsection 5.2, makes crucial use of this.

Subsection 5.2 is concerned with a conjecture of Goss on analytic L-
functions attached to families of Drinfeld modules. It asserts that these L-
functions (with values in Cs ) have a meromorphic continuation to a function
field analog of the complex plane, cf. [Go9lal. In the case A = IF[t], this
is the second main result in [TW96]. Later in [B602] Goss’ conjecture was
completely established for arbitrary A.

In the present section, we want to formulate the notions necessary to state
the precise results and indicate some important steps in their proofs. Since for
general A, Goss conjecture on meromorphy is rather technical to formulate, we
will only do this in the case A = IF[t]. A detailed treatment of Subsection 5.1
can be found in [BP04], and of Subsection 5.2 in [B&02].

5.1 L-functions of crystals

In this subsection we assume for simplicity of exposition that B is either a
finite ring or a normal domain. We write Q(B) for the ring of fractions of
B, so that in the latter case Q(B) is a field and in the former it is simply B
again. All schemes will be of finite type over IF,. By |X| we denote the closed
points of a scheme X. For z € |X| we denote its residue field by k, and its
degree by d, := [k : IF;]. Moreover F will denote a flat B-crystal on X.



Arithmetic over Function Fields 21

The aim is to explain how to attach L-functions to flat crystals on X, and
state their main properties, i.e., the rationality, the invariance under Rf, and
the invariance under change of coefficients.

Ultimately, these L-functions must be defined in terms of their underlying
T-sheaves, and at the same time invariant under nil-isomorphisms. For artinian
B, we will use Theorem 9 to choose a good canonical representative.

When B is reduced, these L-functions satisfy all the usual cohomological
formulas precisely (except duality). When B possesses non-zero nilpotent el-
ements, however, these formulas hold only up to ‘unipotent’ factors. In some
sense these factors correspond to nilpotent 7-sheaves and can therefore not
be detected by our theory. So this defect is built in to our theory of crystals
by its very construction.

As a preparation we briefly recall the theory of the dual characteristic
polynomial for endomorphisms of projective modules. Suppose M is a finitely
generated projective B-module and ¢: M — M is a B-linear endomorphism.

Lemma 1. Let M’ be any finitely generated projective B-module such that
M @® M’ is free over B. Let ¢': M’ — M’ be the zero endomorphism and t a
new indeterminate.

1. The expression detp (id—t(¢D¢') | M@ M') € 1+tBlt] is independent of
the choice of M'. It is called the dual characteristic polynomial of (M, ¢)
and denoted detp(id — t¢ | M).

2. The assignment (M, $) — detg(id — t¢ | M) is multiplicative in ezact
sequences.

For any z € | X|, the stalk F, is flat, and so is F, ® g Q(B). By Theorem 9
the latter is canonically represented by the locally free 7-sheaf (F,® g Q(B))ss-
The endomorphism 7% is k, ® Q(B)-linear. By Lemma 1, part 1, the following
definition makes sense.

Definition 11. The L-function of F at = is

L(.’E, £7 t) = det, (ld — tdm Td.'l:

k:®Q(B) (£a: ®pB Q(B))ss)_ ck,® Q(B)thTH

Lemma 2. 1. The power series L(z,F,t) lies in 1 + t% B[[td]].
2. The assignment F — L(x, F,t) is multiplicative in short exact sequences.

The proof of part 1 needs our assumption on B.
As the number of points in |X| of any given degree d, is finite, we can
form the product over the L-functions at all points = € | X | within 1+ ¢B][[t]].

Definition 12. The L-function of F is

LX,Ft) = [] L Ft) € 1+tB[f].
z€|X|
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To state the main results, we need an equivalence relation on 1 + ¢B[[t]]:

Definition 13. By np we denote the nilradical of B, i.e., the ideal of B of
nilpotent elements.

For P,Q € 1+ tBl[t]], we write P ~ Q if and only if there exists H €
1+ tnglt], such that P = QH.

If B is reduced, and so for instance if B is a normal domain, then ng = (0),
and hence P ~ @ is equivalent to P = Q.

Finally, if h: B — B’ denotes a change of coefficients homomorphism,
then its induced homomorphism B[[t]] — B’[[t]] is also denoted by h.

Theorem 12. Suppose f: Y — X is any morphism between schemes of finite
type, h: B — B’ is any ring homomorphism and G is a B-crystal of pullback
type on Y. Then

L L(Y,G,t) ~ I, L(X, RUAG, 1) D",
2. L(Y,Gg®p B',t) ~ h(L(Y, G,t)), with equality if B is artinian.

Working in the context of derived categories, both parts can be proved more
generally for any bounded complex F* of flat crystals on Y, and with the
complex Rf.F* instead of the crystals R'f.F. We alert the reader that the
complex Rf,F* carries more information than the individual R’ f,F.

A rational function (over B)is an element in 1+t¢B[[t]] of the form P/Q) for
suitable polynomials P,Q € 1 + tB[t]. The rationality of L-functions follows
by applying Theorem 12, part 1, to the structure morphism Y — Spec k:

Corollary 1. WithY, G as in Theorem 12, the function L(Y,G,t) is rational.

Proof (of Theorem 12 (sketch)). The proof of the two parts are independent.
We shall omit the proof of of Part 2. Instead we indicate two alternative proofs
of the trace formula in Part 1.

A conventional proof might go as follows, where first we assume B to
be reduced: Standard fibering techniques reduce one to the proof in the case
where Y = A! and X = SpecIF,. The formula to be proved can then as
in [SGA4%], ‘Rapport’ and ‘Fonction L mod ¢™ et mod p’ be reduced to a
trace formula over the symmetric powers of Al for the corresponding exterior
symmetric product of . Again by induction on dimension, it suffices to prove
this formula over Al. Its proof can be obtained from the Woodshole fixed
point formula for coherent sheaves: see [SGA5] Exp. IIT Cor. 6.12.

Let now B be finite and non-reduced. The assertion can be reduced to
affine Y over IFy and to 7-sheaves which are free over B on Y. Fixing a
surjection B’ :=IF,[z1,..., 2] —> B, the 7-sheaf may be lifted to one over
the reduced ring B’. For B’ the trace formula has been proved already. Using
Part 2, it follows for B.

The proof of Part 1, as given in [BP04] is significantly different and based
on some ideas of Anderson, cf. [An00]. To sketch it, let us fix the following
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situation. Let Y = Spec R be smooth and affine over X := SpecIF, of dimen-
sion e with f as the structure morphism, let B be a field, and suppose that G
is a locally free T-sheaf.

Using coherent duality and the Cartier operator on wyp, = N° Ovw,,
Anderson sets GV := Hom(G, wy/Ipq) and obtains an Oy ® B-linear homomor-
phism x: GY — (0 x id)*G". Let M be the R ® B-module underlying G and
MY that underlying GV. Anderson observes that k is strongly contracting on
MYV in the following sense:

There exists a finite dimensional B-sub-vector space W of MY such that
k(W) C W and such that MY = |J;2,{m € M"Y | k'(m) € W}. Such a
subspace is termed a nucleus for (M"Y, k). Using elementary means, Anderson
proves that

L(Y,G,t) = det(id — tx | W)=

In [BP04] it is shown that for locally free G the only non-vanishing cohomol-
ogy R'fiG occurs in degree i = e, and that furthermore the dual of (W, k)
is via Serre duality nil-isomorphic to a suitable 7-sheaf representing R°fiG.
Combining the above pieces, the proof is ‘complete’.

The method just sketched has two main advantages. First, Anderson’s
proof is elementary. Second, our interpretation gives a cohomological inter-
pretation for the nucleus and thus for his trace formula.

For finite B we have seen in the previous section that there is an equiva-
lence of categories €: Crys(X, B) — EtC(X, B) which preserves in particular
the notion of flatness. As is well-known, to any constructible étale sheaf F of
flat B-modules, one can also attach an L-function Le (X, F,t), e.g., [SGA4%],
‘Rapport’ and ‘Fonction L mod ¢™’. In [BP04] the following is shown, which
except for the comparison is also proved in [SGAZ%]:

Theorem 13. Suppose B is finite and F is a flat B-crystal on X. Then
L(X,F,t) = L& (X, (F), t).

Hence Lg has a trace formula and is compatible with change of coefficients.
5.2 Goss’ L-functions of crystals over A

To a scheme X which is flat and of finite type over Z, one can associate its
(-function which is an analytic function that is convergent on a right half
plane. A similar construction of global L-functions over function fields has
been carried out by Goss for families of Drinfeld modules. It can easily be
extended to 7T-sheaves, and we now sketch this for A = IF,[t]. For further
details, for the more general case and for the case of v-adic L-functions, we
refer the reader to [Go96], Chap. 8, and [B502].
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Throughout this subsection, we fix a morphism g: X — Spec A of finite
type, and assume B = A. By F we denote a flat A-crystal on X. The example
considered originally was that of a Drinfeld A-module ¢ of rank r on £ over
some scheme X of finite type over IF,. It yields a locally free T-sheaf M(¢)
(= F) of rank r, and for g one takes char,: X — Spec A.

Exponentiation of ideals

We begin by defining a substitute for the classically used expression p~*, where
s € C and p is a prime number. Following Goss, one sets S, := Ci X Z,,
which will replace the usual complex plane as the domain of L-functions. An
element s € S,, will have components (z,w). One defines an addition by
(z1,w1) + (22, w2) = (21 - 22, w1 + w2). As a uniformizer for Fi, = IF,((1/t))
we take mo 1= 1/t.

Since any fractional ideal a of A is principal, we may write it in the form
(a) for some rational function 0 # a € F. The element (a) := am >
is a unit in A, = IF [[7s]]. We choose for a the unigque generator of a for
which (a) is a 1-unit, and set (a) := (a) as well as dega := —vals(a). The
exponentiation of ideals with elements in S, is now defined as

Definition 14.
{fractional ideals of A} x Soo — €%, : (4, (2,w)) > a® := 2989 ()",

The exponentiation is bilinear for multiplication on ideals, addition on S
and multiplication on C} . Note that the exponentiation of any 1-unit with
an element of Z,, is well-defined. The so-defined exponentiation depends on
the choice of the uniformizing parameter 7o, = 1/%.

One defines the embedding Z «— S : i — s; := (70,4), so that the

element a® € F is the unique generator of the ideal a® such that (a®) is a
1-unit.

The definition of global L-functions

Let = be a closed point of X. Since X is of finite type over Spec A, the point
x lies above a unique closed point p = p, of Spec 4, and one has d,|d, for
their degrees over IF,. Hence L(x,F,t)~1 € 1+ td=B[td=] C 1+ td B[t],
and so L(z, F,t)|;a, _,-. is well-defined. In [B602] or in many cases in [Go96],
§ 8, it is shown that there exists ¢ > 0 such that the following Euler product
converges for all s € H, := {(z,w) € C5, X Z, | |2] > c}:

Definition 15. The global L-function of F at s € IH, is

Lan(Xyzvs) = H H L(xa£7t)|tdp:p—s = H L(z7£7t)|tdrx:p;3'

pEMax(A) =€lX]| ze|X|

x above p
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Thus L**(X,F,_): H. — Cu. The subset H, C Sy is called a half space
(of convergence) of So, in analogy with the usual right half plane of C.
Obviously, this definition depends on the morphism g: X — Spec A.
If F = M(¢) for some Drinfeld A-module ¢ on £ over X, then Definition 15
agrees with the one originally given by Goss.

Meromorphy

For ¢ € R>( we define D := {z € Cu | |2| > ¢} C P (Cs) as the punctured
‘open’ disc around oo of radius ¢, and D¥ := {z € Cs | |2| > ¢} as the
corresponding ‘closed’ disc. In particular IH, = D} x Z,,.

To give a precise meaning to ‘entire’, respectively ‘meromorphic extension’
of a global L-function to S, one now changes ones view point. Namely, for any
fixed w € Z,, one regards an L-function as a function D} — C.. With respect
to a suitable topology on the resulting functions D} — C, the variation over
w € Z, will be continuous. We now describe this topology:

For D = D? and ¢ > 0, or D = D} and ¢ > 0, we define

c*(D) := {f = Z anz " ’ an € Co, f converges on D}.

n>0

If D = D}, then C*'(D) is isomorphic to the usual Tate algebra over €, and
one can define a Banach space structure on it by defining for any f € C**(D)
the norm ||f|[. := sup,.p. [f(2)| (which is also multiplicative). In the case
D = D} one can only obtain a Fréchet space. The procedure is slightly more
involved. Namely, let (¢,) C IR be a strictly decreasing sequence with limit c.
For any two elements f,g € C**(D) we define their distance as

) ' el —m ||f_g||cm
dist(f,g) = ) 2 T4+ 1f = gllen

m=1

One can show (a), that with respect to dist the Coo-linear space C**(D) is a
complete linear metric space, and (b), that the topology on this space does not
depend on the choice of the sequence (c,,) (provided that ¢, — ¢ and ¢, > ¢
for all n). In the following, Z, is equipped with its usual locally compact
topology.

Proposition 7. If L(X,F, (z,w))) converges on H,., then the function w +—
(z— L(X, F, (z,w))) defines a continuous function Z, — C**(D}).

This viewpoint bears some similarities to that of p-adic L-functions, where
the complete, algebraically closed field C, takes the role of C**(D}).

For ¢ < ¢ one has the obvious inclusion C**(D}) C C**(D} ), given as
the identity on power series. Also since a power series is uniquely determined
by its coefficients, an element in C*"(D} ) has at most one extension to an
element in C**(D?). Having this in mind, one introduces the following notions:
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Definition 16 (Goss). A continuous function Z, — C**(D{) is called en-
tire. The quotient of two entire functions which are units on D} for some
¢ > 0 is called meromorphic.

A global L-function L**(X,F,s) is called entire, respectively meromorphic
on S, if there exists an entire, respectively meromorphic function h whose
restriction h: Z,, — C* (D7) agrees with L* (X, F,s) for ¢ > 0.

By the remark preceding the definition, there is at most one entire function
h which extends a function L**(X,F,s). The same holds for meromorphic
functions.

For a meromorphic function h, the values h(7), ¢ € Z, are its special val-
ues. In the examples of interest, the special values at —INg will typically lie
in C(2). Since both, Z and INg are dense in Z,,, the special values completely
determine a meromorphic function. One has the following criterion in terms
of special values for L**(X, F, s) to be entire.

Proposition 8. Let H, denote a half plane of convergence for L**(X,F,s)
and write h for the corresponding continuous function Z, — C**(D}). Sup-
pose there exists € € {£1} such that

1. k()¢ is a polynomial in 2~' over Co for all i € —INg, and
2. the degrees of the polynomials h(i)¢, i € —INg, grow like O(log|i|).

Then L*™(X,F, s)® is entire.

The assumptions of the theorem can typically be achieved for X smooth over
IF, of dimension e, for F locally free on X x Spec A, and € = (—1)¢71.

There are two ways to prove Proposition 8. The path taken in the proof of
[B602], Theorem 4.15, uses directly p-adic interpolation properties. In [Go04a],
Goss takes an alternative measure theoretic approach.

Special values
The Carlitz T-sheaf C over A on Spec A is the 7-sheaf corresponding to
(Fy[t] @ IFy[t], (1@t —t®1)(0c ®@id)).

The following result, first observed by Taguchi and Wan, provides the key link
between algebraic and analytic L-functions:

Proposition 9. Suppose X = Spec A = A! and g: X — Spec A is the iden-
tity. Then for i € INg one has

Lan(X7 £7 (Z7O) + 8_7;) = L(Xa£ ®Q®iat)|t:z*17

—1

where we recall s: Z — S 11— 55 = (W3, 1).
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In light of Proposition 8, one would like to bound the degree of L(X,F ®
C® t) while i varies. For this we shall compute Rg(F @ C®%). If one has
a 7-sheaf on Speck representing it, its rank will bound the degree of the
algebraic L-function. Let us denote by j the open immersion A! < P! and
f: P! — Spec IF, the structure morphism.

We proceed as follows: First one changes the coefficients from A to its
fraction field F. Next, one extends the 7-sheaves F and C (over F) to 7-
sheaves F and C on IP! which represent the crystals j1iF and 5C, respectively.
Then, one computes R f,(F @ C®') as a 7-sheaf over F on SpecIF,. In the
case at hand, the 7-sheaves R'f,, i # 1, will all be nilpotent. By the trace
formula, Theorem 12, we thus have

L(X,F@C® t)= dFet(l —tr | R f.F ® C®).

Hence L(X,F ® C®" t) is a polynomial and its degree is bounded by the
dimension of the F-vector space H' (P}, F ® C®?).

The sheaf underlying C can be taken as Op1 (—2). If we follow the above
recipe, then by the Riemann-Roch theorem, the dimension of H'(IP}, .7-'®5®i)
will grow linearly in i. The degree of L(X,F ® C®,t) € Cuo|t] can thus grow
at most linearly. But we can do much better. Namely the sheaf Q‘X’pl is nil-
isomorphic to C?), which is defined by

(F,[t) @ F,[t], (1@t —t®1)(c ®id)).

The latter (considered over F) has an extension C() whose underlying sheaf
is OIP%(—Q). So if we write i = ag + aip + azp? + ... in its p-adic expansion
with a; € {0,1,...,p— 1}, then

(Q(O))Q@ao ® (é(l))®a1 ® (é@))@az ®...

also represents the crystal 5iC?, but its underlying sheaf is OIP% (—2(ap+ a1 +
as + ...)). It follows that the degree of L(X,F ® C® t) grows at most loga-
rithmically in ¢. This combined with Props. 8 and 9 proves the following result

which in the given form with a different proof is due to Taguchi and Wan,
cf. [TW96]:

Theorem 14. Suppose X = Spec A, g: X — Spec A is the identity, and F is
locally free over A on X. Then L**(X,F,s) is entire.

Refining the above methods, in [B602] the following is shown:

Theorem 15. Suppose X is Cohen-Macaulay and equidimensional of di-
mension e. Then for any locally free T-sheaf F over A on X the function
Lo (X, F,s)"V" s entire.
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Using the representability results for flat crystals, and the theory of iterates
of characteristic polynomials, as developed in [BP04], one obtains, by decom-
posing X into a suitable finite union of regular locally closed subschemes, the
following consequence:

Corollary 2. Suppose X — Spec A is a scheme of finite type and F is a flat
A-crystal on X. Then L*(X,F,s) is meromorphic.

5.3 Open questions

While on the one hand side, we have seen that under some reasonable set of
hypotheses the analytic functions L** (X, F, s) are meromorphic, there remain
many mysteries concerning these functions. The interpolation procedure seems
to identify them as a kind of p-adic L-function interpolating special values
at the negative integers. At the same time, these functions also have Euler
products. We pose some open problems:

Question 1. What is the arithmetic meaning of the special values?

For an analog of the Riemann (-function, already in the work of Carlitz there
appeared identities that are reminiscent of the formulas {(n) = 7"r,, for even
n € IN and rational 7,. So Carlitz’ formulas have some arithmetic meaning.
For more on this, we refer to [Go96], § 8.18.

Question 2. Is there a conjecture & la Birch and Swinnerton-Dyer (BSD) for
A-motives?

A naive analog of BSD can not hold, since it is known due to a result of
Poonen, cf. [Po95], that the naive analog of the Mordell-Weil group for a
Drinfeld A-module over a field L as in Section 2 is of infinite A-rank. In
[An96] in certain cases, a finite rank A-module has been constructed, that
could serve as a starting point to investigate such a conjecture.

Question 3. Is there a Riemann hypothesis or a (substitute for a) functional
equation?

There is no duality to be expected for crystals or 7-sheaves, as explained in
Remark 2. Nevertheless there are very intriguing calculations along these lines
which are very suggestive although definitive conjectures cannot now be made,
cf. [Go00] and [Go04].

6 Motives for Drinfeld cusp forms
Using geometric means, Scholl in [Sch90] has constructed for the space of

cusp forms (over Q) for each fixed weight and level a motive in the sense
of Grothendieck. In this section, we want to describe a similar construction
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for Drinfeld modular forms in the function field case. It attaches a motive in
the sense of Anderson to each space of Drinfeld cusp forms of fixed weight
and level. Again for the sake of exposition, we only consider the simplest case
A =T, [t]. Details of this appear in [B604].

6.1 Moduli spaces

Let n be a proper-nonzero ideal of A. In Subsection 4.2, and there in particular
in Theorem 2, we recalled the definition and existence of a fine moduli space
2" (n) for Drinfeld A-modules of rank r and characteristic prime to n that
carry a level n-structure. From now on, we only consider the case r = 2,
and therefore omit the superscript r whenever r = 2. As in Subsection 4.2, by
M(n) we denote the 7-sheaf corresponding to the universal Drinfeld A-module
on P(n), and by g : P(n) — Spec A(n) its characteristic.
The first observation we will need in the following is due to Drinfeld:

Theorem 16. The morphism g, has a (canonical) smooth compactification

%x

\/

Spec A(n

The completion of X(n) along the complement X(n) \ P(n) (considered as a
reduced scheme) is (formally) smooth over Spec A(n), and may be considered
as a disjoint union of what one might call Drinfeld-Tate curves. They describe
the degeneration of rank 2 to rank 1 Drinfeld modules and have properties
analogous to the usual Tate curve. For details of this construction, cf. [B604],
[vdHO3], [Le01].

To describe the connectivity properties of )(n) and the cusps, recall that in
the case of elliptic curves the existence of the Weil-pairing yields a morphism
of the corresponding (compactified) moduli space to Spec Z[(y, %] Over this
base the moduli space is geometrically connected, and so not over Z itself.

Similarly one has a pairing on rank 2 Drinfeld A-modules. It induces a
smooth morphism w,: P(n) — VD' (n) to the moduli space of rank 1-Drinfeld
modules with a level n-structure, which may be extended to a smooth proper
morphism @y, : X(n) — Y (n), cf. [vdHO3]. The situation together with the
canonical morphism 2*(n) — Spec A(n) is displayed in:

D(n) € X(n) 2 X(n) \ Y(n)
k i’ﬁ" %
' (n) 9)
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The morphism g} is finite étale, say of degree d(n); the morphism w,, is geo-
metrically connected. Thus if we pass from A(n) to Coo, the space P! (n) will
decompose into d(n) copies of €. Correspondingly, X(n) breaks up into d(n)
components. Finally, under dwy, the scheme X(n) \ 9(n) is isomorphic to a
disjoint union of copies of P! (n). Their number is denoted by c(n).

6.2 Rigid analytic uniformization

Over Z[1/n], one has a compactification similar to X(n) — Spec A(n) for the
arithmetic surfaces that arise as the moduli space of elliptic curves with a level
N-structure. This is described in detail in [KM85]. If instead, one works over
the complex numbers and the finer complex topology, the situation becomes
considerably simpler. The resulting curves admit a uniformization by the up-
per half plane, and can be realized as quotients by congruence subgroups.

The analogous procedure in the function field setting is to base change
PD(n) via ¢: A(n) — Cx to a curve over Spec €. Now one regards the curve
over Co, as a rigid analytic space — we write 9 (n)"® — which again yields a
finer (Grothendieck) topology than the Zariski topology. For details on the
rigidification functor X + X"8 we refer the reader to [BGR84].

As observed by Drinfeld, there is an analog of the upper half plane, usu-
ally denoted §2. The rigidified moduli space 9)(n)"# is in fact isomorphic to

|_|1C-li"1) I'(n)\{?2 for a suitable quotient of 2, which we now describe:

The points of £2 over €, are given as 2(Cy.) := P (Co) \ P (F4 ). They
are acted on by the group GLo(Fy) via

az+b
cz+d

GLa(Fa) X 2(Co0) — 2(Cs0) - ((g)z) —

To give {2 the structure of a rigid analytic space, we describe an admissible
cover (which is the analog in rigid geometry of an atlas in differential geome-
try). Its construction can be best understood, if one introduces the reduction
map of 2(Cy) to the corresponding Bruhat-Tits tree. The atlas we describe
arises via pullback from a simple combinatorial Cech covering of the tree. Not
wanting to introduce these notions, we now directly define the cover: Let IF
be the residue field of F,, and ¢ its cardinality, and define

Uo(Coc) = {2 € O | 2= Bloc > g22/% for all § € g and |2] < g2},

The set $4p(Coo) is rigid analytically equivalent to the unit disc with ¢, smaller
discs removed. One can show that

1. If for v € GLa(F) the intersection Ug(Coo) Ny (Lo (Cxo)) is non-empty,
then one has precisely g., + 2 possibilities: Either the intersection is

Up(Coo), or it is

0 (Co) = {z € Cx | g} < 20 < q<§é3}v
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or there exists some 3 € IF,, such that it is of the form
{20212 -l 2 022},
2. The sets in 1 different from 4(C) are all translates of 4 (Cuo).

3. The sets yip(Coo), ¥ € GLa(F), form an admissible covering of 2(Cy).

To define a geometry (in this case a rigid analytic structure), one also has
to describe a set of functions on the atlas given. A function f: $5(Co) — Coo
is rigid analytic on $y(Cys), if and only if it can be written as a series

Z anz™ + Z Z bpg(z—0)""

nelNg BEF o neIN

which converges on all of 4y (C). The latter simply means that the sequences
(Jan|g?/®™) and (|b, slg~2/3"), for all 3 € TP, tend to zero.

Definition 17. A function f: 2(Cs) — Cx is rigid analytic on 2(Cx), if
for all v € GLy(Fs) the restriction of f oy to Uo(Coo) is rigid analytic.

To describe I'(n)\ (2, we recall that one defines
I'(n) :={y € GLy(A) | y=id (mod n)}.

It is a discrete subgroup of GLa(Fx), and thus acts on £2(Cw). Say we fix
v € GLa(F) and abbreviate 4 := ~ily. Then for vy € I'(n) one either has
Yol = U or v N = @. The former case only occurs a finite number of times,
so that the stabilizer Stabp ) (L) of & in I'(n) is finite. One may define rigid
analytic quotients Stabp(,)(4)\4, and these can be glued to define a rigid
space I'(n)\f2.

6.3 Cusp forms

Following the case of elliptic modular forms over number fields, one can define
Drinfeld modular functions (and cusp forms) over function fields as follows:

Definition 18. A rigid analytic function f: 2(Cs) — Co is called a mod-
ular function of weight k € IN for I'(n), if it satisfies the identity

f(vz) = (cz+d)f(2) forall v = (‘ZZ) €I'(n) and z € 2(Coo).
The modular functions of level n are invariant under the operation of
To(n) == {7 = ((1)’1’) |be n},

i.e., under translation by all b € n. Another such function is
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en(2) ==z H (1 - ;)

Aen\{0}

The function t, := e, ! is, in a suitable sense, a uniformizing parameter of

n-invariant functions near co. Therefore any modular function has a Laurent
expansion
fz2) =Y anti(2)
neZ

convergent for |z|; > 0, where |z|; := inf{|z — a| | a € Fx}.

If f is a modular function of weight k for I'(n), then so is f o~ for all
v € GL3(A), because I'(n) is normal in GLy(A). Therefore one can equally
consider the expansion ), .5 a,,t5(2) of fo. Since GLa(A) acts transitively
on the “cusps” of I'\ {2, following the case of elliptic modular forms one defines:

Definition 19. A modular function f of weight k for I'(n) is called a

modular form n <0
cusp form <= Vv e GLa(A)Vn e Z with ¢ n<1 ) ap,=0.
double cusp form n <2

By My (I'(n),Cs), we denote the Co-vector space of modular forms for
I'(n) of weight k and by Sk(I'(n),Cs0) and SI(I'(n),Cs) its subspaces of
cusp and double cusp forms.

The number of conditions imposed in Definition 19 is finite, since it suffices
to require these condition for matrices v which form a set of representatives
of I'(n)\ GLa(A).

Elliptic double cusp forms are usually not considered, since the have no
meaningful interpretation. One reason to introduce them in the Drinfeld mod-
ular setting is given below in Theorem 17.

To define modular forms on 9)(n)"® one uses its identification with
L™ P (n)\£2. Formally we set

M(n, Coo) := My(I'(n), Coo)4™, (10)

and similarly for cusp and double cusp forms.

As in the classical situation, one may define Hecke operators (e.g., as
correspondences) which act on Drinfeld modular forms. These preserve the
subspaces of cusp and double cusp forms. (Depending on their normalization,
Hecke operators may also “permute” the components of P (n)/Cx.)

We conclude this subsection with two examples. For the first, recall that
P (n) is an affine scheme, say equal to Spec R,, for some smooth A(n)-algebra
R,. As remarked in Theorem 2, the universal rank 2 Drinfeld A-module is a
homomorphism A — Endp, (G4 9 n)), i-e., a homomorphism

¢n: A — Ruo{7}.
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There are morphisms from R, to its rigidification, and then from the latter to
the ring of global rigid analytic sections I'(£2, O#)*™ of Ufi"l) 2(Cy). This
yields a homomorphism

¢(n): A — (02, 0GF) ™ {r}.

Proposition 10. For any a € A consider ¢(n),. The coefficient of its leading
term r2dega lies in Spzacza_1(n, Coo), the coefficients of the remaining terms
7" lie in Myi_1(n, Cxo).

As for elliptic modular forms one has an interpretation of the global sec-
tions of the sheaf of differentials on X(n) in terms of modular forms:

Theorem 17. There is a canonical isomorphism
HO(X(n)"8, 2y (nyre e ) = 95°(n, Coo).

Without going into any details, the reason for the occurrence of double cusp
forms is the following. Suppose f(z) is a Drinfeld modular form of weight 2
for I'(n). Then f(z)dz is a global I'(n)-invariant differential form on 2(C).
To investigate its behavior near the cusp described by t,, observe that one
has de, = dz from the definition of e,, and hence

dt, = d(eyt) = —e, 2dz = —t2dz.

Thus near the cusp for t,, the function f(z)dz is a power series in ¢, times
—t%dtn. Hence if we start with a double cusp form, we obtain a global differ-

ential on X(n), and vice versa.

6.4 The motive

Following the guide by Eichler-Shimura and Deligne, we now define for any
k > 2 the locally free 7-sheaf M(n)*~2) := Sym*~? M(n), and the A-crystal

S®(n) := Rl guM(n)+=2 (11)

on Spec A(n). By Proposition 3 the 7-sheaf M (n)*~2) is locally free of rank
k — 1. Because 2(n) is affine, the corresponding module is projective and
finitely generated. If we extend it to a free module and choose 7 = 0 on the
complement, we find that M (n)(*=2) is of pullback type. Also it is not difficult
to see that the crystal RogngM(n)(kfz) is zero. Since moreover g, is smooth
and proper of relative dimension 1, Proposition 5 yields:

Proposition 11. The crystal R'gaM(n)*=2) is zero for i # 1. The crystal
S®(n) = R'guM(n)*=2) is of pullback type and hence flat.
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In [B604], jointly with R. Pink we computed some explicit examples of
such motives for A = IF[t] and n = (¢). Other explicit examples are given in
Corollaries 4, 5 and 6.

Considering geometric correspondences, one can define Hecke operators
T, for all places of A prime to n. They naturally act on the crystals S*) (n).
Let p, be the maximal ideal corresponding to v. The Hecke operators will
still act as Hecke operators on the reduction of S(*)(n) to the fiber at v, i.e.,
its pullback along Spec A/p, — Spec A(n). As basically already observed by
Drinfeld, one has an Eichler-Shimura relation:

Theorem 18. The action of T, on the fiber of S*)(n) at v is given by the
action of the geometric Frobenius Frob, at v on this fiber.

6.5 Its analytic realization

We now follow the guide of A-motives to define an analytic realization of the
crystals S®)(n). First we pull back this crystal via A(n) — Cu to a crystal
over A on C. Because it is flat, we may by using Proposition 6 represent it
by a 7-module (S*)(n),7) over A on €, whose underlying sheaf is finitely
generated projective, and on which 7 is injective. In [B604] it is shown:

Theorem 19. The T-module (S*)(n), 7) is uniformizable in the sense of Def-
mition 3.

Therefore we call

(s® )"

the analytic realization of the motive S™*)(n). This realization carries an in-
duced Hecke action. The following main result is shown in [B&04]:

Theorem 20. There is a canonical Hecke-equivariant isomorphism
Hom 4 ((S(’“) (n)(t)) ,QA) ©4 Coo 2 Sp(n, Coo).

The result should be compared with foymula 3. The proof uses rigid ana-
lytic tools and an explicit combinatorial Cech covering of X(n)". It would go
beyond the scope of this article to give details.

Using the Hecke action one may define a Hecke-invariant filtration on
S™(n) whose subquotients are flat crystals S corresponding to (generalized)
cuspidal Drinfeld Hecke eigenforms f. Neither the filtration, nor the crystal
S are canonical, and more precisely the crystal Sy corresponds to the Galois
orbit of f, and one has to be aware that the Hecke action on S*)(n) may not
be semi-simple. Nevertheless, these subquotients are useful.
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6.6 Its étale realizations

Let us fix a place v of A. Then S®)(n)®4 A/p? defines a flat crystal over A/p”
on Spec A(n). Via the functor e from Subsection 4.8, we obtain a lisse étale
sheaf of A/p"-modules on Spec A(n), which say we denote by S (n, A/p?).
Varying n, these sheaves form a compatible system, and thus a v-adic étale
sheaf on Spec A(n). Since all sheaves in this systems are lisse, we obtain a
Galois representation

Pukw: Gp — GLdn,k(AU)’

where dy i, is the dimension of Si(n, Coo).

The filtration on S*)(n) described at the end of the previous subsection
induces also a filtration on the compatible system S (n, A/p"). The subquo-
tients yield the compatible systems e(Sy ®4 A/p}) corresponding to (Galois
orbits of generalized) cuspidal Drinfeld Hecke eigenforms f. The correspon-
dence can be made precise by using the Eichler-Shimura relation from Theo-
rem 18. One obtains:

Theorem 21. Let [ be a cuspidal Drinfeld Hecke eigenform (over Co) and
denote by Fy the field generated over F' by the Hecke eigenvalues a, of f
where w runs through all places of A prime to n. Then [Fy : F] is finite and
for any place v of A there exists a place v' of Fy above v and a representation

prw: Gal(F*P/F) — GL1((Fy)w)

uniquely characterized by
pra(Frob,) = ay, (12)

for all places w of A which are prime to np,,.

This result is strikingly different from the analogous one for elliptic modu-
lar forms since there the representations are 2-dimensional. To explain this,
we recall the following observation on Hecke operators which dates back to
Gekeler and Goss. Namely one can define Hecke operator Ty, for any non-zero
ideal m prime to n. In characteristic p they satisfy Tym = TmTwm for any
ideals m, m’, and in particular for m a power of some prime ideal p. This is
different from the case of characteristic zero, but it simply follows from the
usual relation by reduction modulo p. Another reason why one should expect
abelian representations is given below Corollary 6.

The characterizing property (12) is basically the same at all places v of A.
This means that the representations ps, form a compatible system of v-adic
abelian representations of Gg. (The same holds for the semisimplification
of the representations pn x..) Thus extending the results of [Kh04] to the
function field case, it seems natural to expect that to any Drinfeld cusp form
one can attach a Grossencharacter xs of type Ag such that the compatible
family py¢,, arises from xy in the way described in [Kh03], § 4, and [G092].
Therefore the following natural question arises:
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Question 4. Which Gréssencharacters of F' of type Ay do arise from Drinfeld
modular forms?

Can any Grossencharacter of F' of type A be twisted by a power of the
Grossencharacter arising from the Carlitz-module (as in [Go92]), such that it
arises from a Drinfeld modular form?

Recall that C is the Carlitz-module defined above Proposition 9. Then
Question 4 is a generalization of the following problem raised in [Go02]:

Question 5. Can one find for any Drinfeld IF,[t]-module ¢ on SpecIF,[t] of
rank 1 an n € INg such that M(¢) ® C®" is the motive of a modular form?

Namely any such Drinfeld module determines a Hecke-character of type Ag
and is moreover uniquely determined by this Hecke-character.

6.7 L-functions

Having the (non-canonically defined) crystal S attached to any cuspidal Drin-
feld Hecke eigenform f of level n, using the formalism described in Subsec-
tion 5.2 one can attach an analytic L-function to it. It is independent of the
choice of §. This yields non-trivial factors in the Euler product at all primes
not dividing n. However the function f may be an old form, i.e., defined over
some smaller level n’. Thus it would be desirable to also have Euler factors
at primes in Spec A/n \ Spec A/n’. One way to achieve this is to assign to f
the analytic L-function of the maximal model of S in the sense of Gardeyn,
cf. Definition 6. This assignment is now also independent of the level in which
f was found. Using in particular Theorem 14 and Theorem 21, one shows:

Corollary 3. For f a cuspidal Drinfeld Hecke eigenform of minimal level n
and with Hecke eigenvalues a,, one has

e = 1 (1—%)7

vEMax(A(n))

for s = (2,w) € Soo with |2] > 0. The function L3"(s) is entire in the sense
of Definition 16.

In [Go91] two further analytic L-functions are attached to a cuspidal Drin-
feld modular form. These are known to be different from that in Corollary 3.

Question 6. What is the relation between these L-functions if any?

The assignment f — L‘}“(s) described in Corollary 3, attaches to a Hecke
eigenform an L-function. However unlike in the situation for elliptic modular
forms, there is no normalization for such forms in the Drinfeld modular set-
ting. In the elliptic modular setting the typical requirement is that the first
Fourier coefficient of f is 1. As the examples of doubly cuspidal Drinfeld Hecke
eigenforms show, this coefficient may be zero in our setting.
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Question 7 (Goss). Is there a canonical normalization of a cuspidal Drinfeld
Hecke eigenform?

If the answer would be yes, then by superposition one could attach an L-
function to any Drinfeld cusp form.

uestion 8. Can the assignment f — L¢(s) be realized by an analog of the
!
usual Mellin transform?

6.8 Double cusp forms

We saw in Theorem 17, that double cusp forms do play an important role
in the theory of Drinfeld modular forms. So one may wonder whether there
is also a motive describing these. The answer, in short, is yes, and we will
explain some of it, since it leads to another interesting question.

Let k > 2. In Subsection 6.4, we defined S*) (n) = R'g, jngM(n)(kfz),
i.e., we first extended the crystal M(n)*=2) to X(n) by zero, and then we
computed its first cohomology. In Remark 2, we noted that Gardeyn’s notion
of maximal model leads to a functor jx on A-crystals provided the base X
was of finite type over some field. Therefore we may define

k _ _
S5 (1) = R'ga jugp M(n) 2.
One can now formulate (by adding the subscript 4c) and prove the precise
analog of Theorems 19 and 20 for double cusp forms, cf. [B604].

It is in fact possible to completely determine the discrepancy between cusp
and double cusp forms. Namely for any & > 2 one has a short exact sequence

0 — HMm)*2 — G Mm) P — Loy g mya — 0

of crystals. The long exact sequence of cohomology then yields a 4-term exact
sequence of crystals

0 = GnejpMm)*2 = G Ty gy — ST M) — S ) — 0. (13)

The properties of diagram (9) yield gn«Ly (n)\9)(n),4 = (gi*lml(n)’A)c(n). More-
over for k # 2 the left hand term vanishes, for £k = 2 it is isomorphic to
Inidlgyi(ny,a-

We define Si(n, Coo) := Sp(n, Coo) /S (n, Cx), and set &y, := 0 for k > 3
and d, := 1 for k = 2. Sequence (13) with the above identifications, the duality
in Theorem 20, and the analogous duality for double cusp forms, prove:

Corollary 4. There is a fized Hecke-module of dimension d(n) depending on
n but not on k, such that Si(n,Cs) is the direct sum of ¢(n) — i copies of it.

The Hecke-module in question arises from the arithmetic of 2)*(n).
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Question 9. Can one give an explicit basis for the cuspidal Drinfeld Hecke
eigenforms which are not double cusp forms, in a way similarly explicit to the
the description one has for Eisenstein series?

It is equally interesting to consider the consequences of (13) for the étale
realization of our motives. With J; as above, one obtains:

Corollary 5. The v-adic étale realization corresponding to Sp(n, Cso) consists
of (c(n) — k) copies of HY(YP(n)!/F*PF,) ® F,, considered as a Galois
representation of G (which is unramified outside n).

In particular this shows that the étale realizations corresponding to the Hecke
eigenforms in Sk (n, Co) give rise to Galois representations over IF,, and thus
with finite image. The proof of the corollary uses, among other things, the
compatibility of the functor € of Theorem 11 with coefficient change and with
proper push-forward.

Specializing (13) to k = 2, and passing to étale realizations one finds:

Corollary 6. The v-adic étale realization 0f§((fc)(n) is the Galois representa-
tion given of Gp on H'(X(n)/F*?,IF,) ® F,,.

Again this describes Galois representations over IF; and thus with finite image.
It is known that the curve X(n)/F is ordinary, and hence so is its Jacobian,
which, say, we denote by J(n). One therefore has

H' (X(0)/F*P,IF,) = J () [p)(F?) = Z/ (p) ™ /™,

where the first isomorphism is an isomorphism of Galois modules. Since in
particular the semisimplification of the module in the middle is abelian, this
gives another indication for the abelianess of the representations py .

The examples in [B604] show that the image of p;, is typically infinite
for f € Sd¢(n,Cys) and k > 2. This is related to a notion of weight that one
can attach to (pure) motives. Again this notion goes back to Anderson. Its
definition is similar to the notion of weight for f-adic sheaves due to Deligne.
Now for an elliptic cuspidal Hecke eigenform of weight k one knows that the
weight of its f-adic Galois representation is k — 1, which in turn yields the
Ramanujan-Peterson conjecture. By considering examples we expect that for
cuspidal Drinfeld Hecke eigenforms of weight k the following holds: The weight
of their v-Galois representation is well-defined and an integer in [0, ..., %]
A proof of this is still lacking.
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