
Points and places

Places = maximal ideals of discrete valuation rings in F/k
= scheme theoretic points of C.

A place P defines
• local ring oP,
• residue class field k(P) = oP/P, deg(P) := [k(P) : k],
• evaluation map F → k(P)∪{∞}, a 7→ a modP,
• valuation vP : F → Z∪{∞}.

Example:
• F = k(x),
• P1 = (x−1) with v(x−1)(z) = power of x−1 in z for z∈ F ,
• P2 = ∞ with v∞(z) = −deg(z) for z∈ F .
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Divisors
Divisors = finite formal sum of places with integral multiples

D = ∑PnPP mit nP ∈ Z almost all zero.

Principal divisor D = div( f ) := ∑PvP( f )P für f ∈ F×.

Example:
• D = 7P2−2P1.
• div(x−1) = P1−P2

Degrees:
• deg(D) = ∑PnPdeg(P). deg(f ) := deg(∑nP>0nPdeg(P)).
• Have deg(f ) = [F : k( f )] and deg(div(f )) = 0.

vP(D) := nP.
D1 ≥ D2 :⇔ vP(D1) ≥ vP(D2) for all P.
supp(D) := {P|vP(D) 6= 0}.
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Curves and function fields

Let
• k be an arbitrary perfect base field (later k = Fq).
•C0 an irreducible algebraic curve over k.
• F = k(C0) function field of C0.
•C irreducible complete regular curve over k defined by F/k.

Example:

•C0 : y2 = x7−1 over k = Q.

•C : y2 = zx7−z8 where w(x) = w(z) = 1 and w(y) = 4.

C0 and C need not be absolutely irreducible, or k need not be
algebraically closed in F.
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Picard groups
Div(C) divisor group, Div0(C) subgroup of divisors of degree 0.
Prin(C) group of principal divisors.

Pic(C) = Div(C)/Prin(C) Picard group.

Pic0(C) = Div0(C)/Prin(C) degree zero Picard group.

Have

• Pic(C) ∼= Z⊕Pic0(C).

• Pic0(C) ∼= Jac(C)(k).

Example:

• Pic0(P1) = 1

• Pic0(E) ∼= E(k).

Florian Hess 7 Seattle May 26th, 2010

Riemann Roch and Picard groups
Equality of divisor classes:

• Let [D], [E] ∈ Pic0(C). Then [E] = [D] iff L(E−D) 6= 0.

Unique class representatives:
• Let A be a place of degree one.

• For [D] ∈ Pic0(C) let z∈ L(D + rA) with r ≥ 0 minimal. Write
D̃ = D + rA + (z).

• Then D̃ ≥ 0, deg(D̃) ≤ g, [D̃− rA] = [D] and D̃ is uniquely
determined.

Tangent-and-chord method for elliptic curves in one step:
• A = ∞. D = (P)− (∞) + (Q)− (∞).
• Can choose r = 1 because g = 1.

• D̃ = (P+Q). (P+Q)− (∞) = (P)− (∞) + (Q)− (∞) + (z).
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Riemann-Roch

L(D) := {a∈ F× | div(a) ≥−D}∪{0} is a k-vector space.

Theorem: There is a divisor W and g≥ 0 such that for all divisors D:

dim(L(D)) = deg(D) +1−g+dim(L(W−D)).

Here W canonical divisor, g genus of F/k and C.

Example:
• F = k(x),
• P1 = (x−1) with v(x−1)(z) = power of x−1 in z for z∈ F ,
• P2 = ∞ with v∞(z) = −deg(z) for z∈ F ,
• D = 7P2−2P1.

• Then L(D) = {∑5
i=0λixi(x−1)2 |λi ∈ k}.
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Constructive Riemann-Roch

Input is C0 and algorithms for k, k[x] and k[x]n×n.

Tasks: Represent functions, places and divisors. Compute with
• residue class fields k(P), valuations vP.
• k-linear algebra in F.
• bases of Riemann Roch spaces L(D).
• Canonical divisors W, genus g, exact constant field L(0).

Complexity measures:
• Count operations in k and Z depending on input length in k and Z.
• Main dependency on C0, g, deg(P), ht(D) := ∑P |vP(D)|deg(P).
• Want (best) polynomial time.
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Remarks

The Weil and Tate-Lichtenbaum pairings have geometric
generalisations to abelian varieties ⇒ arithmetic duality.

Here specialisation to Jacobians ⇒ class field theory.
Useful: Description in terms of 1-dimensional objects possible.

Properties of pairings:
• Well-definedness and bilinearity easy with Weil reciprocity.
• Non-degeneracy via arithmetic duality / class field theory.
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Riemann Roch and pairings

Need to compute:
• div( f ) = rD ⇔ f ∈ L(−rD).

• f (E) = ∏PNk(P)/k( f modP)vP(E).

Can assume: ht(D),ht(E) = O(g).

Problem: Well possible that r ≈ qg, so ht(−rD) exponential in g.

Using divisor reduction:

• Can write f = ∏log2(r)
i=0 f 2i

i with deg(f ) = O(g).
• Yields a generalised Miller algorithm.
• Runtime essentially log2(r) evaluations fi(E).
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Pairings

Evaluation of functions at divisors:
• f ∈ F×, D ∈ Div(C).

• f (D) := ∏PNk(P)/k( f modP)vP(D).

Only defined when vP( f ) = 0 for P∈ supp(D).

Approximation Theorem:
• Let D,E ∈ Div(C).
• There is h∈ F× such that supp(D +div(h))∩supp(E) = /0.

Weil reciprocity:
• f (div(h)) = h(div( f )).
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Pairings
Let r ≥ 1, gcd(r,char(k)) = 1 and assume µr ⊆ k.

Weil pairing:
er : Pic0(C)[r] ×Pic0(C)[r] → µr

• [D], [E] ∈ Pic0(C)[r], div( f ) = rD, div(h) = rE.
• er([D], [E]) = h(D)/ f (E).

• bilinear, antisymmetric, non degenerate if #Pic0(C)[r] = r2g.

Tate-Lichtenbaum pairing for k = Fq:

tr : Pic0(C)[r] ×Pic0(C)/rPic0(C) → µr

• [D] ∈ Pic0(C)[r], [E] ∈ Pic0(C), div( f ) = rD.

• tr([D], [E]) = f (E)(qk−1)/r.
• bilinear, non-degenerate.
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Basic algorithms

Representation of F and C:
• Using C0 we find a complete C1 birational to C0 with a finite

separable surjective morphism C1 → P1 of degree n.
• F = k(x)[y] with f (y) = 0 for f ∈ k(x)[t].
• E = F [z] with h(z) = 0 for h∈ F [t].
•C1 represented by some Ri-orders Oi with Ri ⊆ k(x).
•C represented by integral closures Cl(Ri,F).

• P1 = ∪iSpec(Ri), C1 = ∪iSpec(Oi), C = ∪iSpec(Cl(Ri,F)).
• Ri principal ideal domain, e.g. Ri = k[x],Rj = k[1/x].

Oi and Cl(Ri,F) have bases of the form ω1, . . . ,ωn and there are
λi, j ,ν ∈ Ri with ωiω j = ∑n

ν=1λi, j ,νων.

Bases of Cl(Ri,F) lead to regular affine curves.
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Basic algorithms

Algorithmic number theory (over Z) provides essentially everything
that is needed in Oi and Cl(Ri,F):
• integral closures,
• ideal arithmetic and factoring,
• valuations, residue class fields,
• differents and discriminants.

Much is reduced to linear algebra over Ri, avoids potentially
expensive Gröbner basis computations (have n variables).
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Riemann Roch and pairings

Need to have supp(D)∩supp(E) = /0.

Translation and divisor reduction:
• Choose a place A with deg(A) = 1 and A 6∈ supp(D).

• Write D = D̃− rA− (z) as before.

• If supp(D̃)∩supp(E) = /0, use D̃− rA instead of D.

Example:
• D = (P)− (∞), A = Q, r = 1,

• D̃ = (P+Q),

• D̃− rA = (P+Q)− (P).
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Riemann Roch and pairings

Need to have supp(D)∩supp(E) = /0.

Approximation theorem:
• Choose a place A with deg(A) = 1 and A 6∈ supp(E).
• Define EP = ∑Q∈supp(E)\{P}Q for P∈ supp(E).
• Choose r sufficiently large such that there is

zP ∈ L(D + rA−EP)\L(D + rA−EP−P) for all P∈ supp(E).
•⇒ vP(zP) = vP(−D) and vQ(zP) > vQ(−D) for all Q∈ supp(E)\{P}.
•⇒ z := ∑PzP satisfies vP(z) = vP(−D) for all P∈ supp(E).
•⇒ supp(D +div(z))∩supp(E) = /0.
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Divisor reduction

Problem: Compute L(D) if D has large exponents or large degree.

Let A be a divisor with deg(A) ≥ 1 and g the genus of F/k.

For D there is D̃ ≥ 0 with D = D̃− rA− (z) and deg(D̃) ≤ g+deg(A)−1.

D̃ is uniquely determined, if r minimal and A place with deg(A) = 1.

• Choose z∈ L(D + rA) and let D̃ = D + rA + (z).

• Given D3 = D1 +D2, D̃3 is easily computed from D̃1 + D̃2 alone.

Yields
”
double-and-add“ method ...
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Divisor reduction

”
Double-and-add“ method with divisor reduction:

• Write D = ∑m
i=02iDi with all exponents in Di one.

• Evaluate horner-like D = 2(· · · (2D1 +D0) · · · ), and apply divisor
reduction to intermediate results.

• Leads to D̃ = D + rA + (z) with z= ∏log2(r)
i=0 z2i

i .
• If Di large than apply divisor reduction successively also to Di as a

precomputation.

• Leads to D̃ = D + rA + (z) with z= ∏log2(r)
i=0 (zi ∏ti

j=1zi, j)2i
.

• deg(zi) = O(g), deg(zi, j) = O(g) if max{deg(P) |P∈ supp(Di)} = O(g).
ti = O(#supp(Di)).

Thus log-dependency on expos and linear dependence on #supp(D).
Resulting objects of degree O(g) if max{deg(P) |P∈ supp(D)} = O(g).
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Places and divisors

o∞ := {g/h | g,h∈ k[x] and deg(g) ≤ deg(h)},
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Intersection

k[x]-basis of d
−1
1 : a1, . . . ,an, o∞-basis of d

−1
2 : b1, . . . ,bn.

M ∈ k(x)n×n : (b1, . . . ,bn)M = (a1, . . . ,an)

Lemma (“LLL” algorithm):

∃ R∈ GLn(o∞), T ∈ GLn(k[x]), di ∈ Z: RMT =
(

x−di δi, j

)

i, j
.

Suppose M =
(

x−di δi, j

)

i, j
and c = ∑n

i=1λiai:

Then c∈ L(D) ⇔ λi ∈ k[x] and x−diλi ∈ o∞.

Let Br := { x jai | 1≤ i ≤ n, 0≤ j ≤ di + r}.

Theorem: Br is k-basis of L
(

D + r(x)∞
)

for all r ∈ Z

Can replace o∞ by k[1/x] in all statements.
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Computing in Picard groups

In Pic(C):
• Principal divisor test, divisor reduction, with deg(A) = 1 unique

class representatives.

In Pic(Cl(k[x],F)):
• Let S= Spec(Cl(o∞,F)).
• Have Pic(Cl(k[x],F)) ∼= Pic(C)/〈S〉.
• Need to test membership [D] ∈ 〈S〉.
• Easy for #S= 1, otherwise solve DLP. Better use pairings?

After a precomputation complexity for one group operation in Pic0(C)
between O(g2) and O(g4).
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Applications

Algebraic-geometric codes {( f (P1), . . . , f (Pn)) | f ∈ L(D)}.

Differentials: ω = f dx, f ,x∈ F , x separating element.

Exact constant field: L(0).

Gap numbers and Weierstrass places.

Structure of Picard groups of curves over finite fields, DLP.

Tate pairing on Picard groups (multiplicative and additive version).

Class fields, curves with many rational points, good codes.

Isomorphisms and automorphisms of function fields.

...
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Divisor reduction

Computation of L(D) for large D:

• Apply divisor reduction D̃ = D + rA + (z).

• Compute L(D̃− rA).

• Have L(D) ∼= L(D̃− rA) under f 7→ f/z.

If deg(D) large then use A = (x)∞:
• parametric bases Br also for large r efficient.

Summary: Computation of L(D) works efficient in n,g if
max{deg(P) |P∈ supp(D)} = O(g) and #supp(D) = O(g).
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Representation of divisors

Useful data types for / representation of divisors:

• Free representation as sum of places with multiplicities.

• Ideal representation in terms of (inverses) of ideals on affine
patches.

• Reduced representation via D = D̃ + rA + (z).

Useful data types for / representation of algebraic function:

• Product representation with multiplicative support (evaluation,
norms, principal divisor, factorisation, equality).

• ...
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