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Abstract. We develop a simple and efficient algorithm to compute Riemann-

Roch spaces of divisors in general algebraic function fields which does not use

the Brill-Noether method of adjoints nor any series expansions. The basic idea
also leads to an elementary proof of the Riemann-Roch theorem. We describe

the connection to the geometry of numbers of algebraic function fields and

develop a notion and algorithm for divisor reduction. An important application
is to compute in the divisor class group of an algebraic function field.

1. Introduction

Let F/k be an algebraic function field of transcendence degree one and D be a
divisor of F/k. The construction of a k-basis of the Riemann-Roch space

L(D) := {a ∈ F× | (a) ≥ −D} ∪ {0}

is one of the fundamental tasks in algebraic function theory or the theory of alge-
braic curves because of the central position of the theorem of Riemann-Roch. So-
lutions to this task have been considered in many places for important applications
such as, for example, the construction of algebraic geometric codes [16, 24, 26], the
explicit addition in the divisor class group [21, 38, 39], symbolic parametrizations
of curves [19, 20], integration of algebraic functions [11], the study of diophantine
equations [7] or the computation of divisor class groups of global function fields and
related problems [18].

These solutions can roughly be divided into geometric and arithmetic methods
due to their origin or background. The geometric methods [16, 21, 24, 38, 39] use
the Brill-Noether method of adjoints [2, 28] whereas the arithmetic methods [7, 11,
18, 26] use a strategy involving ideals of integral closures, the basic idea of which
essentially dates back to Dedekind and Weber [12] (compare also [17]). These
methods usually deal with series expansions of algebraic functions at special places
which results in a number of technical problems: Assume, for example, that F/k is
defined by some plane curve with a prescribed mapping to P1. Then in the case of
wild ramification in characteristic p > 0, Puiseux series can no longer be used and
have to be replaced by Hamburger-Noether series or P -adic series where singular
points on the curve which defines F/k are (in effect) desingularized simultanously [4,
16, 30, 39]. Additionally, in order to compute these series intermediate constant
field extensions seem to be necessary for places of degree greater than one and one
has to take care that the series are computed to enough precision for subsequent
computations. Finally, the computation of these series gets even more complicated
if the function field is defined by a non-plane curve.
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2. Results

In this paper we develop a simple and efficient algorithm for the computation
of Riemann-Roch spaces to be counted among the arithmetic methods. The algo-
rithm completely avoids series expansions and resulting complications, and instead
relies on integral closures and their ideals only. It works for any “computable”
constant field k of any characteristic as long as the required integral closures can
be computed, and does not involve constant field extensions.

We explain the connection to the geometry of numbers of algebraic function
fields which is used in [7, 32, 35, 36] and extend some of their results. In addition
we develop an algorithm for the reduction of divisors. An important application of
these algorithms is to compute efficiently in the divisor class group of a function
field, especially in the global case.

The underlying theoretical idea dates back to [34] where a series expansion free
proof of the theorem of Riemann-Roch is given. In the appendix we repeat this
proof in a slightly improved and clarified way.

We mention that the method can be extended so that discrete valuations of the
constant field are additionally taken into account [18].

The complexity of the algorithms of this paper is polynomial in the size of the
input data. For the sake of simplicity we will however not develop explicit formulas.
The algorithms have been implemented in Magma and Kash [1, 10, 22].

3. Preliminaries

3.1. Algebraic function fields. Throughout the paper F/k will denote an alge-
braic function field of transcendence degree one over a field k. This is an extension
field F of k such that F is separable and of finite degree n over k(x) for an element
x ∈ F transcendental over k. The element x is called a separating element. Every
place P of F/k corresponds to a surjective valuation vP : F → Z ∪ {∞} which is
zero on k. The divisor group D(F/k) of F/k is the free abelian group generated by
the set of places of F/k. A divisor is an element of D(F/k). For D ∈ D(F/k)⊗Z Q
(“divisors with rational coefficients”) we define L(D) as in the introduction and
dimk(D) := dimk(L(D)) to be the dimension of L(D) as a k-vector space. The
principal divisor generated by a ∈ F× is denoted by (a). We write its zero and pole
divisor (a)0 and (a)∞ respectively.

For a non-empty set of places S, the ring of elements of F/k being integral at
all places of S is denoted by oS . It is thus the ring of those elements a ∈ F , for
which vP (a) ≥ 0 holds for all P ∈ S. Complementarily oS is defined as the ring
of all elements being integral at all places outside of S. From [9, pp. 58, p. 64] it
follows that both rings are Dedekind domains. Their ideal groups are denoted by
IS resp. by IS . For oS it furthermore holds that the prime ideals of IS correspond
to the places outside S in a unique and valuation preserving way such that the unit
group (oS)× precisely consists of the S-units of F/k and that the quotient field of
oS equals F .

The degree valuation v∞ corresponding to the “infinite” place ∞ of the rational
function field k(x) is defined by v∞(f/g) := deg(g) − deg(f), f, g ∈ k[x]. By
defining deg := −v∞ we extend the degree function to k(x). The elements of k(x)
with non-positive degree form the discrete valuation ring o∞. This ring is strictly
larger than k[1/x]. It has only one prime ideal which is generated by the prime
element 1/x.
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For a unitary ring extension of entire rings A ⊆ B we define Cl(A,B) to be the
ring of all elements of B which are integral over A.

We will later especially consider the integral closures Cl
(
k[x], F

)
and Cl

(
o∞, F

)
.

If we choose S to be the set of the “infinite places” of F/k(x), that means the set
of the places of F/k over the infinite place ∞ of k(x), then it holds that oS =
Cl
(
k[x], F

)
and oS = Cl

(
o∞, F

)
. Furthermore we have S = supp

(
(x)∞

)
. As k[x]

and o∞ are principal ideal domains, Cl
(
k[x], F

)
and Cl

(
o∞, F

)
have integral bases

consisting of [F : k(x)] elements and the same is true for their (fractional) ideals.
Such bases are uniquely determined modulo unimodular transformations over k[x]
or o∞.

3.2. Representation of algebraic function fields and algorithms. We briefly
discuss the representation of function fields and some basic algorithms that we will
use in this paper.

Let k be a field. We assume that we can do basic computations in k, in polyno-
mial rings and in rational function fields over k. For running times we will count
the required number of operations in k plus the number of bit operations for com-
putations in Z.

We can in principle realize an algebraic function field F/k over the constant field
k as the quotient field of the coordinate ring of a given irreducible affine curve over k.
For our algorithms to work we will however need a special representation which can
be obtained from the general one by a change of variable. Namely, we will realize
F as the quotient field of a k[x]-order o for some separating element x ∈ F . Upon
dividing the generators of o by suitable positive powers of x we obtain generators
of an o∞-order of F (beause they become integral over o∞). These orders are free
k[x]- resp. o∞-modules of rank n = [F : k(x)]. One advantage of using orders is
that we can apply techniques from linear algebra.

As the main example we consider the “finite equation order” k[x, y] /〈f(x, y)〉
where f(x, y) = yn + a1y

n−1 + · · ·+ an ∈ k[x][y] is an irreducible polynomial being
monic and separable in y. Such a representation exists for every algebraic function
field over a perfect constant field k, [37, p. 128], but it might not be best suited
for computations. Expressed in another way F = k(x, ρ) with f(x, ρ) = 0 holds.
Let Cf := max{ddeg(ai)/ie | 1 ≤ i ≤ n}. As ρ/xCf is integral over o∞ we get the
“infinite equation order” o∞[y]/〈x−nCf f(x, xCf y)〉. For simplicity we will give all
complexity statements only with respect to this representation of F/k by a single f .

As already mentioned we will especially consider the integral closures Cl
(
k[x], F

)
and Cl

(
o∞, F

)
. We will assume that we are able to compute integral bases and that

we have an element and ideal arithmetic for Cl
(
k[x], F

)
and Cl

(
o∞, F

)
including

valuation computation with respect to given prime ideals. All this we can, for
example, carry out in the case of k a finite field, a number field and other suitable
fields, implementations can be found in Magma and Kash [1, 10, 22]. We remark
that for the computation of prime ideals from given prime elements of k[x] resp. o∞
and for ideal factorization we need factorization algorithms for polynomials over k
(and over extensions of k). We only have to use factorization to generate non-trivial
input for the algorithms described in this paper. Information about the above
mentioned algorithms can be found in [8, 13, 31, 33] in general and in [32, 36] for
the function field situation in particular.

In the case of global function fields (k = Fq) it is shown in [6] that the running
time required for the determination of an integral basis of Cl

(
k[x], F

)
or Cl

(
o∞, F

)
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requires polynomial time in Cf and n. Using a variant of the Round-2 algorithm
[3] one can see that this is true even for rather general k. Namely, only if 0 < p :=
char(k) ≤ n one seems to need additional properties of k, for example k perfect
and the ability to compute p-th roots in k suffice. In particular no polynomial
factorization over k is required. In the sequel we assume that k is such that bases
for the above integral closures can be computed in time polynomial in Cf and n.

We note that the complexity of the other cited algorithms above except factor-
ization is polynomial in Cf , n and the maximal degree of the polynomials of k[x]
occuring in the representations of the involved ideals. The factorization of ideals
or the computation of prime ideals is polynomial time in Cf , n and in the time
required for factoring the occuring polynomials of k[x].

4. Lattices and basis reduction over k[x]

For the computation of Riemann-Roch spaces we need a reduction algorithm for
matrices in k(x)n×n. This algorithm can be interpreted in a broader context in
terms of lattices and lattice basis reduction the essential statements about which
we now describe. The particular connection to our algebraic function field F/k will
be explained in section 7. For more detailed infomation about Lemma 1 we refer
for example to the (somewhat different) descriptions in [25, 29, 32, 36].

By k((t−1)) we denote the field of formal Laurent series in t−1. Let the degree of
an element be the exponent of the largest t-power occuring. For v ∈ k((t−1))n we
denote the column degree of v, that is the maximum of the degrees of the entries
of v, by deg(v). By hc(v) ∈ kn we denote the vector resulting from the coefficients
of the deg(v)-th power of t of the entries of v (that means the coefficients of the
largest powers, the others are zero).

Now fix an x ∈ k((t−1)) of positive degree which is transcendental over k. Let
Λ ⊆ k((t−1))n be a free k[x]-module of rank m and let v1, . . . , vm be a basis of Λ.
We assume furthermore that the basis elements are k((t−1))-linearly independent
(this means that if k is a finite field, Λ is discrete regarding deg in the sense that
there are always only finitely many vectors with bounded deg-values). Λ is then
a “non-Archimedian” lattice. The maximum of the degrees of the determinants
of m ×m-submatrices of (vj)j is an invariant of Λ that we can regard as a lattice
discriminant. By a reduction step we mean the addition of a k[x]-linear combination
of the vj to a vi, i 6= j, so that the column degree of vi decreases. This is a k[x]-
unimodular transformation. The basis v1, . . . , vm of Λ, ordered with rising column
degrees, is called reduced if one of the following equivalent conditions is fulfilled:

Lemma 1. The following conditions are equivalent:

(i) { hc(vi) | 1 ≤ i ≤ m and deg(vi) ≡ j mod deg(x) } is a set of linearly
independent elements of kn for all 0 ≤ j < deg(x),

(ii) deg(
∑m
i=1 λivi) = maxmi=1 deg(λivi) for all λi ∈ k[x], 1 ≤ i ≤ m,

(iii) v1, . . . , vm realize the successive minima of Λ,
(iv) if additionally deg(x) = 1 holds:

∑m
i=1 deg(vi) equals the lattice discrimi-

nant.

Proof. For the proof see also [29, 32, 36]. The situation in (i) represents a point
of view of (ii) and (iv) which only takes the leading terms into account; the linear
independence means that no leading terms can be cancelled. With these remarks
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one can work out the equivalence of (i), (ii), (iv). The equivalence of (iii) with (ii)
follows inductively. �

If a basis satisfies these conditions then no reduction step can be carried out. For
a non-reduced basis we can therefore always perform a reduction step that decreases
the sum of the column degrees of the vi. For this sum the lattice discriminant
represents a lower bound so that after finitely many reduction steps we necessarily
come to a reduced basis. From this follows the reduction algorithm, a reduced
basis can therefore always be constructed. For a more precise description of the
reduction algorithm we refer to [29, 32, 36]. A matrix with non-zero columns
forming a reduced basis is called reduced.

The property (iv) can be regarded as an orthogonality property of a reduced basis
if deg(x) = 1. The concept of orthogonality can be pursued in this case: We look
at “orthogonal” or “isometric” maps of k((t−1))n, given by unimodular matrices
T ∈ k[[t−1]]n×n with power series entries: v 7→ Tv. For these deg(v) = deg(Tv)
holds. Two lattices Λ1,Λ2 are now called isometric if there is such a T with Λ1 =
TΛ2. Reduced bases are transformed under T into reduced bases. Two isometric
lattices have the same successive minima and the same lattice discriminant, as we
can see using Lemma 1 and the definitions. We define the orthogonal lattice of rank
m in k((t−1))n with the succesive minima −d1 ≤ · · · ≤ −dm ∈ Z as the uniquely
determined lattice with a basis of the shape (t−djδi,j)i ∈ k((t−1))n for 1 ≤ j ≤ m
(δi,j = 1 if i = j, δi,j = 0 otherwise). Now the following “classification lemma”
holds:

Lemma 2. Assume deg(x) = 1 and let Λ ⊆ k((t−1))n be a lattice of rank m. Then
Λ is isometric to exactly one orthogonal lattice in k((t−1))n.

Proof. First we notice that k[[t−1]] is a Euclidean ring for deg and that elements of
smaller degree are always divisible by elements of larger degree. Therefore an arbi-
trary basis of Λ can be put into an upper triangular shape by k[[t−1]]-unimodular
row operations where the entries over the diagonal are zero or have a proper larger
degree than the diagonal entries below and the diagonal entries are powers of t
(Hermite normal form). The lattice Λ′ generated by this basis is isometric to Λ. If
we start with a reduced basis of Λ the resulting basis of Λ′ is also reduced because
of the isometry. Because of (i) from Lemma 1 this basis of Λ′ must already have a
diagonal shape otherwise it would not be reduced. A reduced basis of Λ, however,
always exists.

For the uniqueness one can easily see that two different orthogonal lattices cannot
be isometric. �

Corollary 3. Let M ∈ k(x)n×n. There exist unimodular matrices T1 ∈ on×n∞ and
T2 ∈ k[x]n×n and uniquely determined rational integers d1 ≥ · · · ≥ dn such that

T1MT2 = (x−djδi,j)i,j .

The matrix T2 is the basis transformation matrix obtained by the reduction algo-
rithm applied to the columns of M . The column degree of the j-th column of MT2

is equal to −dj.
Proof. Let t = x and consider the lattice spanned by the columns of M . We apply
Lemma 2 and get unimodular matrices T1 ∈ k[[x−1]]n×n and T2 ∈ k[x]n×n with
T1MT2 diagonal as required. Notice that T1 ∈ on×n∞ holds because of M ∈ k(x)n×n.
The last assertions follow from the proof of Lemma 2 and the above comments. �
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The matrix M is given in k(x)n×n and can hence be written as M0/d with
M0 ∈ k[x]n×n and d ∈ k[x]. It suffices to perform the reduction algorithm on the
columns of M0 so that series and approximation errors can be avoided completely.

Corollary 4. Let a k[x]-module M1 and an o∞-module M2 both free of rank n
be given within a k(x)-vector space V . Then there are bases v1, . . . , vn of M1 and
b1, . . . , bn of M2 such that

(b1, . . . , bn)N = (v1, . . . , vn)

holds with a unique matrix N of the shape N = (x−djδi,j)i,j and rational inte-
gers d1 ≥ · · · ≥ dn.

Proof. Follows from Corollary 3 applied to the transformation matrix of arbitrary
bases of M1 and M2. �

Example 5. We give an example for the reduction algorithm and the matrix normal
form of Corollary 3. We consider the matrix M :(

x3 − x x2 − 2
0 x

)
.

This matrix is not reduced because the sum of the column degrees is 5 and the
determinant degree is 4. We substract x times the second column from the first
column and we get the reduced matrix(

x x2 − 2
−x2 x

)
.

For the calculation of the normal form we negate the last row, swap it with the first
row and substract from the now last row 1/x times the first row. We obtain(

x2 −x
0 x2 − 1

)
.

Now we add x/(x2 − 1) times the last row to the first row and scale the last row by
x2/(x2 − 1). The final result is (

x2 0
0 x2

)
.

Remark 6. The reduction algorithm is a generalized polynomial division, operating
on columns. According to that we can also interpret it as a Gröbner reduction. For
function fields the reduction algorithm takes on the role that the LLL-algorithm
plays in the case of number fields.

5. Bases of the k-spaces L(D)

Let x denote a separating element of F/k, S := supp
(
(x)∞

)
and n := [F : k(x)].

The main result of this section and the fundamental statement for the algorithm
to be described is the following theorem together with its constructive proof:

Theorem 7. For every divisor D of F/k there exist uniquely determined rational
integers d1 ≥ · · · ≥ dn and elements v1, . . . , vn ∈ F such that the set

{ xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ di + r}
represents a k-basis of L

(
D + r(x)∞

)
for all r ∈ Z. The elements v1, . . . , vn are

k(x)-linearly independent.
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We note that the above di and vi do not only depend on the divisor D but also
depend on the constant field k and the separating element x; more exactly: they
depend on the polynomial ring k[x] ⊆ F .

Definition 8. We define the di of Theorem 7 to be the k[x]-invariants of D, writ-
ten |D|i, for a fixed, given k[x].

In order to obtain a constructive proof of this theorem we transfer the above
situation into an ideal-theoretical context:

Proposition 9. (i) There is a natural and valuation preserving bijection be-
tween the set of places of F/k and the set of prime ideals of oS and oS,

(ii) by this bijection, an isomorphism of the divisor group of F/k is induced to
the direct product IS × IS of the ideal groups, D 7→ (DS , DS).

(iii) If D denotes a divisor and if DS, DS are the corresponding ideals in IS

and IS, then L(D) = (DS)−1 ∩ (DS)−1 holds.

Proof. We refer to section 3.1. For (iii) let p be a prime ideal of oS , P the cor-
responding place of F/k and r the exact power with which p divides DS . Thus
r = vP (D) (the exponent of P in D) is fulfilled. As oS is a Dedekind domain,
a ∈ (DS)−1 holds if and only if a ∈ F and vP (a) ≥ −r holds. Analogously we have
the same situation for (DS)−1 so that L(D) = (DS)−1 ∩ (DS)−1 follows. �

Remark 10. Let D be a divisor represented by (DS , DS). Then D + r(x)0 is
represented by (xrDS , DS) and D + r(x)∞ by (DS , x−rDS).

Because of Proposition 9, (iii) we are now interested in the relation of (DS)−1

and (DS)−1 in F . The ideals in IS and IS are free k[x]- resp. o∞-modules of
rank n. Therefore we can choose bases v1, . . . , vn ∈ (DS)−1 and b1, . . . , bn ∈ (DS)−1

of (DS)−1 and (DS)−1. As F is a k(x)-vector space of dimension n there is a
matrix M ∈ k(x)n×n such that (b1, . . . , bn)M = (v1, . . . , vn) holds. We see that M
is unique except for multiplication by a unimodular T1 ∈ on×n∞ from the left and a
unimodular T2 ∈ k[x]n×n from the right since any two bases of (DS)−1 or (DS)−1

differ by such transformations. Corollary 4 exactly fits this situation so that we
obtain a proof for Theorem 7:

Proof of Theorem 7. We fix a D and firstly prove the existence. We choose a
basis transformation matrix M from (DS)−1 to (DS)−1 as above. By applica-
tion of Corollary 4 we see that there are ideal bases (vi)i of (DS)−1 and (bi)i of
(DS)−1 which are related to each other by a unique diagonal transformation matrix
(x−diδi,j)i,j , i.e. x−dibi = vi with unique rational integers −di for 1 ≤ i ≤ n.

Let now r ∈ Z be arbitrary. The divisor D + r(x)∞ is according to Remark 10
uniquely represented by the pair of ideals (DS , x−rDS). The ideal bases of (DS)−1

and xr(DS)−1 are (vi)i as before and (b′i)i with b′i = xrbi. They already are related
by a diagonal transformation matrix. We now consider the intersection of (DS)−1

with xr(DS)−1: The element z =
∑n
i=1 λivi with arbitrary λi ∈ k[x] lies in (DS)−1.

As z =
∑n
i=1 λix

−di−rb′i holds on the other hand we see that it is necessary and
sufficient for the condition z ∈ xr(DS)−1 that λix−di−r ∈ o∞ is true. But this
precisely means that deg λi ≤ di + r has to hold. Because of this conclusion and
the k(x)-linear independence of the vi the statement of Theorem 7 about the basis
follows.
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The last statement of the theorem is to be proved next: The k(x)-linear inde-
pendence of elements vi as given in the theorem follows from the basis property of
the xjvi for all r ∈ Z. Namely, if there were a relation

∑n
i=1 λivi = 0 with λi ∈ k[x]

not all zero, the elements xjvi were k-linearly dependent.
It remains to prove the uniqueness of any di for which Theorem 7 together with

arbitrary vi is true. We firstly assert that v1, . . . , vn is an ideal basis of (DS)−1

and secondly that xd1v1, . . . , xdnvn is an ideal basis of (DS)−1. Indeed, as for every
g ∈ (DS)−1 there is an r ∈ Z such that g ∈ L

(
D+r(x)∞

)
holds, we can represent g

by the vi, and the first assertion is clear. For the second assertion we note that for
every g ∈ (DS)−1 there is an h ∈ k[x] such that g ∈ L

(
D + (h)0

)
holds. If we put

r := deg h then r(x)∞ = (h)∞ and furthermore D + (h)0 = D + r(x)∞ + (h) holds
such that the elements h−1xjvi with 1 ≤ i ≤ n, 0 ≤ j ≤ di + r represent a k-basis
of L

(
D+ (h)0

)
(note that L

(
D+ (a)

)
= a−1L(D) for a ∈ F×). Thus we see that g

can be represented by an o∞-linear combination of xdivi, what had to be proved.
As the bases v1, . . . , vn of (DS)−1 and xd1v1, . . . , xdnvn of (DS)−1 are related by

a diagonal transformation matrix to each other we can deduce the uniqueness of di
from the uniqueness statement of Corollary 4. �

Because of Theorem 7 and the theorem of Riemann-Roch we expect a connection
between the k[x]-invariants of a divisor D, the genus and the dimension of the exact
constant field of F/k over k.

Corollary 11. Let g denote the genus of F/k and let k0 be the exact constant field
of F/k. For the k[x]-invariants |D|i of a divisor D it then holds that

n∑
i=1

|D|i = degkD + [k0 : k](1− g)− n.

Proof. We choose r ∈ Z large enough such that the divisor D+r(x)∞ is not special,
[37, p. 33], and that r ≥ |D|i holds for all 1 ≤ i ≤ n. Because of the theorem of
Riemann-Roch we then know that dimk(D + r(x)∞) = degk(D + r(x)∞) + [k0 :
k](1 − g). By means of Theorem 7 we obtain the equations dimk(D + r(x)∞) =∑n
i=1(|D|i+r+1) = rn+n+

∑n
i=1 |D|i. Because of degk(D+r(x)∞) = degkD+rn

we obtain the desired result by equating. �

The last result yields a concrete interpretation of the invariants g and [k0 : k]
of the function field F/k and of the degree of a divisor D (for a fixed separating
element x): Namely, they measure a kind of “distance” of the ideals DS and DS ,
representing the divisor, in F . With increasing degree DS and DS move away from
each other whereas (DS)−1 and (DS)−1 approach (so that they eventually overlap
according to the size of the degree of D).

For the proof of the corollary we applied the theorem of Riemann-Roch. In the
appendix we give a constructive proof of the theorem of Riemann-Roch based on a
suitable reformulation of this corollary. This will be Corollary 26 where we supply
an alternative proof without assuming the theorem of Riemann-Roch.

As a demonstration of the technique we get the following bound for the genus,
compare [37, p. 132], [14, p. 201] and [27, p. 169]:

Corollary 12. Let the algebraic function field F/k with the exact constant field k0

be given by the equation f(x, y) = 0 with an irreducible polynomial f(x, y) ∈ k[x, y],
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separable and monic in y. Then for the genus of F/k it holds that

g ≤ Cf (n− 1)n− 2(n− [k0 : k])
2[k0 : k]

.

For Cf = 1 and k0 = k this reduces to

g ≤ (n− 1)(n− 2)
2

.

Proof. Let ρ ∈ F with f(x, ρ) = 0. We consider the equation orders k[x, ρ] ⊆ oS

and o∞[ρ/xCf ] ⊆ oS (note that ρ/xCf is integral over o∞). For the transformation
matrix of the bases we get

(1, x−Cf ρ, . . . , x−Cf (n−1)ρn−1) (xCf (i−1)δi,j)i,j = (1, ρ, . . . , ρn−1).

Using a basis ω̃1, . . . , ω̃n of oS and ω1, . . . , ωn of oS we obtain

(ω̃1, . . . , ω̃n)T1(xCf (i−1)δi,j)i,jT−1
2 = (ω1, . . . , ωn)

with suitable T1 ∈ on×n∞ and T2 ∈ k[x]n×n. Now deg(det(T1)) ≤ 0 and deg(det(T−1
2 )) ≤

0. Because of this and Corollary 3 applied to (xCf (i−1)δi,j)i,j and T1(xCf (i−1)δi,j)i,jT−1
2 ,

and because of the first paragraph of the proof of Theorem 7, we see that the sum∑n
i=1 Cf (i− 1) = Cfn(n− 1)/2 is an upper bound for the sum of the negated k[x]-

invariants of the zero divisor. Using Corollary 11 we now obtain Cfn(n − 1)/2 ≥
[k0 : k](g−1)+n from which the statement follows by reordering the inequality. �

6. Computation of Riemann-Roch spaces

In this section we describe the basic method for the computation of the Riemann-
Roch space of a divisor. We assume the maximal orders oS and oS to be computed
(see section 3.2).

According to Proposition 9 we can represent places of F/k by prime ideals in
either oS or oS . For representing divisors there are essentially two ways. As al-
ready used D can be represented by two ideals DS and DS , but with regard to
Proposition 9, (iii) we only use the inverses. We call this representation the ideal
representation. The other representation simply means the sum of places or the
power product of prime ideals. We call this the free representation.

For divisors in free representation the divisor arithmetic is carried out exponen-
twise, for divisors in ideal representation it is carried out by ideal arithmetic. We
define the height of a divisor D as the sum of the degrees of the pole and zero di-
visors of D: h(D) := degk(D)0 + degk(D)∞. In both cases the costs for the divisor
arithmetic are polynomial in Cf , n and max{h(D1), h(D2) } for divisors D1, D2,
because of section 3.2 (the size of the exponents has of course only a logarithmic
influence on the arithmetic in free representation).

By multiplying out the prime ideal power products of a free representation the
ideals DS and DS of the corresponding ideal representation can be determined.
Conversely, these two ideals have to be factorized in order to get the places and their
exponents occuring in the corresponding divisor. This change in representation
requires a polynomial running time in Cf , n and h(D) (and in the factorization
costs), according to section 3.2. By using principal ideals we can thus also determine
principal divisors of elements of F× in free representation.
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The computation of a Riemann-Roch space means the computation of a basis
for it. We use Theorem 7 and distinguish bases in short representation (given by
vi, dj) and long representation (given by all the xjvi).

Algorithm 13. (Computation of Riemann-Roch spaces I)
Input: A divisor D of the algebraic function field F/k.
Output: A k-basis of L(D) in short or long representation.

(1) (Bases) Determine a k[x]-basis v′1, . . . , v
′
n of (DS)−1 and an o∞-basis b′1, . . . , b

′
n

of (DS)−1.
(2) (Transformation) Determine M ∈ k(x)n×n with (b′1, . . . , b

′
n)M = (v′1, . . . , v

′
n).

(3) (Intersection) Compute the unimodular matrix T2 ∈ k[x]n×n and the di
using Corollary 3 applied to M . The desired basis v1, . . . , vn with the k[x]-
invariants dj is now given by (v1, . . . , vn) = (v′1, . . . , v

′
n)T2 according to

Theorem 7 and its proof.
(4) (End) Output of the basis as in Theorem 7 in short or long representation.

Terminate.

Remark 14. The algorithm requires a running time which is polynomial in Cf , n
and h(D): The size of the entries of the matrix M in the second step is polynomial
in Cf , n and h(D). Thus the reduction algorithm requires a running time polynomial
in Cf , n and h(D) as well.

If we want to compute Riemann-Roch spaces of divisors of small height, i.e.
approximately in the order of n or Cf , algorithm 13 is rather suitable. But especially
in connection with the divisor class group of global function fields it can happen
that the exponents of the divisors in free representation are of order qg (while the
degrees of the places are still small), where q is the number of elements of k and
g is the genus of F/k. This implies an exponential running time for algorithm 13
according to the remark. The discussion about this problem will be continued in
section 8.

Example 15. In order to demonstrate the idea of the algorithm we consider a very
simple example: We choose k = Q, f(x, y) = y2 − x3 − 1 and F = k(x, ρ) with
f(x, ρ) = 0, i.e. an elliptic function field.

We easily check that oF := Cl(k[x], F ) = k[x, ρ] holds. For the determination
of oF,∞ := Cl(o∞, F ) we note that ρ/x2 is integral over o∞. The corresponding
minimal polynomial is f∞(y) = y2 − (x3 + 1)/x4 ∈ o∞[y], and here Cl(o∞, F ) =
o∞[ρ/x2] also holds. Thus the general techniques from section 5 show that Q is the
exact constant field and that the genus is one.

We want to factorize the principal ideal generated by x− 2 in oF . According to
the theorem of Kummer [37, p. 76] we therefore factorize f(x, y) mod (x− 2)k[x, y]
in the shape y2 − 9 = (y − 3)(y + 3) and we get (x − 2)oF = p1p2 with p1 =
(x − 2)oF + (ρ − 3)oF and p2 = (x − 2)oF + (ρ + 3)oF . We conclude that there
are two unramified places P1 resp. P2 of F/k with degree 1 above the place of k(x)
defined by x − 2, where x assumes the value 2 and ρ the value 3 resp. −3. We
now examine the splitting of the infinite place ∞ of k(x) in F . For this we have
to factorize (1/x)oF,∞ since 1/x is a prime element of ∞. Again according to the
theorem of Kummer and because of f∞(x, y) ≡ y2 mod (1/x)o∞[y] we have that
(1/x)o∞ = p2

3 with p3 = (ρ/x2)oF,∞ holds. There is thus exactly one place of F
above the infinite place of k(x) which we denote by ∞ as well. It has degree 1 and
is ramified. Therefore we can say that x has degree 2 and ρ degree 3.
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Finally the Riemann-Roch space of D = 3∞−P1, i.e. the intersection p1 ∩ p−3
3 ,

has to be computed. A k[x]-basis of p1 is given by (α1, α2) = (x− 2, ρ− 3) and an
o∞-basis of p−3

3 by (β1, β2) = (x3/ρ) (1, ρ/x2). From this follows the basis relation

(α1, α2) = (β1, β2)
(

0 (x3 + 1)/x5

1/x 0

)(
1 0
0 x2

)(
x− 2 −3

0 1

)

= (β1, β2)
(

0 (x3 + 1)/x3

(x− 2)/x −3/x

)
.

The last matrix is already reduced so that the k[x]-invariants of D are both zero and
a basis of the Riemann-Roch space is given by x − 2, y − 3. Explicitly this means
that L(D) consists of the elements of p1 with degree bounded by 3 so that the result
is in accordance with the above remark about the degrees.

7. Connection to the geometry of numbers of
algebraic function fields

The geometry of numbers of an algebraic function field F/k with separating
element x provides means of computing Riemann-Roch spaces using series expan-
sions [7, 32, 35, 36]. In this section we explain the connection to our ideal-theoretical
method. With this aim in view we recall some notations and statements from
[29, 32, 36] (in a somewhat different way).

We change from the logarithmic measure deg to an absolute value by means of
the relation logq | · | = deg(·) which is not essential but emphasizes the analogy to
the number field case: In the rational function field k(x) we define the absolute
value of λ ∈ k(x) by |λ| = q−v∞(λ), where we choose some q > 1, preferably the
number of elements of k if it is a finite field. The set of places over ∞ is written as
S = {P0, P1, . . . , Ps} , and we denote the surjective exponential valuation resp. the
absolute value belonging to Pi by vi resp. by | · |i so that |α|i = q−vi(α) holds for
an arbitrary α ∈ F×. Let now D be a divisor of F/k. We define ci to be the
exponent of Pi in D and ei to be the ramification index of Pi over ∞. The k(x)-
vector space F is equipped with an ultrametric | · |-linear norm || · ||D defined by
||α||D = maxsi=0 q

−ci/ei |α|1/ei

i . The free k[x]-module (DS)−1 is discrete with respect
to || · ||D and is called the lattice ΛD belonging to D (and k, x).

The term “lattice” is justified here with respect to section 4 because ΛD and k[x]
can compatibly be embedded into k̄((t−1)) such that logq ||α||D = deg(ᾱ)/e hence
deg(x̄) = e with e := lcm(e1, . . . , es) holds for every α ∈ ΛD and ᾱ, x̄ the images of
α, x in k̄((t−1)) respectively. If the places Pi are tamely ramified over k(x) this can
be done using t = x−1/e (Puiseux series), see for example [36] for k a finite field.
In the wildly ramified case this can still be done using general P -adic series [5] or
Hamburger-Noether series [4] where x will in general be represented by a proper
series.

For the lattices ΛD we can hence use the definitions and results of section 4
with respect to the embedding into k̄((t−1)). From there we recall (for our absolute
value setting) that a basis v1, . . . , vn of ΛD, ordered with increasing || · ||D-values,
is called reduced if ||

∑n
i=1 λivi||D = maxni=1 ||λivi||D holds for all λi ∈ k[x], (1 ≤

i ≤ n). We introduce that it is called weakly reduced if only
⌈
logq ||

∑n
i=1 λivi||D

⌉
=

maxni=1

⌈
logq ||λivi||D

⌉
holds for all λi ∈ k[x], (1 ≤ i ≤ n). It is clear that reduced

bases are also weakly reduced.
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Let D be a divisor of F/k, v1, . . . , vn ∈ F and d1 ≥ · · · ≥ dn. For R ∈ {Z,Q }
let us call the vi an R-parametric basis of D if all di ∈ R and the set

{ xjvi | 1 ≤ i ≤ n, 0 ≤ j ≤ di + r, j ∈ Z}

represents a k-basis of L
(
D + r(x)∞

)
for all r ∈ R. A Q-parametric basis can

clearly be used as Z-parametric basis using bdic but the converse is not possible in
general.

The following theorem extends Theorem 7 and points out the connection to the
geometry of numbers. It also generalizes the corresponding results from [7, 32, 35,
36]. The still constructive proof now relies on series expansions.

Theorem 16. Let R ∈ {Z,Q }.
(i) Every divisor D has an R-parametric basis. Every R-parametric basis of D

has the same di and is k(x)-linearly independent.
(ii) The elements v1, . . . , vn ∈ F form an R-parametric basis of D if and only if

they constitute a weakly reduced basis of ΛD for R = Z and a reduced basis
of ΛD for R = Q. In the first case di = −

⌈
logq ||vi||D

⌉
and in the second

case di = − logq ||vi||D (the negated successive minima of ΛD divided by e).

Proof. Let D be a divisor of F/k and r ∈ R. Firstly we notice that for α ∈ F the
conditions α ∈ L(D + r(x)∞) and

(
α ∈ ΛD and logq ||α||D ≤ r

)
are equivalent, as

a simple calculation shows. Secondly we notice that any given R-parametric basis
of D has only one possible set of valid di because they uniquely determine (the size
of) the dimension jumps of L

(
D + r(x)∞)

)
at r = −d1, . . . ,−dn.

We consider the case R = Z. Here (i) is just a repetition of Theorem 7. In order
to prove (ii) let v1, . . . , vn be a weakly reduced basis of ΛD and ti := −

⌈
logq ||vi||D

⌉
.

For an arbitrary α =
∑n
i=1 λivi with λi ∈ k[x] and r ∈ Z we get the following

equivalences since the vi are weakly reduced:

α ∈ L(D + r(x)∞) ⇔ logq ||α||D ≤ r
⇔

⌈
logq ||λivi||D

⌉
≤ r, for 1 ≤ i ≤ n,

⇔ deg λi ≤ ti + r, for 1 ≤ i ≤ n.

Hence we obtain that the vi form a Z-parametric basis of D with di = ti.
To show the converse we first note that the vi constitute a basis of ΛD because of

ΛD =
⋃
r∈Z L(D+r(x)∞), which follows from the equivalence mentioned at the be-

ginning of the proof, and the parametric basis property. Now let α =
∑n
i=1 λivi be

arbitrary and r ∈ Z minimal such that α ∈ L(D+r(x)∞). From the parametric ba-
sis property we get that λivi ∈ L(D+r(x)∞). From the equivalence at the beginning
of the proof we see logq ||α||D ≤ r and logq ||λivi||D ≤ r for all 1 ≤ i ≤ n. Because
of the minimality of r we obtain r =

⌈
logq ||α||D

⌉
≤ maxni=1

⌈
logq ||λivi||D

⌉
≤ r and

the vi are weakly reduced. The uniqueness of the di for any fixed Z-parametric
basis as stated at the beginning of the proof finally shows that di = −

⌈
logq ||vi||D

⌉
because of the first part of the proof of (ii).

We switch to the case R = Q. In order to prove (ii) we can use the same
reasoning as in the proof of (ii) for the case R = Z above but with r ∈ Q and
without d·e. From (ii) the existence statement in (i) is now seen to be true because
there exists a reduced basis of ΛD. We deduce the uniqueness of the di for any
Q-parametric basis and the k(x)-linear independence from (ii) as well because this
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implies that the vi constitute a reduced k[x]-basis of ΛD and realize the successive
minima (which are unique). �

8. Divisor reduction

We continue the discussion of section 6. In order to simplify the notation we
now consider the degrees and the dimensions over the exact constant field k0 and
we assume k = k0.

Definition 17. Let A be a divisor with deg(A) ≥ 1. The divisor D̃ is called
maximally reduced along A if D̃ ≥ 0 and dim(D̃ − rA) = 0 holds for all r ≥ 1.
The representation of a divisor D as D = D̃+ rA− (a) with a divisor D̃ maximally
reduced along A, r ∈ Z, a ∈ F× is called a maximal reduction of D along A.

This generalizes the reduction strategy of [15]. Being reduced is not such an
interesting property of a divisor per se, but because of its application for computa-
tions within the divisor class group it plays an important role. We note the following
additional properties where the genus of F/k is denoted by g: dim(D̃) ≤ deg(A)
and deg(D̃) < g + deg(A) holds for divisors D̃ maximally reduced along A.

For a maximal reduction D = D̃1 + rA− (a) all other maximal reductions have
the same degree and are formed by D̃2 := (b) + D̃1 for b ∈ L(D̃1). We thus see that
maximal reductions along A are in a 1-1-relation to the points of the projective
space Pdim( eD1)(k) by means of a basis of L(D̃1).

Proposition 18. Let A be a divisor with deg(A) = 1. The maximal reduction of a
divisor D along A is then unique. In other words: For each divisor class [D] there is
exactly one divisor D̃ maximally reduced along A and a uniquely determined r ∈ Z
such that [D] = [D̃ + rA].

Proof. We take [D−rA] with the maximal possible, uniquely determined r ∈ Z such
that dim

(
[D−rA]

)
= 1 holds. The class [D−rA] contains only one positive divisor

D̃ and this is maximally reduced along A. Thus D̃+ rA is a unique representative
of [D]. The uniqueness of (a) follows because of (a) = D̃ + rA−D. �

We now explain the steps for a reduction of divisors in free representation, similar
to the proof of the proposition. This will be very helpful for the computation of
Riemann-Roch spaces of divisors with large height or large degree.

Let A be an arbitrary divisor with small height and small degree; for example,
a prime divisor of degree one (if there is one). A divisor D with large exponents
can be “exhausted” by A: This means that we subtract from D a large (as large as
possible) multiple of A such that D − rA still has a dimension greater than zero.
Here r can be negative itself for a divisor of negative degree. With this procedure
we can achieve that D̃ = (a) +D− rA becomes a divisor either maximally reduced
along A or just a positive divisor with bounded degree. In particular we then have
D = D̃ + rA− (a) and L(D) = a · L(D̃ + rA).

We observe two things: Firstly, if a is known, we can determine D̃ in ideal
representation in order to avoid factorization. Secondly, the computation of a and
D̃ is still difficult since h(D − rA) is in general not small compared to h(D). This
explicit representation of D by D̃ as above is called elementary reduction along A,
the choice of r will be determined later. The elementary reduction should only be
performed for divisors of small height.
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Next, there are unique divisors D0, . . . , Dm such that D =
∑m
i=0 2iDi holds and

the exponents in the Di have absolute value 1. The number of places in Di should
not be too large. We evaluate this sum according to the Horner (or double-and-add)
method, where an elementary reduction is performed before each multiplication.
With D̃m+1 := 0 we assume inductively for −1 ≤ j < m that

D = 2m−jD̃m−j +
m−j−1∑
i=0

2iDi +A

m∑
i=m−j

2iri −
m∑

i=m−j
2i(ai)

holds. By an elementary reduction of 2 D̃m−j +Dm−j−1 we get the representation
2 D̃m−j + Dm−j−1 = D̃m−j−1 + rm−j−1A − (am−j−1). By substituting this term
we see that the representation of D with j also holds for j + 1. Hence we get for
j = m :

(19) D = D̃0 +A

m∑
i=0

2iri −
m∑
i=0

2i(ai)

The size of the exponents of D contributes only logarithmically to the costs
whereas the number of places appearing in a single Di is still a problem. We can
sum up the places of Di successively, and after each step we get subdivisors in
ideal representation to which we apply the elementary reduction. The number of
places then enters the running time in a linear way but an increase of the heights
is avoided. We thus write Di = D′i + liA −

∑t
j=1(bi,j) where t is the number of

places in D and D′i is reduced. We substitute this into
∑m
i=0 2iDi and apply the

procedure for (19) to
∑m
i=0 2iD′i. In summary we get:

(20) D = D̃0 +A

m∑
i=0

2i(ri + li)−
m∑
i=0

2i
(

(ai) +
t∑

j=1

(bi,j)
)

We now discuss the choice of r in the elementary reduction. There are at least two
strategies: degree reduction and maximal reduction along A. The degree reduction
returns a positive divisor D̃ of bounded degree whereas the maximal reduction
results in a divisor D̃ maximally reduced along A. In the degree reduction we
determine D− rA with a maximal r ∈ Z such that g ≤ deg(D− rA) < g + deg(A)
holds. We get a positive, possibly rather large dimension, and g ≤ deg(D̃) <

g+deg(A) also holds for the reduced divisor D̃. This reduction need not be unique.
In the maximal reduction, similar to the proof of Proposition 18, we determine
D− rA with a maximal r ∈ Z such that 0 < dim(D− rA) ≤ deg(A) holds. Several
tries of values r might be neccessary but can be done, for example, using a binary
search strategy. We then have deg(D̃) < g + deg(A), thus the degree can also be
smaller than g. This reduction is unique for a divisor A of degree one. Both ways
of reduction often give the same result for a given divisor.

We summarize the procedure in an algorithm:

Algorithm 21. (Divisor reduction)
Input: Divisors A,D of the algebraic function field F/k, where D is in free rep-

resentation and deg(A) > 0, and a strategy for the elementary reduction.
Output: A positive divisor D̃ with deg(D̃) < g + deg(A), given in ideal represen-

tation, an r ∈ Z and elements ai, bi,j ∈ F× such that D = D̃ + rA −∑m
i=0 2i

(
(ai) +

∑t
j=1(bi,j)

)
with t := |supp(D)| holds.
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(1) (Decomposition of D) Compute m ∈ Z and divisors D0, . . . , Dm whose
exponents have absolute value 1 and for which D =

∑m
i=0 2iDi holds.

(2) (Support reduction) For each i := 0, . . . ,m the divisors D′i are successively
computed in ideal representation, where an elementary reduction is per-
formed after each addition resp. subtraction of a prime divisor of Di. This
provides Di = D′i + liA−

∑t
j=1(bi,j).

(3) (Exponent reduction) Let D̃m+1 := 0. For j := −1, . . . ,m− 1 compute a
divisor D̃m−j−1 in ideal representation, an rm−j−1 ∈ Z and am−j−1 ∈ F
by applying elementary reduction to 2 D̃m−j + D′m−j−1 so that 2 D̃m−j +
D′m−j−1 = D̃m−j−1 + rm−j−1A− (am−j−1) holds.

(4) (End) Let D̃ := D̃0 and r :=
∑m
i=0 2i(ri + li). Output of D̃, r and ai, bi,j.

Terminate.

Remark 22. The size of the exponents enters the running time logarithmically, the
number of places in D linearly. The last statement holds since the height of the D′i
is always bounded because of the reduction depending on deg(A). Altogether there
is a constant α ∈ R>0 such that the running time of algorithm 21 is less than or
equal to O

(
log(h(D)) |supp(D)| (nCf deg(A)d)α

)
, where d is the maximal degree of

the places in D.

If we have a divisor A with deg(A) = 1 and apply the maximal reduction as
strategy for the elementary reduction, algorithm 21 provides the unique maximal
reduction of D along A for each divisor D (since a maximal reduction is performed
in the last step). Thus we can compute unique representatives for divisor classes. If
we choose an A of larger degree in the case of a global function field over the exact
constant field with q elements, we get at most (qdeg(A) − 1)/(q− 1) possibilities for
a maximal reduction D̃, resulting in a “bounded” ambiguity.

The maximal elementary reduction can particularly efficiently be performed in
the case A = (x)∞ because the maximal possible r ∈ Z equals |D|1 according to
Theorem 7 resp. Theorem 16 and no tries over several r are neccessary.

Remark 23. The divisor reduction can be generalized if we replace the set of possi-
ble reduction divisors { rA | r ∈ Z } by { drAe | r ∈ Q } (apply d·e exponentwise). The
maximal reduction then finds the largest r ∈ Q such that there is an a ∈ L(D−drAe)
and computes D̃ := D − drAe+ (a). Here A is required to be known in free repre-
sentation as well.

The advantage of this generalization is that for A = (x)∞ we can still use the fast
elementary reduction with r = d1 according to Theorem 16, now using series expan-
sions, but may get much smaller maximal reductions if (x)∞ is of a suitable form,
most notably (x)∞ = eP . Namely, the possible reduction divisors in { drAe | r ∈ Q }
are just integral multiplies of P so that reducing by (x)∞ in this case is the same
as reducing by P .

By means of divisor reduction and with the relation L(D) = a·L(D̃+rA) for D =
D̃ + rA− (a) we can now compute Riemann-Roch spaces also for “large” divisors.
For this we consider two cases: If a divisor D has large exponents, but a small
degree, the computation of L(D̃ + rA) for the divisor reduction D = D̃ + rA− (a)
should be no problem, since the dimension is small as well. If the degree of D is
large, the dimension is also large and giving a basis could be difficult. But even
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this is no problem according to Theorem 7, if we use A = (x)∞. Namely, in this
case the basis elements can be given parametrically. From this results

Algorithm 24. (Computation of Riemann-Roch spaces II)
Input: A divisor D of the algebraic function field F/k.
Output: A k-basis of L(D) in short representation as in Theorem 7 where the basis

elements vi are given by power products of elements from F×.
(1) (Reduction) Perform a divisor reduction of D according to algorithm 21

using A = (x)∞ and the degree reduction. Obtain D̃, r ∈ Z and a ∈ F×
with D = D̃ + rA− (a), where a is the power product of the ai and bi,j.

(2) (Riemann-Roch) Using algorithm 13 compute a basis of L(D̃) in short rep-
resentation given by v′1, . . . , v

′
n and d′1, . . . , d

′
n.

(3) (End) Let vj := av′j, dj := d′j + r for j := 1, . . . , n. Output of v1, . . . , vn
and d1, . . . , dn. Terminate.

Remark 25. According to Remark 22 the costs for this algorithm are of the same
form as for algorithm 21.

9. Applications

The theorem of Riemann-Roch dominates the whole theory of algebraic function
fields. Thus constructive methods within the Riemann-Roch theory are applicable
for many purposes. We mention some examples:

The construction of algebraic-geometric codes can be performed by means of
bases of Riemann-Roch spaces and by bases of differential spaces related to divisors,
[16, 24, 37].

The computation of differential spaces Ω(D) := {ω ∈ Ω(F/k) | (ω) ≥ D }, com-
pare [27, 37], can also be reduced to the computation of Riemann-Roch spaces. Let
the function field F/k over the perfect field k be defined by f(x, y) = 0, where
f(x, y) ∈ k[x, y] is irreducible, separable and monic in y. We explain the procedure
briefly. By application of the differential operator d to f(x, y) = 0 we get, according
to the rules of differentiation, an F -linear relation between dy and dx:

dy = −fx
fy
dx,

where the denominator is not zero due to the assumption on f(x, y) being separable
(fx and fy are the partial derivatives with respect to x and y). An arbitrary
element a of F can be represented as a rational function in x, y. By applying d to
a in this representation and observing the relation between x and y we get b ∈ F
with da = b dx. We know that each differential can be represented as b dx for a
suitable b ∈ F . The divisor of the differential b dx is (b dx) = (b) + (dx) where
(dx) = DF/k(x) − 2(x)∞ holds, see [37, p. 156 (3.16)]. As usual, we can easily
compute the different divisor by means of the trace matrix [8, p. 203, 4.8.18].
Summing up we are able to determine the divisor of an arbitrary differential. On
the other hand, we see that the inequality (b dx) ≥ D holds for a divisor D if and
only if (b) + (dx)−D ≥ 0. This equivalence provides a k-vector space isomorphism
Ω(D) −→ L((dx)−D) by means of which we are finally able to compute a k-basis
of Ω(D).

Another important application is the possibility to compute explicitly within
the divisor class group of an algebraic function field, as previously described in [21,
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38, 39]. Using our methods this can be performed in the very general setting of
section 3.2. If two divisor classes [D1] and [D2] are given, [D1] + [D2] = [D1 +D2]
and k[D1] = [kD1] trivially hold. But there is the question if two classes are equal
resp. if a class is the principal class. Now [D1] and [D2] are equal if and only if
deg(D1) = deg(D2) and dim(D1 − D2) > 0, and this “principal divisor test” can
easily and effectively be performed with the described methods. The logarithmic
dependence of algorithm 21 on h(D1 − D2) is crucial for the global function field
case. Additionally we note that also unique class representatives can be selected,
as explained after algorithm 21.

Finally, the computation of Riemann-Roch spaces plays a central role in the
generation of relations for the computation of S-units, discrete logarithms in the
divisor class group and the structure of the divisor class group of a global function
field [18], which will be described in a forthcoming paper.

10. Appendix: The theorem of Riemann-Roch

By applying the ideal-theoretical language from section 5 we now give a short,
elementary and constructive proof of the theorem of Riemann-Roch (Theorem 29).
Let again x denote a separating element of F/k, S := supp

(
(x)∞

)
and n := [F :

k(x)].
We first need some further basic statements about the connection of divisors and

ideals. We recall that the norm NF/k(x)(a) of a (fractional) ideal a of oS or oS is
defined to be the determinant of a transformation matrix of an integral basis to
an ideal basis of a (modulo units of k[x] or o∞) and is multiplicative. From this
one can see that for two ideals a, b of oS or oS the determinant of a transformation
matrix of a basis of a to a basis of ab is given by NF/k(x)(b), up to the respective
units again. For a prime ideal p of oS and the corresponding place P of F/k we have
deg(P ) = deg(NF/k(x)(p)). Similarly, for a prime ideal of oS and the corresponding
place P of F/k we have deg(P ) = −deg(NF/k(x)(p)). This implies

degk(D) = deg
(
NF/k(x)(DS)

)
− deg

(
NF/k(x)(DS)

)
for any divisor D of F/k.

We now assume that we are in the situation exactly after the proof of Theorem 7.
As the theorem of Riemann-Roch was used in its proof, Corollary 11 needs to be
reformulated as follows:

Corollary 26. For an algebraic function field F/k there exists a constant ck,x ∈ Z,
depending only on the constant field k and on the chosen separating element x such
that the following holds for the k[x]-invariants of a divisor D:

n∑
i=1

|D|i = degkD + ck,x − n.

Proof. Let ME ,MD+E be transformation matrices from (ES)−1 to (ES)−1 and
from (DSES)−1 to (DSES)−1 respectively. From the first paragraph of the proof of
Theorem 7 we see that −

∑n
i=1 |E|i = deg(det(ME)) and analogously −

∑n
i=1 |D+

E|i = deg(det(MD+E)). Let M1 be a transformation matrix from a basis of (ES)−1

to a basis of (DSES)−1. Analogously, let M2 be a transformation matrix from a
basis of (ES)−1 to a basis of (DSES)−1. We get det(M1) = NF/k(x)(DS)−1 and
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det(M2) = NF/k(x)(DS)−1, up to units. For the matrices together we have

ME = M1MD+EM
−1
2 .

Applying determinants and then the degree function we obtain

deg(det(ME)) = deg(det(M1)) + deg(det(MD+E))− deg(det(M2)).

From this we see

−
n∑
i=1

|E|i = −
n∑
i=1

|D + E|i − deg(NF/k(x)(DS)) + deg(NF/k(x)(DS))

= degk(D)−
n∑
i=1

|D + E|i

and finally
n∑
i=1

|D + E|i = degk(D) +
n∑
i=1

|E|i.

Substituting the zero divisor for E in this formula proves the assertion for ck,x :=
n+

∑n
i=1 |0|i. �

The sum of the k[x]-invariants of a divisor is equal to its degree plus a constant,
only dependent on k, x and the function field F/k. According to Theorem 7 (for
r = 0) we can now view the sum of the non-negative |D|i approximately as the
dimension of L(D). In order to prove the theorem of Riemann-Roch we will show
that there is a divisor D∗ dual to D with non-negative |D∗|i approximately equal
to −|D|i for |D|i < 0. This means dimkD − dimkD

∗ ≈
∑n
i=1 |D|i = degkD + a

constant which already is the Riemann-Roch equation except for some inaccuracies.
In order to prove the existence of such a D∗ we use complementary ideals, com-

plementary divisors and their basic properties (see for example [23, pp. 88]): Let A
be a principal ideal domain, K the quotient field of A, L/K a separable field exten-
sion of degree n and B the integral closure of A in L. If a is a (fractional) ideal of B,
then a# := {α ∈ L |TrL/K(αa) ⊆ A} is the complementary ideal of a. If a1, . . . , an

is an A-basis of a then there are a#
1 , . . . , a

#
n ∈ a# with TrL/K(a#

i aj) = δi,j for
1 ≤ i, j ≤ n, and they form an A-basis of a#. If b is a further ideal of B, we
have (ab)# = a#b−1. Back in our function field situation, let the divisor D be
represented by (a, b). We define the k(x)-complementary divisor D# to D to be the
divisor represented by

(
((a−1)#)−1, ((b−1)#)−1

)
. We note that this definition actu-

ally depends only on the rational function field k(x) and not on x itself. As above,
the identity (D+E)# = D#−E holds for divisors D and E. The different divisor
DF/k(x) of F/k(x) is equal to the k(x)-complementary divisor of the zero divisor.
Finally, for a divisor D we define the (k, x)-dual divisor D∗ to be D# − 2(x)∞.

The following statements form the basis of the theorem of Riemann-Roch:

Lemma 27. For the k[x]-invariants of the divisor D#, k(x)-complementary to D,
we have

|D#|i = −|D|i
for all 1 ≤ i ≤ n.

Proof. We abbreviate a = (DS)−1 and b = (DS)−1. Then D# is represented by
(a#)−1 and (b#)−1. As in section 5 let a1, . . . , an be a k[x]-basis of a and b1, . . . , bn
an o∞-basis of b such that bi = x|D|iai holds for 1 ≤ i ≤ n. It is sufficient to
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prove b#i = x−|D|ia#
i : There is λi,j ∈ k(x) such that a#

j =
∑n
i=1 λi,jb

#
i holds. We

thus get λi,j = TrF/k(x)(a
#
j bi) = x|D|iTrF/k(x)(a

#
j ai) = x|D|iδi,j where the first and

the last identity follow because of the dual basis property, and the second identity
follows because bi = x|D|iai. �

Lemma 28. For every divisor D of F/k and its (k, x)-dual divisor D∗ the equation

dimkD = degkD + ck,x + dimkD
∗

holds.

Proof. We have
∑
|D|i≥0(|D|i+1)+

∑
|D|i≤−1(|D|i+1) =

∑n
i=1 |D|i+n = degkD+

ck,x because of Corollary 26. According to Theorem 7 the dimension dimkD is equal
to the first sum above. Because of Lemma 27 and Theorem 7 we can see that the
k[x]-invariants of D∗ correspond to |D∗|i = −|D|i− 2. Summing up for the dimen-
sion ofD∗ already results in dimkD

∗ =
∑
|D∗|i≥0(|D∗|i+1) = −

∑
|D|i≤−1(|D|i+1),

the negative of the second sum above. �

Because of what was said above about complementary divisors, D∗ can be written
as D∗ = Wk,x −D where we define Wk,x to be DF/k(x) − 2(x)∞. Furthermore, let
l be the dimension of the exact constant field k0 of F/k over k. With Lemma 28
we validate that ck,x is divisible by l and that (use the zero divisor) ck,x ≤ l holds.
We finally define the genus of F/k to be g := 1− ck,x/l and we get

Theorem 29 (Riemann-Roch). The set of divisors W of F/k, for which the equa-
tion

dimkD = degkD + l(1− g) + dimk(W −D)
with arbitrary divisors D holds, forms a non-empty divisor class of F/k. Its ele-
ments W , the canonical divisors, are precisely characterized by dimkW = lg and
degkW = 2l(g − 1) among all divisors of F/k.

Proof. The divisorsWk,x are canonical divisors, since they satisfy the required equa-
tion for all divisors D because of the previous lemma. Furthermore, the definition
of the genus does not depend on k or x, since for divisors D of large positive degree
dimk0(Wk,x−D) = 0, i.e. 1−g = dimk0 D−degk0 D holds, and the right hand side
is certainly independent of D. If W1 fulfills the above equation for all divisors D,
we have dimkW1 = lg and degkW1 = 2l(g − 1), as we can see by substituting the
zero divisor and W1 for D. If the equations dimkW2 = lg and degkW2 = 2l(g− 1)
hold for W2 then we have dimk(W1−W2) = l and degkW1−W2 = 0 such that W1

and W2 belong to the same divisor class. This proves the last statement and shows
that the canonical divisors indeed form a divisor class. �
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