$X_0(N)/F_5$

{{{id=4| B = BrandtModule(5, 37); B /// Brandt module of dimension 14 of level 5*37 of weight 2 over Rational Field }}} {{{id=3| dimension_new_cusp_forms(37*5,2,5) + 1 /// 14 }}} {{{id=2| time RI = B.right_ideals() /// Time: CPU 0.22 s, Wall: 0.22 s }}} {{{id=1| time R_0 = RI[0].left_order() /// Time: CPU 0.01 s, Wall: 0.01 s }}} {{{id=6| q_0 = R_0.ternary_quadratic_form() /// }}} {{{id=7| show(q_0.theta_series(200)) ///
1 + 2q^{3} + 2q^{12} + 2q^{27} + 2q^{48} + 2q^{75} + 2q^{108} + 2q^{147} + 2q^{192} + O(q^{200})
}}} {{{id=8| time quadforms = [I.left_order().ternary_quadratic_form() for I in RI] /// Time: CPU 0.49 s, Wall: 0.50 s }}} {{{id=10| time theta_series = [q.theta_series(1000) for q in quadforms] /// Time: CPU 0.09 s, Wall: 0.09 s }}} {{{id=9| for q in theta_series: print q /// 1 + 2*q^3 + 2*q^12 + 2*q^27 + 2*q^48 + 2*q^75 + 2*q^108 + 2*q^147 + 2*q^192 + 2*q^243 + 6*q^247 + 6*q^248 + 6*q^252 + 6*q^255 + 6*q^263 + 6*q^268 + 6*q^280 + 6*q^287 + 2*q^300 + 6*q^303 + 6*q^312 + 6*q^332 + 6*q^343 + 2*q^363 + 6*q^367 + 6*q^380 + 6*q^408 + 6*q^423 + 2*q^432 + 6*q^455 + 6*q^472 + 2*q^507 + 6*q^508 + 6*q^527 + 6*q^567 + 8*q^588 + 6*q^632 + 6*q^655 + 2*q^675 + 6*q^703 + 6*q^728 + 6*q^740 + 12*q^743 + 12*q^752 + 12*q^767 + 2*q^768 + 6*q^780 + 12*q^788 + 6*q^807 + 12*q^815 + 12*q^848 + 6*q^863 + 2*q^867 + 12*q^887 + 6*q^892 + 12*q^932 + 6*q^952 + 2*q^972 + 18*q^983 + 6*q^987 + 6*q^988 + 6*q^992 + 6*q^995 + O(q^1000) 1 + 2*q^12 + 2*q^48 + 2*q^63 + 2*q^67 + 2*q^83 + 2*q^95 + 2*q^108 + 2*q^127 + 2*q^147 + 4*q^188 + 2*q^192 + 2*q^195 + 4*q^212 + 2*q^223 + 4*q^247 + 2*q^248 + 2*q^252 + 4*q^255 + 4*q^260 + 4*q^263 + 2*q^268 + 2*q^280 + 6*q^287 + 2*q^300 + 4*q^303 + 2*q^312 + 2*q^323 + 6*q^332 + 4*q^343 + 4*q^367 + 2*q^380 + 2*q^403 + 2*q^408 + 4*q^423 + 4*q^428 + 6*q^432 + 4*q^440 + 2*q^447 + 4*q^448 + 4*q^455 + 6*q^472 + 4*q^488 + 2*q^508 + 4*q^527 + 4*q^528 + 2*q^543 + 4*q^548 + 4*q^552 + 2*q^555 + 8*q^567 + 4*q^588 + 2*q^595 + 4*q^603 + 4*q^608 + 2*q^632 + 4*q^640 + 4*q^655 + 4*q^663 + 4*q^692 + 4*q^703 + 2*q^707 + 4*q^712 + 2*q^728 + 2*q^740 + 8*q^743 + 4*q^747 + 8*q^752 + 10*q^767 + 2*q^768 + 2*q^780 + 4*q^788 + 4*q^803 + 8*q^807 + 8*q^815 + 4*q^823 + 4*q^835 + 4*q^840 + 4*q^848 + 4*q^855 + 4*q^860 + 4*q^863 + 4*q^867 + 12*q^887 + 4*q^888 + 2*q^892 + 2*q^895 + 4*q^932 + 4*q^935 + 2*q^952 + 6*q^963 + 2*q^972 + 12*q^983 + 4*q^987 + 6*q^988 + 10*q^992 + O(q^1000) 1 + 2*q^47 + 2*q^48 + 2*q^63 + 2*q^83 + 2*q^95 + 2*q^107 + 2*q^108 + 2*q^112 + 2*q^127 + 2*q^132 + 2*q^152 + 2*q^160 + 4*q^188 + 2*q^192 + 2*q^212 + 2*q^215 + 2*q^223 + 2*q^247 + 2*q^248 + 2*q^252 + 2*q^255 + 2*q^260 + 4*q^263 + 2*q^268 + 4*q^287 + 2*q^292 + 2*q^295 + 4*q^303 + 2*q^307 + 2*q^308 + 2*q^323 + 4*q^332 + 2*q^343 + 2*q^360 + 2*q^363 + 2*q^367 + 2*q^380 + 2*q^395 + 2*q^407 + 4*q^423 + 2*q^428 + 4*q^432 + 2*q^435 + 2*q^440 + 2*q^443 + 4*q^447 + 2*q^448 + 2*q^455 + 2*q^460 + 2*q^472 + 2*q^480 + 4*q^488 + 2*q^492 + 2*q^507 + 4*q^508 + 2*q^515 + 4*q^527 + 4*q^528 + 4*q^543 + 4*q^548 + 4*q^552 + 6*q^567 + 2*q^580 + 2*q^583 + 2*q^588 + 2*q^592 + 2*q^603 + 6*q^608 + 4*q^620 + 2*q^628 + 2*q^632 + 2*q^640 + 2*q^655 + 6*q^663 + 4*q^667 + 4*q^687 + 6*q^692 + 2*q^703 + 2*q^707 + 4*q^712 + 2*q^715 + 4*q^728 + 6*q^743 + 2*q^747 + 6*q^752 + 8*q^767 + 6*q^768 + 2*q^780 + 2*q^787 + 2*q^788 + 2*q^803 + 6*q^807 + 4*q^815 + 4*q^823 + 2*q^840 + 2*q^847 + 4*q^848 + 2*q^852 + 4*q^855 + 4*q^860 + 6*q^863 + 2*q^867 + 4*q^872 + 8*q^887 + 2*q^888 + 4*q^892 + 4*q^895 + 2*q^915 + 4*q^932 + 4*q^935 + 2*q^963 + 6*q^972 + 8*q^983 + 4*q^988 + 6*q^992 + O(q^1000) 1 + 2*q^27 + 2*q^28 + 2*q^47 + 2*q^63 + 2*q^108 + 2*q^112 + 2*q^120 + 2*q^123 + 2*q^152 + 2*q^155 + 2*q^188 + 4*q^192 + 4*q^215 + 4*q^223 + 2*q^243 + 2*q^247 + 4*q^248 + 4*q^252 + 2*q^255 + 4*q^263 + 4*q^287 + 4*q^292 + 2*q^295 + 2*q^303 + 2*q^307 + 4*q^308 + 2*q^312 + 4*q^332 + 4*q^360 + 4*q^367 + 4*q^380 + 2*q^403 + 4*q^407 + 2*q^408 + 6*q^423 + 6*q^428 + 2*q^432 + 2*q^443 + 4*q^447 + 2*q^448 + 4*q^455 + 2*q^480 + 4*q^492 + 2*q^507 + 4*q^508 + 8*q^527 + 4*q^528 + 4*q^543 + 2*q^567 + 4*q^580 + 4*q^583 + 2*q^588 + 2*q^595 + 6*q^608 + 2*q^620 + 4*q^632 + 4*q^640 + 6*q^663 + 2*q^675 + 6*q^687 + 4*q^692 + 2*q^700 + 2*q^707 + 4*q^712 + 6*q^728 + 2*q^740 + 6*q^743 + 6*q^752 + 6*q^767 + 4*q^768 + 2*q^780 + 6*q^787 + 4*q^788 + 4*q^803 + 2*q^807 + 4*q^815 + 2*q^823 + 4*q^847 + 8*q^848 + 4*q^852 + 4*q^855 + 4*q^860 + 8*q^863 + 2*q^867 + 4*q^872 + 8*q^887 + 2*q^888 + 4*q^892 + 4*q^895 + 4*q^928 + 4*q^932 + 4*q^935 + 2*q^952 + 2*q^963 + 4*q^972 + 8*q^983 + 6*q^987 + 2*q^988 + 8*q^992 + 4*q^995 + O(q^1000) 1 + 2*q^47 + 2*q^48 + 2*q^63 + 2*q^83 + 2*q^95 + 2*q^107 + 2*q^108 + 2*q^112 + 2*q^127 + 2*q^132 + 2*q^152 + 2*q^160 + 4*q^188 + 2*q^192 + 2*q^212 + 2*q^215 + 2*q^223 + 2*q^247 + 2*q^248 + 2*q^252 + 2*q^255 + 2*q^260 + 4*q^263 + 2*q^268 + 4*q^287 + 2*q^292 + 2*q^295 + 4*q^303 + 2*q^307 + 2*q^308 + 2*q^323 + 4*q^332 + 2*q^343 + 2*q^360 + 2*q^363 + 2*q^367 + 2*q^380 + 2*q^395 + 2*q^407 + 4*q^423 + 2*q^428 + 4*q^432 + 2*q^435 + 2*q^440 + 2*q^443 + 4*q^447 + 2*q^448 + 2*q^455 + 2*q^460 + 2*q^472 + 2*q^480 + 4*q^488 + 2*q^492 + 2*q^507 + 4*q^508 + 2*q^515 + 4*q^527 + 4*q^528 + 4*q^543 + 4*q^548 + 4*q^552 + 6*q^567 + 2*q^580 + 2*q^583 + 2*q^588 + 2*q^592 + 2*q^603 + 6*q^608 + 4*q^620 + 2*q^628 + 2*q^632 + 2*q^640 + 2*q^655 + 6*q^663 + 4*q^667 + 4*q^687 + 6*q^692 + 2*q^703 + 2*q^707 + 4*q^712 + 2*q^715 + 4*q^728 + 6*q^743 + 2*q^747 + 6*q^752 + 8*q^767 + 6*q^768 + 2*q^780 + 2*q^787 + 2*q^788 + 2*q^803 + 6*q^807 + 4*q^815 + 4*q^823 + 2*q^840 + 2*q^847 + 4*q^848 + 2*q^852 + 4*q^855 + 4*q^860 + 6*q^863 + 2*q^867 + 4*q^872 + 8*q^887 + 2*q^888 + 4*q^892 + 4*q^895 + 2*q^915 + 4*q^932 + 4*q^935 + 2*q^963 + 6*q^972 + 8*q^983 + 4*q^988 + 6*q^992 + O(q^1000) 1 + 2*q^40 + 4*q^47 + 2*q^95 + 2*q^115 + 4*q^127 + 4*q^132 + 2*q^148 + 4*q^152 + 2*q^155 + 2*q^160 + 4*q^188 + 4*q^192 + 2*q^215 + 4*q^243 + 4*q^252 + 4*q^263 + 4*q^287 + 2*q^295 + 4*q^303 + 4*q^308 + 4*q^332 + 4*q^343 + 2*q^360 + 4*q^363 + 4*q^380 + 2*q^395 + 4*q^407 + 4*q^423 + 4*q^428 + 4*q^432 + 4*q^443 + 8*q^447 + 4*q^448 + 4*q^460 + 4*q^488 + 4*q^508 + 2*q^515 + 4*q^527 + 8*q^528 + 4*q^543 + 4*q^548 + 4*q^552 + 8*q^567 + 4*q^583 + 2*q^592 + 8*q^608 + 4*q^620 + 4*q^628 + 4*q^632 + 2*q^640 + 2*q^655 + 4*q^663 + 4*q^687 + 4*q^692 + 4*q^703 + 4*q^707 + 4*q^728 + 8*q^743 + 4*q^747 + 4*q^752 + 8*q^767 + 8*q^768 + 4*q^788 + 4*q^803 + 4*q^807 + 2*q^815 + 4*q^823 + 2*q^835 + 4*q^847 + 4*q^848 + 4*q^852 + 2*q^855 + 4*q^860 + 8*q^863 + 4*q^872 + 4*q^887 + 4*q^892 + 2*q^895 + 4*q^932 + 4*q^935 + 4*q^952 + 2*q^955 + 4*q^963 + 8*q^972 + 4*q^983 + 4*q^987 + 4*q^988 + 4*q^992 + 2*q^995 + O(q^1000) 1 + 2*q^40 + 4*q^47 + 2*q^95 + 2*q^115 + 4*q^127 + 4*q^132 + 2*q^148 + 4*q^152 + 2*q^155 + 2*q^160 + 4*q^188 + 4*q^192 + 2*q^215 + 4*q^243 + 4*q^252 + 4*q^263 + 4*q^287 + 2*q^295 + 4*q^303 + 4*q^308 + 4*q^332 + 4*q^343 + 2*q^360 + 4*q^363 + 4*q^380 + 2*q^395 + 4*q^407 + 4*q^423 + 4*q^428 + 4*q^432 + 4*q^443 + 8*q^447 + 4*q^448 + 4*q^460 + 4*q^488 + 4*q^508 + 2*q^515 + 4*q^527 + 8*q^528 + 4*q^543 + 4*q^548 + 4*q^552 + 8*q^567 + 4*q^583 + 2*q^592 + 8*q^608 + 4*q^620 + 4*q^628 + 4*q^632 + 2*q^640 + 2*q^655 + 4*q^663 + 4*q^687 + 4*q^692 + 4*q^703 + 4*q^707 + 4*q^728 + 8*q^743 + 4*q^747 + 4*q^752 + 8*q^767 + 8*q^768 + 4*q^788 + 4*q^803 + 4*q^807 + 2*q^815 + 4*q^823 + 2*q^835 + 4*q^847 + 4*q^848 + 4*q^852 + 2*q^855 + 4*q^860 + 8*q^863 + 4*q^872 + 4*q^887 + 4*q^892 + 2*q^895 + 4*q^932 + 4*q^935 + 4*q^952 + 2*q^955 + 4*q^963 + 8*q^972 + 4*q^983 + 4*q^987 + 4*q^988 + 4*q^992 + 2*q^995 + O(q^1000) 1 + 2*q^7 + 2*q^28 + 2*q^63 + 2*q^107 + 2*q^108 + 2*q^112 + 2*q^120 + 2*q^123 + 2*q^147 + 2*q^152 + 2*q^175 + 2*q^188 + 2*q^195 + 4*q^212 + 4*q^215 + 4*q^223 + 4*q^232 + 2*q^243 + 4*q^248 + 4*q^252 + 4*q^263 + 4*q^287 + 4*q^308 + 2*q^312 + 2*q^323 + 4*q^340 + 2*q^343 + 4*q^367 + 2*q^395 + 4*q^407 + 2*q^408 + 6*q^423 + 6*q^428 + 6*q^432 + 4*q^440 + 6*q^447 + 2*q^448 + 6*q^455 + 6*q^480 + 4*q^488 + 8*q^492 + 2*q^507 + 10*q^527 + 6*q^543 + 2*q^567 + 4*q^583 + 6*q^588 + 2*q^603 + 6*q^608 + 2*q^620 + 4*q^628 + 6*q^663 + 6*q^687 + 4*q^692 + 2*q^700 + 2*q^728 + 2*q^740 + 4*q^743 + 6*q^747 + 6*q^752 + 4*q^768 + 6*q^780 + 4*q^803 + 4*q^815 + 10*q^847 + 8*q^848 + 4*q^852 + 6*q^855 + 8*q^860 + 8*q^863 + 2*q^867 + 4*q^872 + 14*q^887 + 2*q^888 + 8*q^892 + 4*q^915 + 8*q^928 + 8*q^935 + 6*q^952 + 2*q^955 + 2*q^963 + 8*q^972 + 8*q^983 + 2*q^988 + 12*q^992 + O(q^1000) 1 + 2*q^47 + 2*q^48 + 2*q^63 + 2*q^83 + 2*q^95 + 2*q^107 + 2*q^108 + 2*q^112 + 2*q^127 + 2*q^132 + 2*q^152 + 2*q^160 + 4*q^188 + 2*q^192 + 2*q^212 + 2*q^215 + 2*q^223 + 2*q^247 + 2*q^248 + 2*q^252 + 2*q^255 + 2*q^260 + 4*q^263 + 2*q^268 + 4*q^287 + 2*q^292 + 2*q^295 + 4*q^303 + 2*q^307 + 2*q^308 + 2*q^323 + 4*q^332 + 2*q^343 + 2*q^360 + 2*q^363 + 2*q^367 + 2*q^380 + 2*q^395 + 2*q^407 + 4*q^423 + 2*q^428 + 4*q^432 + 2*q^435 + 2*q^440 + 2*q^443 + 4*q^447 + 2*q^448 + 2*q^455 + 2*q^460 + 2*q^472 + 2*q^480 + 4*q^488 + 2*q^492 + 2*q^507 + 4*q^508 + 2*q^515 + 4*q^527 + 4*q^528 + 4*q^543 + 4*q^548 + 4*q^552 + 6*q^567 + 2*q^580 + 2*q^583 + 2*q^588 + 2*q^592 + 2*q^603 + 6*q^608 + 4*q^620 + 2*q^628 + 2*q^632 + 2*q^640 + 2*q^655 + 6*q^663 + 4*q^667 + 4*q^687 + 6*q^692 + 2*q^703 + 2*q^707 + 4*q^712 + 2*q^715 + 4*q^728 + 6*q^743 + 2*q^747 + 6*q^752 + 8*q^767 + 6*q^768 + 2*q^780 + 2*q^787 + 2*q^788 + 2*q^803 + 6*q^807 + 4*q^815 + 4*q^823 + 2*q^840 + 2*q^847 + 4*q^848 + 2*q^852 + 4*q^855 + 4*q^860 + 6*q^863 + 2*q^867 + 4*q^872 + 8*q^887 + 2*q^888 + 4*q^892 + 4*q^895 + 2*q^915 + 4*q^932 + 4*q^935 + 2*q^963 + 6*q^972 + 8*q^983 + 4*q^988 + 6*q^992 + O(q^1000) 1 + 2*q^47 + 2*q^48 + 2*q^63 + 2*q^83 + 2*q^95 + 2*q^107 + 2*q^108 + 2*q^112 + 2*q^127 + 2*q^132 + 2*q^152 + 2*q^160 + 4*q^188 + 2*q^192 + 2*q^212 + 2*q^215 + 2*q^223 + 2*q^247 + 2*q^248 + 2*q^252 + 2*q^255 + 2*q^260 + 4*q^263 + 2*q^268 + 4*q^287 + 2*q^292 + 2*q^295 + 4*q^303 + 2*q^307 + 2*q^308 + 2*q^323 + 4*q^332 + 2*q^343 + 2*q^360 + 2*q^363 + 2*q^367 + 2*q^380 + 2*q^395 + 2*q^407 + 4*q^423 + 2*q^428 + 4*q^432 + 2*q^435 + 2*q^440 + 2*q^443 + 4*q^447 + 2*q^448 + 2*q^455 + 2*q^460 + 2*q^472 + 2*q^480 + 4*q^488 + 2*q^492 + 2*q^507 + 4*q^508 + 2*q^515 + 4*q^527 + 4*q^528 + 4*q^543 + 4*q^548 + 4*q^552 + 6*q^567 + 2*q^580 + 2*q^583 + 2*q^588 + 2*q^592 + 2*q^603 + 6*q^608 + 4*q^620 + 2*q^628 + 2*q^632 + 2*q^640 + 2*q^655 + 6*q^663 + 4*q^667 + 4*q^687 + 6*q^692 + 2*q^703 + 2*q^707 + 4*q^712 + 2*q^715 + 4*q^728 + 6*q^743 + 2*q^747 + 6*q^752 + 8*q^767 + 6*q^768 + 2*q^780 + 2*q^787 + 2*q^788 + 2*q^803 + 6*q^807 + 4*q^815 + 4*q^823 + 2*q^840 + 2*q^847 + 4*q^848 + 2*q^852 + 4*q^855 + 4*q^860 + 6*q^863 + 2*q^867 + 4*q^872 + 8*q^887 + 2*q^888 + 4*q^892 + 4*q^895 + 2*q^915 + 4*q^932 + 4*q^935 + 2*q^963 + 6*q^972 + 8*q^983 + 4*q^988 + 6*q^992 + O(q^1000) 1 + 2*q^12 + 2*q^48 + 2*q^63 + 2*q^67 + 2*q^83 + 2*q^95 + 2*q^108 + 2*q^127 + 2*q^147 + 4*q^188 + 2*q^192 + 2*q^195 + 4*q^212 + 2*q^223 + 4*q^247 + 2*q^248 + 2*q^252 + 4*q^255 + 4*q^260 + 4*q^263 + 2*q^268 + 2*q^280 + 6*q^287 + 2*q^300 + 4*q^303 + 2*q^312 + 2*q^323 + 6*q^332 + 4*q^343 + 4*q^367 + 2*q^380 + 2*q^403 + 2*q^408 + 4*q^423 + 4*q^428 + 6*q^432 + 4*q^440 + 2*q^447 + 4*q^448 + 4*q^455 + 6*q^472 + 4*q^488 + 2*q^508 + 4*q^527 + 4*q^528 + 2*q^543 + 4*q^548 + 4*q^552 + 2*q^555 + 8*q^567 + 4*q^588 + 2*q^595 + 4*q^603 + 4*q^608 + 2*q^632 + 4*q^640 + 4*q^655 + 4*q^663 + 4*q^692 + 4*q^703 + 2*q^707 + 4*q^712 + 2*q^728 + 2*q^740 + 8*q^743 + 4*q^747 + 8*q^752 + 10*q^767 + 2*q^768 + 2*q^780 + 4*q^788 + 4*q^803 + 8*q^807 + 8*q^815 + 4*q^823 + 4*q^835 + 4*q^840 + 4*q^848 + 4*q^855 + 4*q^860 + 4*q^863 + 4*q^867 + 12*q^887 + 4*q^888 + 2*q^892 + 2*q^895 + 4*q^932 + 4*q^935 + 2*q^952 + 6*q^963 + 2*q^972 + 12*q^983 + 4*q^987 + 6*q^988 + 10*q^992 + O(q^1000) 1 + 2*q^3 + 2*q^12 + 2*q^27 + 2*q^48 + 2*q^75 + 2*q^108 + 2*q^147 + 2*q^192 + 2*q^243 + 6*q^247 + 6*q^248 + 6*q^252 + 6*q^255 + 6*q^263 + 6*q^268 + 6*q^280 + 6*q^287 + 2*q^300 + 6*q^303 + 6*q^312 + 6*q^332 + 6*q^343 + 2*q^363 + 6*q^367 + 6*q^380 + 6*q^408 + 6*q^423 + 2*q^432 + 6*q^455 + 6*q^472 + 2*q^507 + 6*q^508 + 6*q^527 + 6*q^567 + 8*q^588 + 6*q^632 + 6*q^655 + 2*q^675 + 6*q^703 + 6*q^728 + 6*q^740 + 12*q^743 + 12*q^752 + 12*q^767 + 2*q^768 + 6*q^780 + 12*q^788 + 6*q^807 + 12*q^815 + 12*q^848 + 6*q^863 + 2*q^867 + 12*q^887 + 6*q^892 + 12*q^932 + 6*q^952 + 2*q^972 + 18*q^983 + 6*q^987 + 6*q^988 + 6*q^992 + 6*q^995 + O(q^1000) 1 + 2*q^27 + 2*q^28 + 2*q^47 + 2*q^63 + 2*q^108 + 2*q^112 + 2*q^120 + 2*q^123 + 2*q^152 + 2*q^155 + 2*q^188 + 4*q^192 + 4*q^215 + 4*q^223 + 2*q^243 + 2*q^247 + 4*q^248 + 4*q^252 + 2*q^255 + 4*q^263 + 4*q^287 + 4*q^292 + 2*q^295 + 2*q^303 + 2*q^307 + 4*q^308 + 2*q^312 + 4*q^332 + 4*q^360 + 4*q^367 + 4*q^380 + 2*q^403 + 4*q^407 + 2*q^408 + 6*q^423 + 6*q^428 + 2*q^432 + 2*q^443 + 4*q^447 + 2*q^448 + 4*q^455 + 2*q^480 + 4*q^492 + 2*q^507 + 4*q^508 + 8*q^527 + 4*q^528 + 4*q^543 + 2*q^567 + 4*q^580 + 4*q^583 + 2*q^588 + 2*q^595 + 6*q^608 + 2*q^620 + 4*q^632 + 4*q^640 + 6*q^663 + 2*q^675 + 6*q^687 + 4*q^692 + 2*q^700 + 2*q^707 + 4*q^712 + 6*q^728 + 2*q^740 + 6*q^743 + 6*q^752 + 6*q^767 + 4*q^768 + 2*q^780 + 6*q^787 + 4*q^788 + 4*q^803 + 2*q^807 + 4*q^815 + 2*q^823 + 4*q^847 + 8*q^848 + 4*q^852 + 4*q^855 + 4*q^860 + 8*q^863 + 2*q^867 + 4*q^872 + 8*q^887 + 2*q^888 + 4*q^892 + 4*q^895 + 4*q^928 + 4*q^932 + 4*q^935 + 2*q^952 + 2*q^963 + 4*q^972 + 8*q^983 + 6*q^987 + 2*q^988 + 8*q^992 + 4*q^995 + O(q^1000) 1 + 2*q^7 + 2*q^28 + 2*q^63 + 2*q^107 + 2*q^108 + 2*q^112 + 2*q^120 + 2*q^123 + 2*q^147 + 2*q^152 + 2*q^175 + 2*q^188 + 2*q^195 + 4*q^212 + 4*q^215 + 4*q^223 + 4*q^232 + 2*q^243 + 4*q^248 + 4*q^252 + 4*q^263 + 4*q^287 + 4*q^308 + 2*q^312 + 2*q^323 + 4*q^340 + 2*q^343 + 4*q^367 + 2*q^395 + 4*q^407 + 2*q^408 + 6*q^423 + 6*q^428 + 6*q^432 + 4*q^440 + 6*q^447 + 2*q^448 + 6*q^455 + 6*q^480 + 4*q^488 + 8*q^492 + 2*q^507 + 10*q^527 + 6*q^543 + 2*q^567 + 4*q^583 + 6*q^588 + 2*q^603 + 6*q^608 + 2*q^620 + 4*q^628 + 6*q^663 + 6*q^687 + 4*q^692 + 2*q^700 + 2*q^728 + 2*q^740 + 4*q^743 + 6*q^747 + 6*q^752 + 4*q^768 + 6*q^780 + 4*q^803 + 4*q^815 + 10*q^847 + 8*q^848 + 4*q^852 + 6*q^855 + 8*q^860 + 8*q^863 + 2*q^867 + 4*q^872 + 14*q^887 + 2*q^888 + 8*q^892 + 4*q^915 + 8*q^928 + 8*q^935 + 6*q^952 + 2*q^955 + 2*q^963 + 8*q^972 + 8*q^983 + 2*q^988 + 12*q^992 + O(q^1000) }}} {{{id=12| for n in range(1,1000): k = len([i for i in range(len(theta_series)) if theta_series[i][n]]) if k == len(theta_series): print n, k, factor(n) /// 252 14 2^2 * 3^2 * 7 263 14 263 287 14 7 * 41 423 14 3^2 * 47 432 14 2^4 * 3^3 527 14 17 * 31 567 14 3^4 * 7 728 14 2^3 * 7 * 13 743 14 743 752 14 2^4 * 47 768 14 2^8 * 3 815 14 5 * 163 848 14 2^4 * 53 863 14 863 887 14 887 892 14 2^2 * 223 972 14 2^2 * 3^5 983 14 983 988 14 2^2 * 13 * 19 992 14 2^5 * 31 }}} {{{id=11| QuadraticField(-263,'a').factor(37) /// (Fractional ideal (37, a - 12)) * (Fractional ideal (37, a + 12)) }}} {{{id=13| QuadraticField(-743,'a').factor(37) /// (Fractional ideal (37, a - 16)) * (Fractional ideal (37, a + 16)) }}} {{{id=14| QuadraticField(-863,'a').factor(37) /// (Fractional ideal (37, a + 5)) * (Fractional ideal (37, a - 5)) }}} {{{id=15| for n in range(1,1000): k = len([i for i in range(len(theta_series)) if theta_series[i][n]]) if k == len(theta_series): print n, k, factor(n) /// 252 14 2^2 * 3^2 * 7 263 14 263 287 14 7 * 41 423 14 3^2 * 47 432 14 2^4 * 3^3 527 14 17 * 31 567 14 3^4 * 7 728 14 2^3 * 7 * 13 743 14 743 752 14 2^4 * 47 768 14 2^8 * 3 815 14 5 * 163 848 14 2^4 * 53 863 14 863 887 14 887 892 14 2^2 * 223 972 14 2^2 * 3^5 983 14 983 988 14 2^2 * 13 * 19 992 14 2^5 * 31 }}} {{{id=19| squarefree_part(20) /// 5 }}} {{{id=18| def conductor_part(n): n = ZZ(n) D = squarefree_part(n) if D%4 != 0 or is_fundamental_discriminant(-D): return n//D else: return n//(4*D) /// }}} {{{id=17| %time primreps = [] for t in theta_series: v = [0] + [sum(moebius(d)*t[n//d^2] for d in divisors(conductor_part(n))) for n in range(1,t.degree())] primreps.append(v) /// CPU time: 5.06 s, Wall time: 5.15 s }}} {{{id=20| for n in range(len(primreps[0])-10): k = len([i for i in range(len(primreps)) if primreps[i][n] != 0]) if k == len(primreps): print n, factor(n) /// 263 263 287 7 * 41 527 17 * 31 728 2^3 * 7 * 13 743 743 815 5 * 163 863 863 887 887 983 983 }}} {{{id=21| def conductor_part(n): n = ZZ(n) D = squarefree_part(n) if D%4 != 0 or is_fundamental_discriminant(-D): return n//D else: return n//(4*D) def my_moebius(n) : return ZZ(pari(n).moebius()) def surjective_discriminant(N, p, bound=500): N,p,bound = ZZ(N), ZZ(p), ZZ(bound) if not is_prime(p): raise ValueError, "p must be prime" B = BrandtModule(p, N) RI = B.right_ideals() quadforms = [I.left_order().ternary_quadratic_form() for I in RI] theta_series = [q.theta_series(bound) for q in quadforms] for n in range(1,bound): k = len([i for i in range(len(theta_series)) if theta_series[i][n]]) if k == len(theta_series): # Every single ternary quadratic form represent n. # Now, check to see if all representations are primitive. primreps = [] for t in theta_series: v = [0] + [sum(my_moebius(d)*t[dc//d^2] for d in divisors(conductor_part(dc))) for dc in range(1,t.degree())] primreps.append(v) if n <= len(primreps[0])-10: k = len([i for i in range(len(primreps)) if primreps[i][n] != 0]) if k == len(primreps): print n, factor(n) /// }}} {{{id=23| surjective_discriminant(37, 5, 1000) /// WARNING: Output truncated! full_output.txt moebius took 0.288894 moebius took 0.287628 moebius took 0.28545 moebius took 0.281376 moebius took 0.280608 moebius took 0.281467 moebius took 0.281152 moebius took 0.281554 moebius took 0.280034 moebius took 0.28047 moebius took 0.366339 moebius took 0.281077 moebius took 0.281069 moebius took 0.280694 moebius took 0.282651 moebius took 0.281076 moebius took 0.280517 moebius took 0.280226 moebius took 0.2803 moebius took 0.279897 moebius took 0.280707 moebius took 0.280256 moebius took 0.362126 moebius took 0.280008 moebius took 0.282082 moebius took 0.282512 moebius took 0.280101 moebius took 0.281939 263 263 moebius took 0.281591 moebius took 0.291407 moebius took 0.280915 moebius took 0.280552 moebius took 0.281182 moebius took 0.28014 moebius took 0.365432 moebius took 0.280347 moebius took 0.279153 moebius took 0.280163 moebius took 0.279384 moebius took 0.281608 moebius took 0.281079 moebius took 0.280439 287 7 * 41 moebius took 0.281347 moebius took 0.2799 moebius took 0.281246 moebius took 0.280991 moebius took 0.280948 moebius took 0.364194 moebius took 0.281523 moebius took 0.285815 moebius took 0.285542 moebius took 0.28071 moebius took 0.279378 moebius took 0.280873 moebius took 0.28067 moebius took 0.280272 moebius took 0.279662 moebius took 0.279297 ... moebius took 0.280654 moebius took 0.279856 moebius took 0.278795 moebius took 0.280227 moebius took 0.279465 moebius took 0.279672 moebius took 0.280275 moebius took 0.280257 moebius took 0.27954 moebius took 0.279674 moebius took 0.278762 moebius took 0.36152 moebius took 0.278775 moebius took 0.279146 moebius took 0.280962 moebius took 0.279575 moebius took 0.285083 moebius took 0.280016 moebius took 0.278965 moebius took 0.279403 moebius took 0.279805 moebius took 0.279316 moebius took 0.279402 moebius took 0.361757 moebius took 0.278609 moebius took 0.279955 moebius took 0.279289 moebius took 0.278564 moebius took 0.280498 moebius took 0.279251 moebius took 0.278675 983 983 moebius took 0.289725 moebius took 0.281156 moebius took 0.279221 moebius took 0.280146 moebius took 0.279447 moebius took 0.362119 moebius took 0.279458 moebius took 0.278735 moebius took 0.278787 moebius took 0.278917 moebius took 0.2789 moebius took 0.280784 moebius took 0.279431 moebius took 0.278638 moebius took 0.279573 moebius took 0.279548 moebius took 0.279922 moebius took 0.364836 moebius took 0.283811 moebius took 0.279647 moebius took 0.279662 moebius took 0.279067 moebius took 0.279302 moebius took 0.288751 moebius took 0.279557 moebius took 0.289598 moebius took 0.282484 moebius took 0.287889 }}} {{{id=24| moebius?? /// }}} {{{id=25| /// }}}