
An Extension of Kedlaya’s Point-Counting
Algorithm to Superelliptic Curves

Pierrick Gaudry and Nicolas Gürel

LIX, École polytechnique, 91128 Palaiseau Cedex, France
{gaudry, gurel}@lix.polytechnique.fr

Abstract. We present an algorithm for counting points on superelliptic
curves yr = f(x) over a finite field Fq of small characteristic different
from r. This is an extension of an algorithm for hyperelliptic curves due
to Kedlaya. In this extension, the complexity, assuming r and the genus
are fixed, is O(log3+ε q) in time and space, just like for hyperelliptic
curves. We give some numerical examples obtained with our first imple-
mentation, thus proving that cryptographic sizes are now reachable.

1 Introduction

In the past few years a lot of candidates have been proposed to enlarge the set of
groups that can be used in protocols based on the discrete logarithm problem like
Diffie–Hellman or ElGamal. Beside the classical multiplicative groups of finite
fields, the most famous are certainly the systems based on elliptic curves [21,
26]. Indeed, for these systems the only general attacks known are variants of the
Pollard Rho method which require exponential time computation; in practice it
means that the key size is much shorter than in a system that uses finite fields.
Thereafter, systems based on hyperelliptic curves were proposed [22]. They seem
to have the same advantages as elliptic curve cryptosystems (at least when the
genus is less than 4 [1,14]).

More recently, systems based on the discrete logarithm problem in the Jaco-
bians of other curves were designed. Namely, in the literature, we can now find
algorithms for working in Jacobians of superelliptic curves [13] and of Cab curves
[2]. Several works related to these curves have already been published, concerning
security issues [4], efficiency [17,6], building curves with known number of points
[3], or possible use in a Weil restriction attack on elliptic curves [5]. The next
step for studying the possible cryptographic use of these curves is to conceive an
algorithm for counting points of the Jacobian of a random curve. Indeed, this is
thought to be one of the most secure ways of building a cryptosystem by a large
part of the community.

In the case of elliptic curves, this problem of point counting has been a chal-
lenge of the past 15 years and nowadays we have satisfactory solutions. When
the characteristic of the base field is large the best known method is Schoof’s
algorithm and all the improvements leading to the so-called Schoof–Elkies–Atkin
algorithm. We refer to [7] or [23] for surveys of these techniques and to the ref-
erences therein. Besides some theoretical results [29] and an attempt to make

C. Boyd (Ed.): ASIACRYPT 2001, LNCS 2248, pp. 480–494, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

An Extension of Kedlaya’s Point-Counting Algorithm 481

them practical [15], extending the SEA algorithm to higher genus has not yet
proven to be enough for cryptographic sizes. The situation is quite different in
small characteristic: two years ago, Satoh [32] showed that p-adic methods using
the canonical lift could lead to an algorithm asymptotically faster than SEA.
Some work has been done consequently on the subject to extend it to charac-
teristic 2 [33,9], to implement it and obtain new records [9], to use less memory
[34], and to combine it with an early-abort strategy for generating secure curves
[10]. Mestre, Harley and Gaudry recently proposed a related algorithm, based
on the arithmetic-geometric mean, for elliptic curves and hyperelliptic curves
of genus 2 in characterstic 2; a nice feature of this technique is that it does not
explicitly make use of j-invariants, of modular equations nor of Vélu-type formu-
lae, and these had previously been the main obstructions to generalizing beyond
the elliptic case. However, the AGM method does not seem to extend easily to
non-hyperelliptic curves. Another approach, also using p-adic methods but not
based on canonical lifting, has been proposed by Kedlaya [18]. His method ap-
plies to hyperelliptic curves in small odd characteristic. The complexity in time
is O(log3+ε q), for curves over Fq of fixed genus, i.e. the same as all the variants
of Satoh’s method and the complexity in space is O(log3 q) which is the same as
Satoh’s original algorithm, but bad compared to the algorithm of [34] or AGM.

The contribution of this paper is twofold: firstly we show that Kedlaya’s al-
gorithm can be extended in a rather straightforward way to superelliptic curves;
secondly we report some results obtained with our first implementation writ-
ten in Magma. To our knowledge, these are the first published point counting
computations for random hyperelliptic and superelliptic curves of cryptographic
sizes.

The paper is organized as follows: after recalling some basics about curves
and p-adic numbers, we describe Kedlaya’s original algorithm and show how to
adapt it for superelliptic curves. Then we give some more details on the way
these algorithms can be handled in practice and we estimate the complexity. We
conclude by numerical examples and remarks about the use of these curves in
cryptography.

2 Background on Algebraic Curves and p-Adic Number
Rings

In this section, we recall some basic facts about algebraic curves over finite fields
and p-adic numbers. We shall not give precise definitions and we refer the reader
to classical books on the subject ([12,20,19,24] for instance).

2.1 Hyperelliptic and Superelliptic Curves

Let Fq be a finite field with q = pn elements. We shall consider only two types
of curves over Fq, namely hyperelliptic and superelliptic curves.

482 P. Gaudry and N. Gürel

Definition 1 A superelliptic curve is a plane curve C which admits an affine
equation of the form

yr = f(x),

where r is a prime different from p and f is monic, squarefree of degree d coprime
to r.

With such a definition, C is non-singular in its affine part, and admits a unique
place of degree 1 at infinity. Moreover its genus is given by g = (d−1)(r−1)

2 .

Definition 2 In characteristic different from 2, a hyperelliptic curve is a su-
perelliptic curve whose equation is of the form y2 = f(x), with r = 2 and f of
degree 2g + 1.

Note that there exists a more general definition of hyperelliptic curves which
do not exclude the case of characteristic 2. But the algorithms we will describe
work only for this particular case.

Let C be a superelliptic curve of genus g. Associated to this curve, one can
define its Jacobian, noted J(C), which is a finite abelian group. In the past few
years, several algorithms were developed to compute explicitly in this group [13,
2,17,6]. The next step is to study the order of J(C). For this the q-th power
Frobenius endomorphism and its characteristic polynomial χ(T) are key tools.
More precisely, χ(T) can be written as

χ(T) =
2g∑
i=0

aiT
i, with a2g = 1, ai = qg−ia2g−i for i = 0, . . . , g − 1,

and all its roots have absolute value
√
q. This is essentially the Riemann Hypoth-

esis for zeta functions of curves. For us, the interesting fact is that #J(C) = χ(1).
Our goal in this paper is to compute χ(T) and to obtain #J(C) as a byproduct.

2.2 The Ring Zq

Let K be the (unique up to isomorphism) unramified extension of degree n of
Qp; its residual field is Fq. We denote by Zq the ring of integers of K. In order
to construct it, we can start with the polynomial P (t) which defines Fq as an
algebraic extension of Fp; we then consider the extension

Zq := Zp[t]/(P (t)),

where the polynomial P (t) is obtained from P (t) by lifting trivially its coeffi-
cients to p-adic integers. In practice, an element z of Zq can be represented as
a polynomial z = zn−1tn−1 + zn−2tn−2 + · · ·+ z1t+ z0 taken modulo P (t) and
where the zi are integers modulo a power of p called the precision at which the
computation is done.

It can be shown that the Galois group of K over Qp is cyclic. We will denote
by σ the unique generator, also called Frobenius, of this Galois group that reduces

An Extension of Kedlaya’s Point-Counting Algorithm 483

modulo p to the p-th power Frobenius in Fq. There is no trivial formula for
writing zσ for an element z in Zq expressed on a polynomial basis as above.
Later on, we will describe how to precompute tσ and then zσ is obtained as
follows:

zσ =

(
n−1∑
i=0

zit
i

)σ
=
n−1∑
i=0

zi(tσ)i.

3 Kedlaya’s Algorithm and Its Extension

3.1 Overview of Kedlaya’s Algorithm for Hyperelliptic Curves

Let C be a hyperelliptic curve of genus g given by its equation y2 = f(x) over
Fq. Following the construction of Kedlaya (see also [20], page 72), we consider
the curve C′ obtained from C by removing the point at infinity and the points
with vertical tangent (i.e. y = 0).

There is a way to lift the coordinate ring of C′ called the weak completion [27],
with the nice property that its cohomology verifies a “Lefschetz trace formula”
[28] and hence gives information about the cardinalities of the initial curve C.

Taking a lowbrow point of view in which we can forget about the curve C′,
we shall work on the vector space generated over the p-adic number field K by
the following differential forms:

D =
〈
xidx

y
; i ∈ [0, 2g − 1]

〉
,

in which we have the relations coming from the equation of the curve and
dϕ(x, y) ≡ 0 for every rational function ϕ. On the differential forms one can
define a Frobenius action which is compatible with the p-th power Frobenius
on C: take xσ = xp, yσ given by (yσ)2 = f(x)σ and (dx)σ = pxp−1dx. Kedlaya
shows in a constructive way that the space D is stable under the action of this σ.
Hence σ is an endomorphism of a vector space of dimension 2g; and everything
is done in order for its characteristic polynomial to be closely related to the
χ(T) we are looking for. The heart of Kedlaya’s algorithm is then to compute
the matrix of σ for the given basis of D.

For each i in [0, 2g − 1],(
xidx

y

)σ
=

1
yσ
pxip+p−1dx,

therefore the tricky part is the computation of 1
yσ . This is not defined in a lifted

coordinate ring because it involves a square root and that is a reason why we
use the weak completion. From a practical point of view, it means that we shall
be able to expand 1

yσ as a power series in τ = 1
y2 : starting with the definition

(yσ)2 = f(x)σ, we have

484 P. Gaudry and N. Gürel

1
yσ = (f(x)σ)−1/2

= (f(x)σ − f(x)p + f(x)p)−1/2

= (f(x)p)−1/2
(
1 + f(x)σ−f(x)p

f(x)p

)−1/2
= 1

yp (1 + τ
p(f(x)σ − f(x)p))−1/2 .

By the usual power series expansion of (1 +X)−1/2 we get an expression of the
form

1
yσ

= y−p
∑
k≥0

Pk(x)τpk = y−1τ (p−1)/2
∑
k≥0

Pk(x)τpk.

Note that p divides (f(x)σ − f(x)p) so that the power of p dividing Pk(x) tends
to infinity as k grows (actually this is what is expected due to the theoretical
construction of the weak completion). We can now write

(
xidx

y

)σ
=

∑
k≥0

Qk(x)τk

 dx

y
,

where Qk(x) are polynomials. The algorithm proceeds as follows: we compute
this expression up to some precision in τ , and then we use the relations in D
described above to reduce the expression to a polynomial of degree at most 2g−1,
times dx

y . In this way we shall prove that D is indeed σ-stable and moreover we
obtain an explict description of the action of σ on the basis. For this we will use
three strategies of reduction:

Red 1. First of all, using the equation of the curve, one can write

Qk(x)τk = (αk(x)f(x) + βk(x))τk = αk(x)τk−1 + βk(x)τk,

where αk and βk are the quotient and the remainder in the division of Qk
by f . Therefore one can assume that Qk(x) is of degree at most 2g for all k,
except for Q0(x) for which one can show that the degree is at most 2pg− 1.

Red 2. Then we use the relations of cohomology to rewrite the series in the
form Q(x)dxy . Fix k ≥ 1 and consider the term Qk(x)τk dxy . Let U(x) and
V (x) be such that Qk(x) = U(x)f(x) + V (x)f ′(x) (they do exist because f
is squarefree). Using

d

(
V (x)
y2k−1

)
≡ 0,

one obtains

Qk(x) τk
dx

y
≡
(
U(x) +

2
2k − 1V

′(x)
)
τk−1

dx

y
.

Repeating this for decreasing k’s, we can rewrite everything on the constant
term of the series.

An Extension of Kedlaya’s Point-Counting Algorithm 485

Red 3. Finally, in the expression Q(x)dxy that we obtained, one can reduce the
degree δ of Q to at most 2g − 1 in the following way. Assume δ ≥ 2g: using

d(xδ−2gy) ≡ 0,
one gets a polynomial of degree δ that can be subtracted from Q.

At this point, we have computed a 2g × 2g matrix M such that
dx
y
...

x2g−1dx
y

σ

= M

dx
y
...

x2g−1dx
y

 .
Most of the operations done during the computation involve elements of Zq, but
at the end we may have to divide by small powers of p. Finally the coefficients
of M lie in p−sZq with a small, predictable s, which depends only on p and g.

The final step is then to compute the characteristic polynomial of the matrix

MMσ · · ·Mσn−1
,

which has coefficients in Z2 and is a p-adic approximation of χ(T).

3.2 Superelliptic Curves

Let C be a superelliptic curve given by its equation yr = f(x) with f of degree d
over Fq. The theory is exactly the same as for hyperelliptic curves. In the present
case, the space of differential forms we consider is〈

xidx

yj
; i ∈ [0, d− 2], j ∈ [1, r − 1]

〉
.

The Frobenius action lifting the p-th power Frobenius on C is defined similarly:
take xσ = xp, yσ given by (yσ)r = f(x)σ and (dx)σ = pxp−1dx.

Again, the space of differential forms has been chosen such that it is stable
under the action of σ; we will now describe the reduction process which allows
us to rewrite

(
xidx
yj

)σ
over the basis. Fix an i ∈ [0, d − 2] and a j ∈ [1, r − 1].

We can write
(

1
yj

)σ
as a power series(

1
yj

)σ
= y−jp

(
1 +

f(x)σ − f(x)p
yrp

)−j/r
= y−jp

∑
k≥0

Pk(x)τpk,

where we have set τ = y−r. Hence we can write(
xidx

yj

)σ
=

∑
k≥0

Qk(x)τk

 dx

yjpmodr
.

In the following, we let % = jp mod r. We now proceed with three reduction
steps similar to those we had for hyperelliptic curves.

486 P. Gaudry and N. Gürel

Red 1. First, use the equation of the curve to obtain a series where the Qk(x)
are of degree at most d− 1, except for the first one.

Red 2. Then, rewrite the term in τk as a term in τk−1. For k ≥ 1, let U(x) and
V (x) be such that Qk(x) = U(x)f(x) + V (x)f ′(x), one has

Qk(x) τk
dx

y�
≡
(
U(x) +

r

r(k − 1) + %V
′(x)

)
τk−1

dx

y�
.

Red 3. Finally, we are left with an expression of the form Q(x)dx
y�
, where Q(x) is

a polynomial of degree δ that we can reduce to degree at most d−2: assume
δ ≥ d − 1, the exact differential d(xδ−d+1yr−l) ≡ 0 gives a polynomial of
degree δ that can be subtracted from Q(x).

We obtain a 2g× 2g matrix M and we conclude as before by taking the charac-
teristic polynomial of its “norm”.

Note that the differential forms in dx
yj are sent by σ to the subspace generated

by forms in dx
y�
with % = jp mod r. As a consequence, M is a matrix that can

be viewed in blocks of size d − 1, with the property that there is exactly one
non-zero block in each row block and each column block.

4 Details and Complexity

4.1 Precision of the Computation

The intermediate result obtained from the algorithm of section 3 is an approx-
imation of the polynomial χ(T) that we are looking for, and by computing to
sufficient precision we can determine it exactly. Two parameters have to be
tuned, to ensure that at the end we get enough information to conclude. The
first is the p-adic precision pν at which we truncate elements of Zp. The second
is the τ -adic precision at which we truncate the series.

Bounds on the coefficients of χ(T) can be deduced from the bounds on its
roots: |ai| ≤

(2g
i

)
qi/2 for i ∈ [1, g]. We assume that q is large compared to the

genus, so that ag determines the required precision. Hence we need to know
χ(T) modulo �2(2gg)qg/2 to be sure to recover all the coefficients. Therefore the
working precision should be at least

ν =
⌈
logp

(
2
(
2g
g

)
qg/2

)⌉
.

The precision in τ is more problematic: at first sight it is not clear that we
do not need all the terms of the series to get a result which makes sense even
modulo p. Actually in the power series expansion, one can see that the coefficient
in τk (which is a polynomial over Zq) is divisible by a power of p which grows
to infinity at the speed of k/p. Hence it appears that the precision µ in τ should
be at least p times the p-adic precision ν. Moreover, the reduction process also
perturbs things: starting with a term Qk(x)τk dxy� , with p

m dividing Qk(x), one

An Extension of Kedlaya’s Point-Counting Algorithm 487

reduces to a differential form Q(x)dx
y�
and pm does not divide Q(x) any more.

In Lemma 1 of [18], Kedlaya shows that we can bound the loss of precision by
logp(rk+%). Acordingly, it is sufficient to enlarge µ slightly to ensure that at the
end we have the required precision. A tedious calculation leads to the following
choice for µ: we take the smallest µ such that

µ > pν − p

r
+ p logp((r + 1)µ− 1).

4.2 Detailed Algorithm

We summarize the algorithm in the following:

Input: A superelliptic curve yr = f(x) over Fq, q = pn, the degree of f is noted
d, g = (d−1)(r−1)

2 .
Output: The characteristic polynomial χ(T).

1. Set the p-adic working precision ν = �logp(2
(2g
g

)
qg/2) and set the maximal

precision µ for the series to be the smallest value such that µ > pν − p
r +

p logp((r + 1)µ− 1).
2. Let S = 1 + (f(x)σ − f(x)p) τp, where f(x) is the polynomial f(x) where

the coefficients are lifted arbitrarily from Fq to Zq.
3. Compute S−1/r as a truncated series in τ , to precision τµ.

For this, use a Newton iteration X ← 1
r ((r+1)X −SXr+1), initialized with

X = 1. At each step in the recursion, use Red1 to keep the coefficients of
the series of degree at most d− 1.

4. Compute S−j/r for j ∈ [2, r − 1] up to precision τµ. This is done by multi-
plying S−1/r by itself repeatedly; again, use Red1 after each multiplication.

5. For each i ∈ [0, d− 2] and j ∈ [1, r − 1] do
a. Compute ωij =

(
xidx
yj

)σ
= pτ jp div rxip+p−1S−j/r dx

yjpmodr .

b. Use Red 2 to write ωij in the form Q(x) dx
yjpmodr .

During this reduction it is sometimes necessary to divide by an integer
which is divisible by p. In theory, this ought to reduce the precision of
the computation. Actually, when this occurs, one adds some arbitrary
noise to “force” the precision to remain maximal. This strange way of
doing things does not actually affect the final result because this noise
will cancel out during the whole process. This is ensured by Lemma 1 in
[18], which extends naturally to the superelliptic case.

c. Use Red 3 to reduce the degree of Q(x).
6. Compute the matrix M , its norm and its characteristic polynomial χ̃(T) =∑

0≤k≤2g ãkT
k.

7. For k ∈ [1, g], find the integer ak in [−p
ν

2 ,
pν

2] congruent to ãk modulo p
ν .

Return the corresponding χ(T).

488 P. Gaudry and N. Gürel

4.3 Complexity

For the complexity analysis we shall make the following assumptions:

– The characteristic p is fixed;
– The parameters r and d of the curves are fixed, hence also the genus;
– Each time we have to do a multiplication between two elements of a rather
complicated structure (truncated series over polynomials over polynomials
over integers), we assume that we pack everything into large integers and that
we use Schönhage’s fast multiplication algorithm. A multiplication between
two objects of bit-size N is then assumed to take time O(N1+ε).

In Step 2 we have to apply Frobenius to some elements of Zq. For this, note
that t being a root of P (t), so is tσ. Therefore, tσ can be obtained by a Newton
iterationX ← X−P (X)/P ′(X) initialized with tp. This is just a precomputation
and moreover the cost is comparable to the rest of the algorithm. Thereafter, it
is possible to obtain the Frobenius of an element in Zq in time O(n3+ε).

Step 3 is a Newton lifting. The cost is bounded by a constant times the
cost of the last iteration. This last iteration costs a few multiplications between
objects which are polynomials of degree µ over polynomials of degree d− 1 with
coefficients in Zq. An element of Zq is of bit-size nν, therefore the bit-size of the
objects is nνµd = O(n3+ε). Hence the O(1) multiplications we have to do in
the final iteration take time in O(n3+ε). Applying Red 1 to the result has the
same asymptotic complexity (we have to visit the whole object and the runtime
is linear in its size) but is faster in practice. Finally the overall complexity of
Step 3 is in O(n3+ε).

In Step 4 we do a constant number of multiplications (remember r is constant)
and then an application of Red 1 to objects of size in O(n3+ε). Again the
complexity is O(n3+ε). Note that in the hyperelliptic case, this step does not
exist.

In Step 5 we repeat a reduction process 2g times using Red 2 and Red 3.
More precisely, Substep 5.a is only reorganizing and applying Red 1; this takes
negligible time. In Substep 5.b we repeat µ times a process which involves ele-
mentary operations over polynomials of degree at most d over Zq, i.e. a constant
number of operations in Zq. Hence Substep 5.b has a cost in O(n3+ε). The third
reduction in Substep 5.c is negligible.

In Step 6 the costly part is to compute the norm of the matrix. By a recursive
“divide and conquer” computation, we can save some of the costly Frobenius
computations and obtain a runtime again in O(n3+ε). In [31], Satoh proposes
another method which can moreover save memory.

Putting everything together, the complexity of the algorithm is O(n3+ε) in
time and in space.

5 Numerical Results and Cryptographic Significance

As far as we know, even the original algorithm of Kedlaya has not yet been
tested in practice. Therefore, we did our first implementation with the first aim of

An Extension of Kedlaya’s Point-Counting Algorithm 489

validating Kedlaya’s algorithm and our extension. We used Magma, version 2.7,
which allowed us to easily manipulate quite complicated objects: it is possible in
Magma to construct the ring Zq and to build the ring of series over polynomials
over Zq which is required. However, by taking such a high programming level, we
can not really hope to do all the optimizations we could dream of; furthermore,
there are some small bugs in our version of Magma which make us lose precision
from time to time and we had to take a (constant) added margin in the precision
of the computations. Therefore the results we give here are just meant to show
that the algorithm works in practice and that cryptographic sizes are clearly
reachable. We are currently working on an optimized implementation in C which
should reduce the runtime significantly.

All the examples have been run on an Alpha EV6 at 667 MHz. The numbers
of points are small enough that it is possible to factor them and prove the results.
The space requirement was roughly 150 MB.

5.1 Hyperelliptic Examples

In the hyperelliptic case, we cannot take a field of characteristic 2 for which the
algorithm is not designed. We carried out our experiments with finite fields of
characteristic 3.

Example 1.
In F353 , we take the generator t given by t53 + 2t4 + 2t3 + 2t2 + 1 = 0 and

consider the genus 2 randomly chosen curve given by

y2 = x5 + t2321121798755003703020989x4 + t8444066873716648223072527x3+
t7946343052437940195139141x2 + t10959512142684015392587300x+
t11366373156356845343093334 .

After about 22 hours of computation we found the coefficients of its charac-
teristic polynomial to be

a1 = 3767947898876,
a2 = 16462680188903823501200294,

which yields a cardinality of

N = 375710212613709295385367112322529717794218564821248.

Example 2.
We took a randomly chosen curve over the finite field Fq with q = 337. Let t

with minimal polynomial t37 + t3 + 2t2 + 2t+ 1, and consider the genus 3 curve
of equation

y2 = x7 + t145005605337803244x6 + t367106618571281107x5 + t377813655811225893x4+
t47288412099057887x3 + t55871015404698790x2 + t232037785016055219x+
t286815047052544398 .

After about 30 hours of computation we found the coefficients of its charac-
teristic polynomial to be

490 P. Gaudry and N. Gürel

a1 = 1128783670,
a2 = 1117168429648455309,
a3 = 886287268279616285414037148,

which yields a cardinality of

N = 91297581893980817420223885655399261733128358845689672.

5.2 Superelliptic Examples

For superelliptic curves, we concentrate on characteristic 2 which is the most
interesting case for practical applications.

Example 1.
In F253 , we take the generator t given by t53+ t6+ t2+ t+1 = 0 and consider

the randomly chosen curve

y3 = x4 + t2256567407303775x3 + t7508555791178511x2+
t1136027055799467x+ t4967542575384673 .

After about 22 hours of computation we found the coefficients of its charac-
teristic polynomial to be

a1 = 0,
a2 = −2299871474212151,
a3 = 0,

which yields a cardinality of

N = 730750818665451438386441787834386121601727865546.

The nullity of a1 and a2 is not a surprise: it is explained by the absence of
third roots of unity in the base field (see below).

Example 2.
In F258 , we take the generator t given by t58 + t19 + 1 = 0 and consider the

random curve
y3 = x4 + t184416898722999862x3 + t138153554162118062x2+

t90053985362597546x+ t159188191651769175 .

After about 28 hours of computation we found the coefficients of its charac-
teristic polynomial to be

a1 = 1346491223,
a2 = 540650236559852363,
a3 = 106786896758507851646763008,

which yields a cardinality of

N = 23945242937891627923322882122316144789744381897954979.

The cardinalities we found were not (almost) prime and these curves should
not be used in cryptography. We could have repeated the computations for sev-
eral curves until we found a good curve. Note that an early-abort strategy cannot
be used in this context.

An Extension of Kedlaya’s Point-Counting Algorithm 491

5.3 Some Remarks about Superelliptic Curves in Cryptography

When one wants to build a cryptosystem based upon a curve, there are some
security issues that have to be taken into account. Besides the fact that the
number of points of the Jacobian should be (almost) prime, the following attacks
(or threats) should be avoided:

1. Index-calculus attack for high genus curves [14,4]: the genus of the curve
should be at most 3.

2. MOV attack [25,11]: the smallest k such that #J(C) | qk − 1 should be large.
3. Rück’s attack [30]: the order of the subgroup in which we are working should
be coprime to p.

4. The curve should not have “special properties”.

Item 1 means that we are left with a small choice of non-elliptic curves useful
for cryptography: hyperelliptic curves of genus 2 and 3, and superelliptic curves
of the form y3 = f(x) with f of degree 4.

Items 2 and 3 are almost always fulfilled when we choose random curves and
the verification that this is indeed the case for a given curve is straightforward.

The fourth item is less precise but has its importance: nowadays some people
do not recommend to use elliptic curves for which the class number of the ring
of endomorphism is too small; the base field should be a prime field or a prime
extension field due to the threat of an attack by Weil descent [16]; and more
generally any special behavior of the curves could be considered as suspect.

Keeping all this in mind, consider now a curve C of the form y3 = f(x) with f
of degree 4 over a field Fq. Assume that q is congruent to 2 modulo 3. Then every
element of Fq is a cube. Therefore #C/Fq is equal to q + 1, counting the point
at infinity. Furthermore this is the case in every extension of Fq which does not
contain the third roots of unity, namely every odd degree extension. A simple
calculation with zeta functions shows that this implies that the coefficients a1
and a3 in the characteristic polynomial are zero, therefore χ(T) is of the form
T 6 + a2T 4 + qa2T 2 + q3, as we observed in Example 1. It means that this curve
is highly “non-random” among all the curves of genus 3. In particular, the 3-
torsion part of the Jacobian is partly degenerate which is a first step towards
supersingularity. In [35], the reader will find a survey about the gradation from
ordinary curves to supersingular curves and the link with the Newton polygon
of the characteristic polynomial.

Having noticed this, one is tempted to claim that it is safer to take a base field
which includes the third roots of unity. However, we are confronted to another
problem, at least in characteristic 2. Indeed, F2n will contain the third root of
unity if and only if n is even. We could then be subject to a Weil descent attack:
if n = 2m, by doing a Weil restriction on J(C), we get an abelian variety of
dimension 6 over F2m . If someone is able to draw a curve of genus 6 on this
abelian variety, then the system is broken. As far as we know, nobody is able to
find such a curve (if it exists!) but this could be threatening enough to discourage
the use C for cryptography.

492 P. Gaudry and N. Gürel

This phenomenon is only true when one wants to use a base field of small
characteristic. If we use a curve over a prime field, no Weil descent attack is to
be feared and one can take a base field with roots of unity. This implies that
there are additional automorphisms in the Jacobian and that the key-size should
be slightly enlarged accordingly [8].

6 Conclusion

We have presented an extension of Kedlaya’s algorithm in order to count points
on superelliptic curves over finite fields of small characteristic. The time com-
plexity is the same as the complexity for hyperelliptic curves. This complex-
ity is asymptotically the same as the best known methods for counting points
on elliptic curves. Note however that the ε which is involved in the expres-
sion O(log3+ε q) does not hide the same logarithmic factors. We obtained some
numerical examples proving that it is now feasible to count points of random
hyperelliptic and superelliptic curves up to genus 3, for cryptographic sizes.

Further research topics are: extend Kedlaya’s algorithm for hyperelliptic
curves to characteristic 2, reduce the space complexity to O(log2 q), extend the
algorithm to Cab curves or even to more general varieties (in fact Monsky–
Washnitzer cohomology exists for more general varieties).

Acknowledgements. We are grateful to François Morain and to Guillaume
Hanrot for their continuous support and many discussions during this work. A
special thanks to Robert Harley for his close reading and his helpful comments.

Some of the computations were carried out on the machines of the UMS
Medicis at École Polytechnique.

References

1. L. M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential algorithm
for discrete logarithms over the rational subgroup of the jacobians of large genus
hyperelliptic curves over finite fields. In L. Adleman and M.-D. Huang, editors,
ANTS-I, volume 877 of Lecture Notes in Comput. Sci., pages 28–40. Springer-
Verlag, 1994.

2. S. Arita. Algorithms for computations in Jacobians of Cab curve and their applica-
tion to discrete-log-based public key cryptosystems. In Proceedings of Conference
on The Mathematics of Public Key Cryptography, Toronto, June 12–17, 1999.

3. S. Arita. Construction of secure Cab curves using modular curves. In W. Bosma,
editor, ANTS-IV, volume 1838 of Lecture Notes in Comput. Sci., pages 113–126.
Springer-Verlag, 2000.

4. S. Arita. Gaudry’s variant against Cab curve. In H. Imai and Y. Zheng, editors,
Public Key Cryptography, volume 1751 of Lecture Notes in Comput. Sci., pages
58–67. Springer-Verlag, 2000.

5. S. Arita. Weil descent of elliptic curves over finite fields of characteristic three. In
T. Okamoto, editor, Advances in Cryptolgy – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Comput. Sci., pages 248–258. Springer-Verlag, 2000.

An Extension of Kedlaya’s Point-Counting Algorithm 493

6. A. Basiri, A. Enge, J.-C. Faugère, and N. Gürel. Fast arithmetic on superelliptic
cubics. In preparation.

7. I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography, volume 265
of London Math. Soc. Lecture Note Ser. Cambridge University Press, 1999.

8. I. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computa-
tion on curves with automorphisms. In K.Y. Lam, E. Okamoto, and C. Xing,
editors, Advances in Cryptology – ASIACRYPT ’99, volume 1716 of Lecture Notes
in Comput. Sci., pages 103–121. Springer-Verlag, 1999.

9. M. Fouquet, P. Gaudry, and R. Harley. An extension of Satoh’s algorithm and its
implementation. J. Ramanujan Math. Soc., 15:281–318, 2000.

10. M. Fouquet, P. Gaudry, and R. Harley. Finding secure curves with the Satoh-
FGH algorithm and an early-abort strategy. In B. Pfitzmann, editor, Advances in
Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Comput. Sci.,
pages 14–29. Springer-Verlag, 2001.

11. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
April 1994.

12. W. Fulton. Algebraic curves. Math. Lec. Note Series. W. A. Benjamin Inc, 1969.
13. S. Galbraith, S. Paulus, and N. Smart. Arithmetic on superelliptic curves. To

appear Math. Comp.
14. P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic

curves. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, vol-
ume 1807 of Lecture Notes in Comput. Sci., pages 19–34. Springer-Verlag, 2000.

15. P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields.
In W. Bosma, editor, ANTS-IV, volume 1838 of Lecture Notes in Comput. Sci.,
pages 313–332. Springer-Verlag, 2000.

16. P. Gaudry, F. Hess, and N. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. To appear in J. Crypt.

17. R. Harasawa and J. Suzuki. Fast jacobian group arithmetic on Cab curves. In
W. Bosma, editor, ANTS-IV, volume 1838 of Lecture Notes in Comput. Sci., pages
359–376. Springer-Verlag, 2000.

18. K. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer
cohomology. Preprint, available at http://arXiv.org/abs/math/0105031, 2001.

19. N. Koblitz. p-adic numbers, p-adic analysis and Zeta-functions, volume 58 of
Graduate Texts in Mathematics. Springer-Verlag, 1977.

20. N. Koblitz. p-adic analysis: a short course on recent work, volume 46 of London
Math. Lec. Note Series. Cambridge University Press, 1980.

21. N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, January
1987.

22. N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptology, 1:139–150, 1989.
23. R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. Thèse, École

polytechnique, June 1997.
24. D. Lorenzini. An invitation to arithmetic geometry, volume 106 of Graduate Studies

in Mathematics. AMS, 1993.
25. A. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curves logarithms

to logarithms in a finite field. In Proceedings 23rd Annual ACM Symposium on
Theory of Computing (STOC), pages 80–89. ACM Press, 1991. May 6–8, New
Orleans, Louisiana.

26. V. Miller. Use of elliptic curves in cryptography. In A. M. Odlyzko, editor, Advances
in Cryptology – CRYPTO ’86, volume 263 of Lecture Notes in Comput. Sci., pages
417–426. Springer-Verlag, 1987.

494 P. Gaudry and N. Gürel

27. P. Monsky and G. Washnitzer. Formal cohomology: I. Ann. of Math. (2), 88:181–
217, 1968.

28. P. Monsky. Formal cohomology: III. Ann. of Math. (2), 93:315–343, 1971.
29. J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite

fields. Math. Comp., 55(192):745–763, October 1990.
30. H. G. Rück. On the discrete logarithm in the divisor class group of curves. Math.

Comp., 68(226):805–806, 1999.
31. T. Satoh. Asymptotically fast algorithm for computing the Frobenius substitution

and norms over unramified extension of p-adic number fields. Preprint 2001.
32. T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its

point counting. J. Ramanujan Math. Soc., 15:247–270, 2000.
33. B. Skjernaa. Satoh’s algorithm in characteristic 2. To appear in Math. Comp.
34. F. Vercauteren, B. Preneel, and J. Vandewalle. A memory efficient version of

Satoh’s algorithm. In B. Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Comput. Sci., pages 1–13. Springer-
Verlag, 2001.

35. N. Yui. On the jacobian varietes of hyperelliptic curves over fields of characteristic
p > 2. J. Algebra, 52:378–410, 1978.

	An Extension of Kedlaya’s Point-Counting Algorithm to Superelliptic Curves
	Introduction
	Background on Algebraic Curves and p-Adic Number Rings
	Hyperelliptic and Superelliptic Curves
	The Ring Z_q

	Kedlaya's Algorithm and Its Extension
	Overview of Kedlaya's Algorithm for Hyperelliptic Curves
	Superelliptic Curves

	Details and Complexity
	Precision of the Computation
	Detailed Algorithm
	Complexity

	Numerical Results and Cryptographic Significance
	Hyperelliptic Examples
	Superelliptic Examples
	Some Remarks about Superelliptic Curves in Cryptography

	Conclusion
	Acknowledgements
	References

