# Congruences and Unramified Cohomology 

Dimitar Jetchev and William Stein
November 19, 2005

## 1 Unramified Cohomology

Suppose $E$ is an elliptic curve over a number field $K$ and let $p$ be a prime. For any $\mathbb{F}_{p}$ vector space $M$ let $\operatorname{dim} M$ denote the $\mathbb{F}_{p}$ dimension of $M$.

Denote by $\Phi_{E, v}$ the component group of $E$ at $v$, and let

$$
\tau_{p}=\sum_{v} \operatorname{dim} \Phi_{E, v}\left(\mathbb{F}_{v}\right)[p] .
$$

Let $\mathrm{H}_{\mathrm{ur}}^{1}(K, E[p])$ denote the subgroup of cohomology classes that split over an unramified extension of $K_{v}$ for all $v$. Let

$$
\begin{equation*}
\operatorname{Sel}_{\mathrm{ur}}^{(p)}(E / K)=\operatorname{Sel}^{(p)}(E / K) \cap \mathrm{H}_{\mathrm{ur}}^{1}(K, E[p]) . \tag{1.1}
\end{equation*}
$$

Proposition 1.1. We have

$$
\begin{equation*}
\operatorname{dim} \mathrm{H}_{\mathrm{ur}}^{1}(K, E[p]) \geq \operatorname{dim} \operatorname{Sel}_{\mathrm{ur}}^{(p)}(E / K) \geq \operatorname{dim} \mathrm{H}_{\mathrm{ur}}^{1}(K, E[p])-\tau_{p} \tag{1.2}
\end{equation*}
$$

Proof. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Sel}_{\mathrm{ur}}^{(p)}(E / K) \rightarrow \mathrm{H}_{\mathrm{ur}}^{1}(K, E[p]) \rightarrow \bigoplus_{v} \mathrm{H}^{1}\left(K_{v}^{\mathrm{ur}} / K_{v}, E\right) . \tag{1.3}
\end{equation*}
$$

By [Mil86, Prop. 3.8], $\mathrm{H}^{1}\left(K_{v}^{\mathrm{ur}} / K_{v}, E\right) \cong \mathrm{H}^{1}\left(\mathbb{F}_{v}, \Phi_{E, v}\right)$. Because Gal $\left(\overline{\mathbb{F}}_{v} / \mathbb{F}_{v}\right)$ is pro-cyclic, $\operatorname{dim} \mathrm{H}^{1}\left(\mathbb{F}_{v}, \Phi_{E, v}\right)[p]=\operatorname{dim} \Phi_{E, v}\left(\mathbb{F}_{v}\right)[p]$. A dimension count using (1.3) then implies (1.2).

Proposition 1.2. We have

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Sel}^{(p)}(E / K) \geq \operatorname{dim} \operatorname{Sel}_{\mathrm{ur}}^{(p)}(E / K) \\
& \quad \geq \operatorname{dim} \operatorname{Sel}^{(p)}(E / K)-\sum_{v \nmid p} \operatorname{dim} \Phi_{E, v}\left(\mathbb{F}_{v}\right)[p]-\sum_{v \mid p} \operatorname{dim} E\left(K_{v}\right) /\left(p E\left(K_{v}^{\mathrm{ur}}\right) \cap E\left(K_{v}\right)\right) .
\end{aligned}
$$

Proof. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{Sel}_{\mathrm{ur}}^{(p)}(E / K) \rightarrow \operatorname{Sel}^{(p)}(E / K) \rightarrow \bigoplus_{v} E\left(K_{v}\right) /\left(p E\left(K_{v}^{\mathrm{ur}}\right) \cap E\left(K_{v}\right)\right) . \tag{1.4}
\end{equation*}
$$

For $v \nmid p$ the group $E^{0}\left(K_{v}^{\mathrm{ur}}\right)$ is $p$ divisible (see [AS02, $\left.\S 3.2\right]$ ). Thus for $v \nmid p$,

$$
E\left(K_{v}\right) /\left(p E\left(K_{v}^{\mathrm{ur}}\right) \cap E\left(K_{v}\right)\right) \subset E\left(K_{v}^{\mathrm{ur}}\right) / p E\left(K_{v}^{\mathrm{ur}}\right) \cong \Phi_{E, v}\left(\overline{\mathbb{F}}_{v}\right) \otimes \mathbb{F}_{p} .
$$

The image of $\operatorname{Sel}^{(p)}(E / K)$ in $\Phi_{E, v}\left(\overline{\mathbb{F}}_{v}\right) \otimes \mathbb{F}_{p}$ is fixed by $\operatorname{Gal}\left(K_{v}^{\mathrm{ur}} / K_{v}\right)$, so lies in $\Phi_{E, v}\left(\mathbb{F}_{v}\right) \otimes \mathbb{F}_{p}$. Thus for $v \nmid p$

A dimension count involving (1.4) then finishes the proof.
Let $\mathcal{E}$ denote the Néron model of $E$ over $\mathcal{O}_{v}$, and let $\mathcal{E}$ be the open subscheme that reduces to the identity component $\bmod v$.

Lemma 1.3. Suppose $E$ is an elliptic curve over $K$ and suppose that $v \mid p$ is such that $e(v)<p-1$, where $e(v)$ is the ramification degree of $v$. Then

$$
\begin{aligned}
\operatorname{dim} E\left(K_{v}\right) / p E\left(K_{v}\right) & =\left[K_{v}: \mathbb{Q}_{p}\right]+\operatorname{dim} E\left(K_{v}\right)[p] \\
& \leq\left[K_{v}: \mathbb{Q}_{p}\right]+\operatorname{dim} \mathcal{E}^{0}\left(\mathbb{F}_{v}\right)[p]+\operatorname{dim} \Phi_{E, v}\left(\mathbb{F}_{v}\right)[p]
\end{aligned}
$$

Proof. Since $e(v)<p-1$ the theory of formal groups (see e.g., [Sil92, Thm. 6.4]) implies that there is an exact sequence

$$
0 \rightarrow \mathcal{O}_{v} \rightarrow E\left(K_{v}\right) \rightarrow \mathcal{E}\left(\mathbb{F}_{v}\right) \rightarrow 0
$$

Apply the snake lemma to multiplication by $p$ on this sequence and using that $\mathcal{O}_{v}$ is a ring of characteristic 0 (so $\mathcal{O}_{v}[p]=0$ ), we obtain the exact sequence
$0 \rightarrow E\left(K_{v}\right)[p] \rightarrow \mathcal{E}\left(\mathbb{F}_{v}\right)[p] \rightarrow \mathcal{O}_{v} / p \mathcal{O}_{v} \rightarrow E\left(K_{v}\right) / p E\left(K_{v}\right) \rightarrow \mathcal{E}\left(\mathbb{F}_{v}\right) / p \mathcal{E}\left(\mathbb{F}_{v}\right) \rightarrow 0$.
Thus
$\operatorname{dim} E\left(K_{v}\right)[p]-\operatorname{dim} \mathcal{E}\left(\mathbb{F}_{v}\right)[p]+\operatorname{dim} \mathcal{O}_{v} / p \mathcal{O}_{v}-\operatorname{dim} \frac{E\left(K_{v}\right)}{p E\left(K_{v}\right)}+\operatorname{dim} \frac{\mathcal{E}\left(\mathbb{F}_{v}\right)}{p \mathcal{E}\left(\mathbb{F}_{v}\right)}=0$.
Since $\operatorname{dim} \mathcal{O}_{v} / p \mathcal{O}_{v}=\operatorname{rank} \mathcal{O}_{v}=\left[K_{v}: \mathbb{Q}_{p}\right]$, and for any finite abelian group $A, \# A[p]=\#(A / p A)$, this becomes

$$
\operatorname{dim} E\left(K_{v}\right)[p]+\left[K_{v}: \mathbb{Q}_{p}\right]-\operatorname{dim} \frac{E\left(K_{v}\right)}{p E\left(K_{v}\right)}=0 .
$$

Since the torsion-free group $\mathcal{O}_{v}$ is the kernel of reduction, $E\left(K_{v}\right)[p] \subset$ $\mathcal{E}\left(\mathbb{F}_{v}\right)[p]$. thus

$$
\operatorname{dim} E\left(K_{v}\right) / p E\left(K_{v}\right) \leq\left[K_{v}: \mathbb{Q}_{p}\right]+\operatorname{dim} \mathcal{E}\left(\mathbb{F}_{v}\right)[p]
$$

By Lang's theorem, $\mathrm{H}^{1}\left(\mathbb{F}_{v}, \mathcal{E}^{0}\right)=0$, so $0 \rightarrow \mathcal{E}^{0}\left(\mathbb{F}_{v}\right) \rightarrow \mathcal{E}\left(\mathbb{F}_{v}\right) \rightarrow \Phi_{E, v}\left(\mathbb{F}_{v}\right) \rightarrow$ 0 is exact, hence

$$
\operatorname{dim} \mathcal{E}\left(\mathbb{F}_{v}\right)[p] \leq \operatorname{dim} \mathcal{E}^{0}\left(\mathbb{F}_{v}\right)[p]+\operatorname{dim} \Phi_{E, v}\left(\mathbb{F}_{v}\right)[p]
$$

Theorem 1.4. Suppose $E$ is an elliptic curve over $\mathbb{Q}$ and $p$ is a good odd non-anomalous prime that doesn't divide any Tamagawa number of E. Then there is an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathrm{H}_{\mathrm{ur}}^{1}(\mathbb{Q}, E[p]) \rightarrow \operatorname{Sel}^{(p)}(E / \mathbb{Q}) \rightarrow E\left(\mathbb{Q}_{p}\right) /\left(p E\left(\mathbb{Q}_{p}^{\mathrm{ur}}\right) \cap E\left(\mathbb{Q}_{p}\right)\right) \tag{1.5}
\end{equation*}
$$

and

$$
\operatorname{dim} E\left(\mathbb{Q}_{p}\right) /\left(p E\left(\mathbb{Q}_{p}^{\mathrm{ur}}\right) \cap E\left(\mathbb{Q}_{p}\right)\right) \leq \operatorname{dim} E\left(\mathbb{Q}_{p}\right) / p E\left(\mathbb{Q}_{p}\right) \leq 1
$$

In particular $\left.\operatorname{dim} \operatorname{Sel}^{(p)}(E / \mathbb{Q}) / \mathrm{H}_{\mathrm{ur}}^{1}(\mathbb{Q}, E[p])\right] \leq 1$.
Proof. The Tamagawa number hypothesis implies that $\tau_{p}=1$, so Proposition 1.1 implies that $\mathrm{H}_{\mathrm{ur}}^{1}(\mathbb{Q}, E[p])=\operatorname{Sel}_{\mathrm{ur}}^{(p)}(E / \mathbb{Q})$, which yields the injection of (1.5). The rest of the sequence then follows from Lemma 1.3 and the proof of Proposition 1.2

## 2 Compare Selmer Groups via Congruences

Suppose $E$ and $F$ are elliptic curves over a number field $K$ and $p$ is a prime such that $E[p] \cong F[p]$ as $G_{K}$-modules. This isomorphism of $p$-torsion induces an isomorphism

$$
\mathrm{H}_{\mathrm{ur}}^{1}(K, E[p]) \cong \mathrm{H}_{\mathrm{ur}}^{1}(K, F[p]) .
$$

If $\tau_{p}=1$, then we have a diagram with vertical inclusions


Theorem 2.1. Suppose $E, F$ are elliptic curves over $\mathbb{Q}$ and $p$ is a good odd non-anomalous prime (for both $E$ and $F$ ) that doesn't divide any Tamagawa number of $E$ or $F$. Then

$$
\left|\operatorname{dim} \operatorname{Sel}^{(p)}(E / \mathbb{Q})-\operatorname{dim} \operatorname{Sel}^{(p)}(F / \mathbb{Q})\right| \leq 1 .
$$

Proof. Theorem 1.4 implies that the image of each vertical inclusion of (2.1) has codimension $\leq 1$.

Acknowledgment: A very helpful discussion with Karl Rubin.

## References

[AS02] A. Agashe and W.A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171-185.
[Mil86] J. S. Milne, Arithmetic duality theorems, Academic Press Inc., Boston, Mass., 1986.
[Sil92] J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original.

