Differential Geometry \rightsquigarrow Algebra \rightsquigarrow
 Combinatorics (\& back?)

SageDays 94 - Zaragoza 2018

Vít Tuček

Faculty of Science, University of Zagreb

Supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Operativni program KONKURENTNOST I KOHEZIJA

Europska unija Zajedno do fondova EU

Outline

1. Differential Geometry \rightsquigarrow Algebra
2. Algebra \rightsquigarrow Combinatorics
3. Combinatorics \rightsquigarrow Differential Geometry

Differential Geometry \rightsquigarrow Algebra

Invariant differential operators

- For a homogeneous space $G / P, P$-representation \mathbb{V} the associated homogeneous bundle is $\mathcal{V}=G \times{ }_{P} \mathbb{V} \rightarrow G / P$

Invariant differential operators

- For a homogeneous space $G / P, P$-representation \mathbb{V} the associated homogeneous bundle is $\mathcal{V}=G \times P \mathbb{V} \rightarrow G / P$
- invariant differential operators between sections of two such bundles
\mathcal{V} and \mathcal{W} must respect natural induced actions of G

$$
\begin{gathered}
\mathcal{D}: \Gamma^{\infty}(G / P, \mathcal{V}) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W}) \\
\mathcal{D} \circ \widetilde{\rho_{\mathbb{V}}}=\widetilde{\rho_{\mathbb{W}}} \circ \mathcal{D} .
\end{gathered}
$$

Invariant differential operators

- For a homogeneous space $G / P, P$-representation \mathbb{V} the associated homogeneous bundle is $\mathcal{V}=G \times P \mathbb{V} \rightarrow G / P$
- invariant differential operators between sections of two such bundles \mathcal{V} and \mathcal{W} must respect natural induced actions of G

$$
\begin{gathered}
\mathcal{D}: \Gamma^{\infty}(G / P, \mathcal{V}) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W}) \\
\mathcal{D} \circ \widetilde{\rho_{\mathbb{V}}}=\widetilde{\rho_{\mathbb{W}}} \circ \mathcal{D} .
\end{gathered}
$$

- (linear) differential operator \mathcal{D} of order k is given by a linear map from the k-th jet prolongation

$$
D: \Gamma^{\infty}\left(G / P, \mathcal{J}^{k} \mathcal{V}\right) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W})
$$

Invariant differential operators

- For a homogeneous space $G / P, P$-representation \mathbb{V} the associated homogeneous bundle is $\mathcal{V}=G \times P \mathbb{V} \rightarrow G / P$
- invariant differential operators between sections of two such bundles \mathcal{V} and \mathcal{W} must respect natural induced actions of G

$$
\begin{gathered}
\mathcal{D}: \Gamma^{\infty}(G / P, \mathcal{V}) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W}) \\
\mathcal{D} \circ \widetilde{\rho_{\mathbb{V}}}=\widetilde{\rho_{\mathbb{W}}} \circ \mathcal{D} .
\end{gathered}
$$

- (linear) differential operator \mathcal{D} of order k is given by a linear map from the k-th jet prolongation

$$
D: \Gamma^{\infty}\left(G / P, \mathcal{J}^{k} \mathcal{V}\right) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W})
$$

- From invariance we equivalently have homomorphism $J^{k} \mathbb{V} \rightarrow \mathbb{W}$, where $J^{k} \mathbb{V}$ denotes the algebraic jet prolongation of \mathbb{V}.

Invariant differential operators

- For a homogeneous space $G / P, P$-representation \mathbb{V} the associated homogeneous bundle is $\mathcal{V}=G \times P \mathbb{V} \rightarrow G / P$
- invariant differential operators between sections of two such bundles \mathcal{V} and \mathcal{W} must respect natural induced actions of G

$$
\begin{gathered}
\mathcal{D}: \Gamma^{\infty}(G / P, \mathcal{V}) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W}) \\
\mathcal{D} \circ \widetilde{\rho_{\mathbb{V}}}=\widetilde{\rho_{\mathbb{W}}} \circ \mathcal{D} .
\end{gathered}
$$

- (linear) differential operator \mathcal{D} of order k is given by a linear map from the k-th jet prolongation

$$
D: \Gamma^{\infty}\left(G / P, \mathcal{J}^{k} \mathcal{V}\right) \rightarrow \Gamma^{\infty}(G / P, \mathcal{W})
$$

- From invariance we equivalently have homomorphism $J^{k} \mathbb{V} \rightarrow \mathbb{W}$, where $J^{k} \mathbb{V}$ denotes the algebraic jet prolongation of \mathbb{V}.
- Passing to dual maps and taking the limit $k \rightarrow \infty$ we get

$$
\operatorname{Hom}_{\mathfrak{p}}\left(\mathbb{W}^{*}, \mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{V}^{*}\right) \simeq \operatorname{Hom}_{\mathfrak{g}}\left(\mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{W}^{*}, \mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{L}(\mathfrak{p})} \mathbb{V}^{*}\right)
$$

Invariant differential operators

- Classification in the homogeneous case G / P
\rightsquigarrow homomorphisms (resolutions) of parabolic Verma modules

$$
M(\lambda)=\mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{F}_{\lambda}
$$

- $H^{i}\left(\mathfrak{p}_{+}, L\right)=H_{i}\left(\mathfrak{p}_{-}, L\right)=\operatorname{Tor}_{i}^{\mathfrak{p}-}(\mathbb{C}, L) \&$ Vermas are \mathfrak{p}_{-}free
- Natural extension to Cartan geometries modeled on (G, P) \rightsquigarrow multidifferential operators and curved A_{∞} / L_{∞} structures

Algebra \rightsquigarrow Combinatorics

Highest weight theory

Complex simple Lie algebras have root decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

$$
\Phi \subseteq \mathfrak{h}^{*}
$$

Highest weight theory

Complex simple Lie algebras have root decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

$$
\Phi \subseteq \mathfrak{h}^{*}
$$

parabolic generalization

$$
\mathfrak{g}=\mathfrak{l}_{\Sigma} \oplus \bigoplus_{\alpha \in \Phi_{\Sigma}} \mathfrak{g}_{\alpha}
$$

Highest weight theory

Complex simple Lie algebras have root decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

$$
\Phi \subseteq \mathfrak{h}^{*}
$$

parabolic generalization

$$
\mathfrak{g}=\mathfrak{l}_{\boldsymbol{\Sigma}} \oplus \bigoplus_{\alpha \in \Phi_{\Sigma}} \mathfrak{g}_{\alpha}
$$

big and interesting class of their representations have highest weight \rightsquigarrow

$$
\mathbb{F}_{\lambda} \text { or } L(\lambda) \text { for } \lambda \in \mathfrak{h}^{*}
$$

Kostant's formula [Kos61]

Let \mathfrak{g} be a complex simple Lie algebra and let \mathfrak{p} be a parabolic subalgebra with Levi decomposition $\mathfrak{p}=\mathfrak{l} \oplus \mathfrak{p}_{+}$. Let $W^{\mathfrak{l}}$ be the poset of minimal coset representatives. For every \mathfrak{g}-integral and \mathfrak{g}-dominant weight λ there is isomorphism of \mathfrak{l} modules

$$
H^{i}\left(\mathfrak{p}_{+}, L(\lambda)\right) \simeq \bigoplus_{\substack{w \in W^{\prime} \\ I(w)=i}} \mathbb{F}_{w(\lambda+\rho)-\rho},
$$

where $L(\lambda)$ is the finite dimensional \mathfrak{g}-module with highest weight λ and \mathbb{F}_{μ} are finite dimensional \mathfrak{l} modules with highest weights μ.

Nilpotent cohomology / BGG resolution for $\operatorname{SU}(2,2)$

$$
(0,0,0) \longrightarrow(1,-2,1) \longrightarrow(0,-3,0) \longrightarrow(1,-4,1) \longrightarrow(0,-4,0)
$$

The BGG graph of type $\left(A_{7}, A_{3} \times A_{3}\right)$

Enright's formula

Definition

Let ψ_{λ} be the set of roots orthogonal to $\lambda+\rho$.
Denote by $\Phi_{n, \lambda}^{+}$the roots which satisfy the following conditions

1. $\alpha \in \Phi_{n}^{+}$and $\left(\lambda+\rho, \alpha^{\vee}\right)$ is a positive integer;
2. α is orthogonal to Ψ_{λ};
3. α is short if there exist a long root in Ψ_{λ}.

Let W_{λ} be the subgroup of W which is generated by reflections s_{α} for $\alpha \in \Phi_{n, \lambda}^{+}$.

Enright's formula - continued

Let Φ_{λ} be the subset of Φ of elements β with $s_{\beta} \in W_{\lambda}$ and let $\Phi_{\lambda, c}=\Phi_{c} \cap \Phi_{\lambda}, \Phi_{\lambda, c}^{+}=\Phi_{\lambda, c} \cap \Phi^{+}$.
Φ_{λ} is a root subsystem and $\left(\Phi_{\lambda, c}, \Phi_{\lambda, n}\right)$ is (reduced) Hermitian symmetric pair

Theorem (3.7 of [DES91])

For unitarizable highest weight modules $L(\lambda)$ and for $i \in \mathbb{N}$ we have

$$
H^{i}\left(\mathfrak{p}_{+}, L(\lambda)\right) \simeq \bigoplus_{w \in W_{\lambda}^{c, i}} F(\overline{w(\lambda+\rho)}-\rho)
$$

where $\bar{\lambda}$ is the unique Φ_{c}^{+}-dominant element in the W_{c} orbit of λ and $W_{\lambda}^{c, i}=\left\{w \in W_{\lambda}: w \rho\right.$ is $\Phi_{\lambda, c}^{+}$-dominant and $\left.I_{\lambda}(w)=i\right\}$.

$$
\lambda=-(t+n-1) \omega_{1}+(t+1) \omega_{n}
$$

For $t=0$ we obtain set of singular roots $\Psi_{\lambda}^{+}=\left\{\epsilon_{1}-\epsilon_{n}\right\}$ and the set of generating roots $\Phi_{n, \lambda}^{+}=\left\{\epsilon_{1}+\epsilon_{n}\right\}$. This gives the subsystem of type A_{1}

$$
\Phi_{\lambda}=\left\{\epsilon_{1}+\epsilon_{n},-\epsilon_{1}-\epsilon_{n}\right\}
$$

and the only nontrivial cohomology is in degree 1 with weight $-n \omega_{1}+\omega_{n-1}$.

$$
\lambda=-(t+n-1) \omega_{1}+(t+1) \omega_{n}
$$

For $t \geq 1$ we get no singular roots $\Psi_{\lambda}^{+}=\emptyset$ and the generated subsystem is of type A_{n-1}.

$\lambda=-(t+n-1) \omega_{1}+(t+1) \omega_{n}$

$$
\begin{gathered}
(-t-n+1,0,0, \ldots, 0,0, t+1) \\
\downarrow \\
(-t-n, 0,0, \ldots, 0,1, t) \\
\downarrow \\
(-t-n-1,0,0, \ldots, 1,0, t) \\
\vdots \\
(-t-2 n+4,0,1, \ldots, 0,0, t) \\
\downarrow \\
(-t-2 n+3,1,0, \ldots, 0,0, t) \\
\downarrow \\
(-t-2 n+3,0,0, \ldots, 0,0, t)
\end{gathered}
$$

Example - scalar products with positive roots

Example - scalar products with positive roots

Example - scalar products with positive roots

Combinatorics \rightsquigarrow Differential
 Geometry

Combinatorics \rightsquigarrow Differential Geometry

- homomorphisms of Verma modules are determined by so called singular vectors \rightsquigarrow system of polynomial coefficient PDEs on vector valued polynomials
- Weyl algebra \rightsquigarrow sparse linear system
- SageManifolds?

Thank you for attention!

References

References

Mark G. Davidson, Thomas J. Enright, and Ronald J. Stanke. "Differential operators and highest weight representations". In: Memoirs of the American Mathematical Society 94.455 (1991), pp. iv+102.

Bertram Kostant. "Lie Algebra Cohomology and the Generalized Borel-Weil Theorem". In: The Annals of Mathematics. Second Series 74.2 (1961). ArticleType: research-article / Full publication date: Sep., 1961 / Copyright © 1961 Annals of Mathematics, pp. 329-387.

