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Invariant differential operators

= For a homogeneous space G/P, P-representation V the associated
homogeneous bundle is V =G xpV — G/P

= jnvariant differential operators between sections of two such bundles
VY and W must respect natural induced actions of G

D:T(G/P,V) = (G/P,W)
DOZ}E} = ﬁ\(;vOD

= (linear) differential operator D of order k is given by a linear map
from the k-th jet prolongation

D: T°(G/P,T*V) = I=(G/P, W)

= From invariance we equivalently have homomorphism J¥V — W,
where JXV denotes the algebraic jet prolongation of V.
= Passing to dual maps and taking the limit k — co we get

Homy, (W*, £(g)®yu(p) V") ~ Homg (U(g) Qg W*, 4(9)®s(p) V")



Invariant differential operators

= Classification in the homogeneous case G/P
~~ homomorphisms (resolutions) of parabolic Verma modules

M(A) = th(g)®yu(p)Fa
= Hi(p,,L) = Hi(p_,L) = Tor! ~(C,L) & Vermas are p_-free

= Natural extension to Cartan geometries modeled on (G, P)
~ multidifferential operators and curved A, / Lo structures
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Highest weight theory

Complex simple Lie algebras have root decomposition

g=boPga

acd

eCh

parabolic generalization

g:[i@ @ga

acdy

big and interesting class of their representations have highest weight ~~

Fy or L(\) for A € b*



Kostant’s formula [Kos61]

Let g be a complex simple Lie algebra and let p be a parabolic subalgebra
with Levi decomposition p = [ @ p. Let W' be the poset of minimal
coset representatives. For every g-integral and g-dominant weight \ there
is isomorphism of [ modules

H(p1, LA) ~ D Fuppap)-

wew!
I(w)=i

where L()) is the finite dimensional g-module with highest weight A and
IF,, are finite dimensional [ modules with highest weights /.



Nilpotent cohomology / BGG resolution for SU(2, 2)

(2, -3, 0)
(0,0,0) —» (1, -2,1) T, —4,1) — (0, -4, 0)
U0, -3,2)



The BGG graph of type (A7, A; x A3)







Enright’s formula

Definition
Let W be the set of roots orthogonal to A + p.

Denote by CDZ/\ the roots which satisfy the following conditions

1. a € ®}F and (A + p, ") is a positive integer;
2. « is orthogonal to Wy;

3. « is short if there exist a long root in V.

Let W) be the subgroup of W which is generated by reflections s, for
o€ <D;A.
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Enright’s formula — continued

Let @) be the subset of ® of elements 3 with sg € W) and let
¢>\,c =o.No,, q)j:,c = CD)\’C Not.

®, is a root subsystem and (P ¢, Py ,) is (reduced) Hermitian symmetric
pair

Theorem (3.7 of [DES91])
For unitarizable highest weight modules L(\) and for i € N we have

H'( ~ @B Fw(h+p)-»r)

WEWC'

where X is the unique ®}-dominant element in the W, orbit of A and
W' = {w e Wy : wp is &Y -dominant and I\(w) = i}.
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A=—(t+n—1Dw + (t + 1w,

For t = 0 we obtain set of singular roots W} = {e; — €,} and the set of

generating roots <Dn+)\ = {e1 + €,}. This gives the subsystem of type A;

Oy = {e1+€n,—€1 —€n}

and the only nontrivial cohomology is in degree 1 with weight
—NwWi + Wp—1.
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A=—(t+n—1Dw + (t + 1w,

For t > 1 we get no singular roots W] = () and the generated subsystem is

of type A,_1.
O L L —@
€1+ €p €n—1 — €p €n—2 — €p—1 €2 — €3
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A=—(t+n—1Dw + (t + 1w,

(-t—n+1,0,0,...,0,0,t+1)

!

(=t —n,0,0,...,0,1,¢)

!

(-t—n-1,0,0,...,1,0,t)

(-t—2n+4,0,1,...,0,0,t)

!

(-t—2n+3,1,0,...,0,0,t)

!

(-t —2n+3,0,0,...,0,0,t)

14



Example — scalar products with positive roots

SO*(16): A = (a5 + 1) ws + aswe + a7w7 — (2as +2a + a7 + 8)w

€+ e

|

EIRTIES)

/\

€1+ €4 €+ €3

N

€1+ €5 €+ €4

NN

€1+ €6 € + €5 €3+ €4

ERNVINN

€ + €7 € + € €3+ €s

7N NN

€1+ €3 €+ €7 €3+ €6 €1+ €5) 15



Example — scalar products with positive roots

SO*(16) A= (25 + 1)(.05 + agwe + arwy — (2 as +2ag + a7 + 8)w

(7,61 + €2)
|
(6, €1+ €3)
/N
(5,€1+ €a) (5, €2+ €3)
N
(4,€1 +¢s5) (4,62 + €q)
PAVA
—as +2,€e1 + €6) (3,2 +€5) (3,63 + €a)
(—as —ag+ 1,e1 + €7) —as + 1,6+ ¢6) (2,€3 + €5)

/“\/\/\

(—as — ag — a7, €1 + €5) (—as — ag, €2 + €7) (—as,e3 + €6) (1,6 +€s5) 16



Example — scalar products with positive roots

(7,61 + €2)
|
(6,1 + €3)
7\
(5,614 €a) (5,62 +€3)
N
(4,1 +¢s5) (4,62 + €q)
NN
—as + 2,€ + €6) (3,62 +€s5) (3,63 +€a)
as —ae+ 1,61+ €7) as + 1,6+ €) (2,e3+€5)

/“\/\/\

( as — ae — ar, f1+€8 —as — ae, 62+€7 —as f3+€6 1f4+€5 17



Combinatorics ~~ Differential
Geometry




Combinatorics ~~ Differential Geometry

= homomorphisms of Verma modules are determined by so called
singular vectors ~~ system of polynomial coefficient PDEs on vector
valued polynomials

= Weyl algebra ~~ sparse linear system

= SageManifolds?
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Thank you for attention!
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