Differential Geometry → Algebra → Combinatorics (& back?)

SageDays 94 – Zaragoza 2018

Vít Tuček

Faculty of Science, University of Zagreb

Supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Operativni program KONKURENTNOST I KOHEZIJA

Europska unija Zajedno do fondova EU

- 1. Differential Geometry \rightsquigarrow Algebra
- 2. Algebra \rightsquigarrow Combinatorics
- 3. Combinatorics \rightsquigarrow Differential Geometry

Differential Geometry ~> Algebra

 For a homogeneous space G/P, P-representation V the associated homogeneous bundle is V = G ×_P V → G/P

- For a homogeneous space G/P, P-representation V the associated homogeneous bundle is V = G ×_P V → G/P
- invariant differential operators between sections of two such bundles \mathcal{V} and \mathcal{W} must respect natural induced actions of G

 $\mathcal{D}\colon \mathsf{\Gamma}^{\infty}(G/P,\mathcal{V}) \to \mathsf{\Gamma}^{\infty}(G/P,\mathcal{W})$ $\mathcal{D}\circ\widetilde{\rho_{\mathbb{V}}} = \widetilde{\rho_{\mathbb{W}}}\circ\mathcal{D}.$

- For a homogeneous space G/P, P-representation V the associated homogeneous bundle is V = G ×_P V → G/P
- invariant differential operators between sections of two such bundles
 V and W must respect natural induced actions of G

$$\mathcal{D}\colon \mathsf{\Gamma}^{\infty}(G/P,\mathcal{V})\to\mathsf{\Gamma}^{\infty}(G/P,\mathcal{W})$$
$$\mathcal{D}\circ\widetilde{\rho_{\mathbb{V}}}=\widetilde{\rho_{\mathbb{W}}}\circ\mathcal{D}.$$

 (linear) differential operator D of order k is given by a linear map from the k-th jet prolongation

$$D\colon \Gamma^{\infty}(G/P,\mathcal{J}^{k}\mathcal{V})\to \Gamma^{\infty}(G/P,\mathcal{W})$$

- For a homogeneous space G/P, P-representation V the associated homogeneous bundle is V = G ×_P V → G/P
- invariant differential operators between sections of two such bundles
 V and W must respect natural induced actions of G

$$\mathcal{D}\colon \Gamma^{\infty}(G/P,\mathcal{V}) \to \Gamma^{\infty}(G/P,\mathcal{W})$$

 $\mathcal{D}\circ\widetilde{\rho_{\mathbb{V}}} = \widetilde{\rho_{\mathbb{W}}}\circ\mathcal{D}.$

 (linear) differential operator D of order k is given by a linear map from the k-th jet prolongation

$$D\colon \Gamma^{\infty}(G/P,\mathcal{J}^k\mathcal{V})\to \Gamma^{\infty}(G/P,\mathcal{W})$$

 From invariance we equivalently have homomorphism J^k V → W, where J^k V denotes the algebraic jet prolongation of V.

- For a homogeneous space G/P, P-representation V the associated homogeneous bundle is V = G ×_P V → G/P
- invariant differential operators between sections of two such bundles
 V and W must respect natural induced actions of G

$$\mathcal{D}\colon \Gamma^{\infty}(G/P,\mathcal{V}) \to \Gamma^{\infty}(G/P,\mathcal{W})$$

 $\mathcal{D}\circ\widetilde{\rho_{\mathbb{V}}} = \widetilde{\rho_{\mathbb{W}}}\circ\mathcal{D}.$

 (linear) differential operator D of order k is given by a linear map from the k-th jet prolongation

$$D\colon \Gamma^{\infty}(G/P,\mathcal{J}^k\mathcal{V})\to \Gamma^{\infty}(G/P,\mathcal{W})$$

- From invariance we equivalently have homomorphism J^k V → W, where J^k V denotes the algebraic jet prolongation of V.
- Passing to dual maps and taking the limit k → ∞ we get Hom_p (W*, 𝔅(𝔅)⊗𝔅(𝔅)V*) ≃ Hom_𝔅 (𝔅(𝔅)⊗𝔅(𝔅)W*, 𝔅(𝔅)⊗𝔅(𝔅)V*)

Classification in the homogeneous case *G*/*P*
 ~ homomorphisms (resolutions) of parabolic Verma modules

$$M(\lambda) = \mathfrak{U}(\mathfrak{g}) \otimes_{\mathfrak{U}(\mathfrak{p})} \mathbb{F}_{\lambda}$$

- Hⁱ(p₊, L) = H_i(p_−, L) = Tor^{p_−}_i(C, L) & Vermas are p_−-free
- Natural extension to Cartan geometries modeled on (G, P)
 → multidifferential operators and curved A_∞ / L_∞ structures

Algebra ~> Combinatorics

Highest weight theory

Complex simple Lie algebras have root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in \Phi}\mathfrak{g}_{lpha}$$

 $\Phi\subseteq\mathfrak{h}^*$

Highest weight theory

Complex simple Lie algebras have root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in \Phi}\mathfrak{g}_{lpha}$$

$$\Phi \subseteq \mathfrak{h}^*$$

parabolic generalization

$$\mathfrak{g} = \mathfrak{l}_{\Sigma} \oplus \bigoplus_{\alpha \in \Phi_{\Sigma}} \mathfrak{g}_{\alpha}$$

Highest weight theory

Complex simple Lie algebras have root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in \Phi}\mathfrak{g}_lpha$$

$$\Phi \subseteq \mathfrak{h}^*$$

parabolic generalization

$$\mathfrak{g} = \mathfrak{l}_{\Sigma} \oplus \bigoplus_{\alpha \in \Phi_{\Sigma}} \mathfrak{g}_{\alpha}$$

big and interesting class of their representations have highest weight \rightsquigarrow

 \mathbb{F}_{λ} or $L(\lambda)$ for $\lambda \in \mathfrak{h}^*$

Let \mathfrak{g} be a complex simple Lie algebra and let \mathfrak{p} be a parabolic subalgebra with Levi decomposition $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{p}_+$. Let $W^{\mathfrak{l}}$ be the poset of minimal coset representatives. For every \mathfrak{g} -integral and \mathfrak{g} -dominant weight λ there is isomorphism of \mathfrak{l} modules

$$H^{i}(\mathfrak{p}_{+}, L(\lambda)) \simeq \bigoplus_{\substack{w \in W^{\mathfrak{l}} \\ l(w)=i}} \mathbb{F}_{w(\lambda+
ho)-
ho},$$

where $L(\lambda)$ is the finite dimensional g-module with highest weight λ and \mathbb{F}_{μ} are finite dimensional \mathfrak{l} modules with highest weights μ .

Nilpotent cohomology / BGG resolution for SU(2,2)

$$(0, 0, 0) \longrightarrow (1, -2, 1) \xrightarrow{(2, -3, 0)} (1, -4, 1) \longrightarrow (0, -4, 0)$$

The BGG graph of type $(A_7, A_3 \times A_3)$

Definition

Let Ψ_{λ} be the set of roots orthogonal to $\lambda + \rho$.

Denote by $\Phi_{n,\lambda}^+$ the roots which satisfy the following conditions

- 1. $\alpha \in \Phi_n^+$ and $(\lambda + \rho, \alpha^{\vee})$ is a positive integer;
- 2. α is orthogonal to Ψ_{λ} ;
- 3. α is short if there exist a long root in Ψ_{λ} .

Let W_{λ} be the subgroup of W which is generated by reflections s_{α} for $\alpha \in \Phi_{n,\lambda}^+$.

Let Φ_{λ} be the subset of Φ of elements β with $s_{\beta} \in W_{\lambda}$ and let $\Phi_{\lambda,c} = \Phi_c \cap \Phi_{\lambda}$, $\Phi^+_{\lambda,c} = \Phi_{\lambda,c} \cap \Phi^+$.

 Φ_{λ} is a root subsystem and $(\Phi_{\lambda,c}, \Phi_{\lambda,n})$ is (*reduced*) Hermitian symmetric pair

Theorem (3.7 of [DES91]) For unitarizable highest weight modules $L(\lambda)$ and for $i \in \mathbb{N}$ we have

$$H^{i}(\mathfrak{p}_{+}, L(\lambda)) \simeq \bigoplus_{w \in W_{\lambda}^{c,i}} F(\overline{w(\lambda + \rho)} - \rho)$$

where $\overline{\lambda}$ is the unique Φ_c^+ -dominant element in the W_c orbit of λ and $W_{\lambda}^{c,i} = \{ w \in W_{\lambda} : w\rho \text{ is } \Phi_{\lambda,c}^+$ -dominant and $I_{\lambda}(w) = i \}.$

For t = 0 we obtain set of singular roots $\Psi_{\lambda}^{+} = \{\epsilon_1 - \epsilon_n\}$ and the set of generating roots $\Phi_{n,\lambda}^{+} = \{\epsilon_1 + \epsilon_n\}$. This gives the subsystem of type A_1

$$\Phi_{\lambda} = \{\epsilon_1 + \epsilon_n, -\epsilon_1 - \epsilon_n\}$$

and the only nontrivial cohomology is in degree 1 with weight $-n\omega_1 + \omega_{n-1}$.

$$\lambda = -(t+n-1)\omega_1 + (t+1)\omega_n$$

$$\begin{bmatrix}
-t - n + 1, 0, 0, \dots, 0, 0, t + 1 \\
\downarrow \\
(-t - n, 0, 0, \dots, 0, 1, t) \\
\downarrow \\
(-t - n - 1, 0, 0, \dots, 1, 0, t) \\
\vdots \\
(-t - 2n + 4, 0, 1, \dots, 0, 0, t) \\
\downarrow \\
(-t - 2n + 3, 1, 0, \dots, 0, 0, t) \\
\downarrow \\
(-t - 2n + 3, 0, 0, \dots, 0, 0, t)$$

Example – scalar products with positive roots

Example – scalar products with positive roots

16

Example – scalar products with positive roots

17

Combinatorics \rightsquigarrow Differential Geometry

- homomorphisms of Verma modules are determined by so called singular vectors ~> system of polynomial coefficient PDEs on vector valued polynomials
- Weyl algebra \rightsquigarrow sparse linear system
- SageManifolds?

Thank you for attention!

References

Mark G. Davidson, Thomas J. Enright, and Ronald J. Stanke. "Differential operators and highest weight representations". In: *Memoirs of the American Mathematical Society* 94.455 (1991), pp. iv+102.

Bertram Kostant. "Lie Algebra Cohomology and the Generalized Borel-Weil Theorem". In: *The Annals of Mathematics*. Second Series 74.2 (1961). ArticleType: research-article / Full publication date: Sep., 1961 / Copyright © 1961 Annals of Mathematics, pp. 329–387.