Solving the S-unit equation in Sage

Mckenzie West
Kalamazoo College

July 3, 2018

joint with
Alejandra Alvarado Angelous Koutsianas Beth Malmskog
Eastern Illinois University Ulm University Villanova University
Christopher Rasmussen Christelle Vincent
Wesleyan University
University of Vermont

Goal

Have Sage solve the equation $x+y=1$ in an infinite family of rational numbers the S-units.

Idea
The S-integers are
integers where we're allowed to divide by some primes.

Definition
Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$, a finite set of primes. Define the S-integers

$$
\mathcal{O}_{S}:=\left\{a / b: a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1, b=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}\right\}
$$

The S-units are the units \mathcal{O}_{S}^{\times}.

Example

$$
S=\{2,3\}, \mathcal{O}_{S}^{\times}=\left\{(-1)^{a^{2}} 2^{e_{1}} 3^{e_{2}}\right\}
$$

Sage - trac ticket \#22148
(Alvarado, Koutsianas, Malmskog, Rasmussen, Vincent, W.) sage: K.〈a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: \%time solns = solve_S_unit_equation(K, S)
CPU times: user 24 min 15 s , sys: 10.6 s , total: 24 min 2
Wall time: 24min 17s
sage: len(solns)
11

Why??

- (Original Motivation) Classify Picard curves over \mathbb{Q} with good reduction away from 3
- Sums of products of primes
- Finitely generated subgroups of \mathbb{C}^{\times}
- Recurrence sequences of complex or algebraic numbers
- Irreducible polynomials and arithmetic graphs
- Decomposable form equations (Thue-Mahler equations)
- Algebraic number theory
- Transcendental number theory

S-unit Structure

$$
\begin{gathered}
S=\left\{p_{1}, \ldots, p_{n}\right\} \\
\mathcal{O}_{S}^{\times}=\left\{(-1)^{a} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}: e_{1}, \ldots, e_{n} \in \mathbb{Z}\right\} .
\end{gathered}
$$

"Theorem" (Hasse)

$$
\mathcal{O}_{S}^{\times} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{n}
$$

Theorem (Baker-Wüstholz, Smart, Pethö-de Weger)
Finitely many pairs $\left(\tau_{0}, \tau_{1}\right) \in \mathcal{O}_{S}^{\times}$satisfy $\tau_{0}+\tau_{1}=1$.
Proof.
A bound on the exponents exists.

Preliminary bound

$$
\begin{gathered}
\sigma+\tau=1 \\
\sigma=(-1)^{a} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}} \quad \tau=(-1)^{b} p_{1}^{f_{1}} \cdots p_{n}^{f_{n}} \\
H=\max \left\{\left|e_{1}\right|, \ldots,\left|e_{n}\right|,\left|f_{1}\right|, \ldots,\left|f_{n}\right|\right\}
\end{gathered}
$$

Baker-Wüstholz

$$
\log |\sigma|=e_{1} \log \left(p_{1}\right)+\cdots+e_{n} \log \left(p_{n}\right)>e^{-c_{4} \log (H)}
$$

Smart

$$
\log |\sigma|<c_{5} e^{-c_{6} H}
$$

$c_{4} \log (H)>-\log \left(c_{5}\right)+c_{6} H$

Preliminary bound

Pethö-de Weger
There is a constant K_{0} such that

$$
\max (\mid \text { exponents } \mid)<K_{0}
$$

Bad News
The K_{0} constructed this way are HUGE.

Example

$$
S=\{2,3\}, \mathcal{O}_{S}^{\times}=\left\{(-1)^{a^{2}} 2^{e_{1}} 3^{e_{2}}\right\}
$$

sage: K.<a> = NumberField(x)
.....: S = (K.ideal(2), K.ideal(3))
.....: Sunits = UnitGroup(K, S=S)
....: \%time K0_func(Sunits, [1,-1])
CPU times: user 232 ms , sys: 8 ms , total: 240 ms
Wall time: 237 ms
$7.150369969667384570286131254306 e 17$

LLL Reduction

LLL allows us to construct a significantly "better" basis.
LLL uses the Gram Schmidt process but restricts to a lattice.
The perk of LLL is that it acts like magic to reduce our bound!
****IN POLYNOMIAL TIME****

Example

$$
S=\{2,3\}, \mathcal{O}_{S}^{\times}=\left\{(-1)^{a^{2}} 2^{e_{1}} 3^{e_{2}}\right\}
$$

sage: K.<a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: Sunits = UnitGroup(K, S=S)
....: K0_func(Sunits, [1,-1])
7.150369969667384570286131254306 e 17
....: cx_LLL_bound(Sunits, [1,-1])
CPU times: user 568 ms , sys: 24 ms , total: 592 ms Wall time: 575 ms 30

Small detail (p-adics)

Baker bound and standard LLL only guaranteed to work if the maximum exponent occurs at an infinite prime.
i.e. The absolute value is bigger than the exponents.

Malmskog-Rasmussen: We can assume this is true if S contains but one finite prime.
Yu : There is a p-adic Baker bound that works for this finite place.
Koutsianas: Coded Yu's bound as part of his PhD work.

p-adic Bound and LLL

Example

$$
S=\{2,3\}, \mathcal{O}_{S}^{\times}=\left\{(-1)^{a^{2}} 2^{e_{1}} 3^{e_{2}}\right\}
$$

sage: K.<a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: Sunits = UnitGroup(K, S=S)
....: v = K.places() [0]
....: \%time K1_func(Sunits, v, [1,-1])
CPU times: user 100 ms , sys: 0 ns , total: 100 ms
Wall time: 95.3 ms
2.204650291205225666538006217583 e 15
sage: p_adic_LLL_bound (Sunits, [1,-1])
CPU times: user 1.65 s , sys: 20 ms , total: 1.67 s
Wall time: 1.68 s
52

Part 2 of the story - Sieve

Now that we have an upper bound, what are the actual solutions?

$$
\max (\mid \text { exponents } \mid) \leq H=52
$$

The number of pairs (σ, τ) in this range is:

$$
\frac{(2 H+1)^{2 n}}{2}=(2(52)+1)^{4} / 2 \approx 6.7 \times 10^{7}
$$

Time to be creative!

Preliminary steps

Let $q \in \mathbb{Z}$ be a prime such that $q \notin S$.
Then $\mathbb{Z} / q \mathbb{Z} \cong \mathbb{F}_{q}$, and we can define

$$
\begin{aligned}
\Phi_{q}: \mathcal{O}_{S}^{\times} & \rightarrow \mathbb{F}_{q}^{\times} \\
\sigma & \mapsto \sigma \quad(\bmod q)
\end{aligned}
$$

Notice that if $\sigma, \tau \in \mathcal{O}_{S}^{\times}$such that $\sigma+\tau=1$ then

$$
\Phi_{q}(\sigma)+\Phi_{q}(\tau)=1
$$

Let $Y_{q} \subseteq \mathbb{F}_{q}^{\times}$be the intersection of the image of Φ_{q} with the solutions to $x+y=1$ in \mathbb{F}_{q}^{\times}.

Sieve

$$
\begin{gathered}
\mathcal{O}_{S}^{\times}=\left\{(-1)^{2} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}\right\} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{n}, q \in \mathbb{Z} \backslash S \\
Y_{q}=\operatorname{im}\left(\Phi_{q}\right) \cap \text { solutions }
\end{gathered}
$$

S-units

$$
\downarrow \cong \Psi_{q}
$$

Exponent Vectors

$$
\mathcal{O}_{S}^{\times} \xrightarrow{\Phi_{q}} \mathbb{F}_{q}^{\times}
$$

$$
\alpha \in \mathbb{F}_{q}^{\times} \Rightarrow \alpha^{q-1}=1
$$

New Vertical Map: Take exponent vectors modulo q-1

Sieve

$X_{q}=$ all possible vectors $\bmod q-1$

Narrowing using X_{q} and Y_{q}

$$
X_{q} \subseteq(\mathbb{Z} /(q-1) \mathbb{Z})^{n+1} \xrightarrow{\Xi_{q}} \mathbb{F}_{q}^{\times} \supseteq Y_{q}
$$

Definitions

- Two vectors $x, x^{\prime} \in X_{q}$ are complementary if

$$
\bar{\Xi}_{q}(x)+\bar{\Xi}_{q}\left(x^{\prime}\right)=1 .
$$

- Let r be another prime not in S. The vectors $x \in X_{q}$ and $x^{\prime} \in X_{r}$ are compatible if there is a $y \in \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z}^{n}$ s.t.

$$
y \equiv x \quad(\bmod q-1) \text { and } y \equiv x^{\prime} \quad(\bmod r-1) .
$$

Next Step: Do complementary and compatibility check for all $x \in X_{q}$ and drop them as we go.

We have solutions!

$$
S=\{2,3\}, \mathcal{O}_{S}^{\times}=\left\{(-1)^{a^{2}} 2^{e_{1}} 3^{e_{2}}\right\}
$$

Sage - trac ticket \#22148
(Alvarado, Koutsianas, Malmskog, Rasmussen, Vincent, W.) sage: K.〈a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: \%time solns = solve_S_unit_equation(K, S)
CPU times: user 24 min 15 s , sys: 10.6 s , total: 24 min 2
Wall time: 24min 17s
sage: len(solns)
11

Solutions

$$
S=\{2,3\}, \mathcal{O}_{S}^{\times}=\left\{(-1)^{a^{a}} 2^{e_{1}} 3^{e_{2}}\right\}
$$

sage: solns

$$
\begin{aligned}
& {[[(0,-1,1),(1,-1,0), 3 / 2,-1 / 2],} \\
& {[(0,1,0),(1,0,0), 2,-1],} \\
& {[(0,0,-1),(0,1,-1), 1 / 3,2 / 3],} \\
& {[(1,1,0),(0,0,1),-2,3],} \\
& {[(0,2,0),(1,0,1), 4,-3],} \\
& {[(0,0,-2),(0,3,-2), 1 / 9,8 / 9],} \\
& {[(1,0,-1),(0,2,-1),-1 / 3,4 / 3],} \\
& {[(0,-2,1),(0,-2,0), 3 / 4,1 / 4],} \\
& {[(0,0,2),(1,3,0), 9,-8],} \\
& {[(1,-3,0),(0,-3,2),-1 / 8,9 / 8],} \\
& [(0,-1,0),(0,-1,0), 1 / 2,1 / 2]]
\end{aligned}
$$

A Larger Number Field

sage: K.<xi> = NumberField (x^2+x+1)
....: S = K.primes_above(3)
....: \%time solve_S_unit_equation(K,S)
CPU times: user 872 ms , sys: 56 ms , total: 928 ms Wall time: 1.81 s
$[[(2,1),(4,0), x i+2,-x i-1]$, $[(5,-1),(4,-1), 1 / 3 * x i+2 / 3,-1 / 3 * x i+1 / 3]$, $[(5,0),(1,0),-x i, x i+1]$,
$[(1,1),(2,0),-x i+1, x i]]$

A Larger Number Field (cont)

Thus taking $\mathbb{Q}(\xi)$ to be the number field defined by $x^{2}+x+1$, and $S=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\right\}$ where $\mathfrak{p}_{1} \mathfrak{p}_{2}=(3)$, the solutions to $x+y=1$ in \mathcal{O}_{S}^{x} are:
$(\xi+2,-\xi-1),\left(\frac{1}{3} \xi+\frac{2}{3},-\frac{1}{3} \xi+\frac{1}{3}\right),(-\xi, \xi+1)$, and $(-\xi+1, \xi)$.

