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Goal
Have Sage solve the equation x + y = 1 in an infinite family of
rational numbers the S-units.

ldea
The S-integers are

integers where we're allowed to divide by some primes.
Definition
Let S = {p1,...,pn}, a finite set of primes. Define the
S-integers

Os:={a/b : a,beZ, gcd(a,b) =1, b=p;*---p}

The S-units are the units O¢.



Example

S =1{2,3}, O = {(~1)723%)

Sage - trac ticket #22148

(Alvarado, Koutsianas, Malmskog, Rasmussen, Vincent, W.)
sage: K.<a> = NumberField(x)

....: ftime solns = solve_S_unit_equation(K, S)

CPU times: user 24min 15s, sys: 10.6 s, total: 24min 2
Wall time: 24min 17s

sage: len(solns)

11



Why??

v

(Original Motivation) Classify Picard curves over Q with
good reduction away from 3

Sums of products of primes

Finitely generated subgroups of C*

Recurrence sequences of complex or algebraic numbers
[rreducible polynomials and arithmetic graphs
Decomposable form equations (Thue-Mahler equations)
Algebraic number theory

Transcendental number theory



S-unit Structure

SZ{Pla--an}
O ={(-1)pf*---p;" : e, ...,e, € L}.

“Theorem” (Hasse)
0% 27,27 x T

Theorem (Baker-Wiistholz, Smart, Petho-de Weger)
Finitely many pairs (1o, 71) € O& satisfy 1o + 11 = 1.
Proof.

A bound on the exponents exists. O



Preliminary bound

c+17=1
— a. e en _ b fl fn
o= (=1)7p"---py T=(-1)°p"---p;
H = max{|ei|,...,|enl, |fl, -, |fal}

Baker-Wustholz
log |o| = e log(p1) + - - - + €, log(p,) > e~ <'&(H)
Smart

log |o] < cse™ %"

cslog(H) > —log(cs) + csH



Preliminary bound

Petho-de Weger

There is a constant Ky such that

max(|exponents|) < Kj

Bad News
The Ky constructed this way are HUGE.



Bample 5 _ 1233, 0r = {(—1)203%)

....: %time KO_func(Sunits, [1,-1])

CPU times: user 232 ms, sys: 8 ms, total: 240 ms
Wall time: 237 ms
7.150369969667384570286131254306e17



LLL Reduction

LLL allows us to construct a significantly “better” basis.
LLL uses the Gram Schmidt process but restricts to a lattice.

The perk of LLL is that it acts like magic to reduce our bound!

FEEXIN POLYNOMIAL TIME****



Bample 5 _ 123y, 0r = {(—1)203%)

....: Sunits = UnitGroup(K, S=S)

....: KO_func(Sunits, [1,-1])
7.150369969667384570286131254306e17

....: cx_LLL_bound(Sunits, [1,-1])

CPU times: user 568 ms, sys: 24 ms, total: 592 ms
Wall time: 575 ms

30



Small detail (p-adics)

Baker bound and standard LLL only guaranteed to work if the
maximum exponent occurs at an infinite prime.

i.e. The absolute value is bigger than the exponents.
Malmskog—Rasmussen: We can assume this is true if S
contains but one finite prime.

Yu: There is a p-adic Baker bound that works for this finite
place.

Koutsianas: Coded Yu's bound as part of his PhD work.



p-adic Bound and LLL

Bample ¢ 31 0x = ((—1)293)

....: Sunits = UnitGroup(K, S=S)

....: v = K.places() [0]

....: %time K1_func(Sunits, v, [1,-1])

CPU times: user 100 ms, sys: O ns, total: 100 ms
Wall time: 95.3 ms
2.204650291205225666538006217583e15

sage: p_adic_LLL_bound(Sunits, [1,-1])

CPU times: user 1.65 s, sys: 20 ms, total: 1.67 s
Wall time: 1.68 s

52



Part 2 of the story - Sieve

Now that we have an upper bound, what are the actual
solutions?
max(|exponents|) < H = 52

The number of pairs (o, 7) in this range is:

(2H + 1)2n

> = (2(52) +1)*/2 ~ 6.7 x 10’

Time to be creativel



Preliminary steps

Let g € Z be a prime such that g € S.
Then Z/qZ = T, and we can define

®,: 05 — F;
o — o (modq).

Notice that if 0,7 € Og such that 0 + 7 = 1 then
Py(0) + dy(7) = 1.

Let Y, C I, be the intersection of the image of ®, with the
solutions to x + y =1 in F .



Sieve

O ={(-1)%pf*---p"} =ZJ2L X ZL", q € Z\ S

Yy = im(®,) N solutions
S-units (O i
lg V
Exponent Vectors 7]27 X 7"
aelF=at=1

New Vertical Map: Take exponent vectors modulo g — 1



Sieve

S-units O ———— F; DY,

Exponent Vectors Z]27 X 7"

|

Exponents mod g — 1 (Z/(qg —1)Z)"*
)
X

Xq = all possible vectors mod q — 1



Narrowing using X, and Y,

Xq € (Z/(q - 1)2)" —— Fg 2

Definitions

» Two vectors x, x" € X, are complementary if
Z4(x) +Z4(x) = 1.

» Let r be another prime not in S. The vectors x € X, and
x' € X, are compatible if there is a y € Z/27 x 7" s.t.

y=x (modg—1)and y =x" (mod r—1).

Next Step: Do complementary and compatibility check for all
x € X4 and drop them as we go.



We have solutions!

S =1{2,3}, O = {(~1)723%)

Sage - trac ticket #22148

(Alvarado, Koutsianas, Malmskog, Rasmussen, Vincent, W.)
sage: K.<a> = NumberField(x)

....: ftime solns = solve_S_unit_equation(K, S)

CPU times: user 24min 15s, sys: 10.6 s, total: 24min 2
Wall time: 24min 17s

sage: len(solns)

11



Solutions

S =1{2,3}, OF = {(~1)723%)}

sage: solns
[[¢o, -1, 1, 1, -1, 0), 3/2, -1/2],

[0, 1, 0), (1, 0, 0), 2, -11,
[(0, 0, -1), (0, 1, -1), 1/3, 2/31,
[(1, 1, 0), (0, 0, 1), -2, 31,
[0, 2, 0), (1, 0, 1), 4, -31,
[0, 0, -2, (o0, 3, -2), 1/9, 8/9],
[(1, o, -1), (o, 2, -1), -1/3, 4/31,

[0, -2, 1), (0, -2, 0), 3/4, 1/4],
[0, 0, 20, (1, 3, 0), 9, -81,

[(1, -3, 0), (o, -3, 20, -1/8, 9/8],
[0, -1, 0), (0, -1, 0), 1/2, 1/2]1]



A Larger Number Field

CPU times: user 872 ms, sys: 56 ms, total: 928 ms
Wall time: 1.81 s
[([(2, 1), 4, 0), xi + 2, -xi - 1],
[(5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3],
(6, 0), (1, 0), -xi, xi + 1],
[(1, 1, (2, 0), -xi + 1, xi]]



A Larger Number Field (cont)

Thus taking Q(€) to be the number field defined by
x2+x+1,and S = {p1,p2} where p1p, = (3), the solutions
tox+y=1in Og are:

2 1

(€+2,6-1), (GE+5,~36+3) (-6.6+1), and (~€+1,6)
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