Solving the S-unit equation in Sage

Mckenzie West Kalamazoo College

July 3, 2018

joint with

Alejandra Alvarado Angelous Koutsianas Beth Malmskog

Eastern Illinois University

Ulm University

Villanova University

Christopher Rasmussen Christelle Vincent

Weslevan University

University of Vermont

Goal

Have Sage solve the equation x + y = 1 in an *infinite family of rational numbers* the *S*-units.

Idea

The S-integers are

integers where we're allowed to divide by some primes.

Definition

Let $S = \{p_1, \dots, p_n\}$, a finite set of primes. Define the S-integers

$$\mathcal{O}_{S} := \{a/b : a, b \in \mathbb{Z}, \ \gcd(a, b) = 1, \ b = p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}\}$$

The S-units are the units \mathcal{O}_{S}^{\times} .

Example

$$S = \{2,3\}, \ \mathcal{O}_S^{\times} = \{(-1)^a 2^{e_1} 3^{e_2}\}$$

```
Sage - trac ticket #22148
(Alvarado, Koutsianas, Malmskog, Rasmussen, Vincent, W.)
sage: K.<a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: %time solns = solve_S_unit_equation(K, S)
CPU times: user 24min 15s, sys: 10.6 s, total: 24min 26
Wall time: 24min 17s
sage: len(solns)
11
```

Why??

- ▶ (Original Motivation) Classify Picard curves over ℚ with good reduction away from 3
- Sums of products of primes
- lacktriangle Finitely generated subgroups of \mathbb{C}^{\times}
- ▶ Recurrence sequences of complex or algebraic numbers
- Irreducible polynomials and arithmetic graphs
- ► Decomposable form equations (Thue-Mahler equations)
- Algebraic number theory
- Transcendental number theory

S-unit Structure

$$S = \{p_1, \dots, p_n\}$$
 $\mathcal{O}_S^{\times} = \{(-1)^a p_1^{e_1} \cdots p_n^{e_n} : e_1, \dots, e_n \in \mathbb{Z}\}.$

"Theorem" (Hasse)

$$\mathcal{O}_{\mathcal{S}}^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^n$$

Theorem (Baker-Wüstholz, Smart, Pethö-de Weger) Finitely many pairs $(\tau_0, \tau_1) \in \mathcal{O}_S^{\times}$ satisfy $\tau_0 + \tau_1 = 1$.

Proof.

A bound on the exponents exists.

Preliminary bound

$$egin{aligned} \sigma + au &= 1 \ \sigma = (-1)^{s} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}} & au &= (-1)^{b} p_{1}^{f_{1}} \cdots p_{n}^{f_{n}} \ H &= \max\{|e_{1}|, \dots, |e_{n}|, |f_{1}|, \dots, |f_{n}|\} \end{aligned}$$

Baker-Wüstholz

$$\log |\sigma| = e_1 \log(p_1) + \cdots + e_n \log(p_n) > e^{-c_4 \log(H)}$$

Smart

$$\log |\sigma| < c_5 e^{-c_6 H}$$

$$c_4\log(H) > -\log(c_5) + c_6H$$

Preliminary bound

Pethö-de Weger

There is a constant K_0 such that

 $max(|exponents|) < K_0$

Bad News

The K_0 constructed this way are HUGE.

Example

$$\mathcal{S} = \{2,3\}, \ \mathcal{O}_S^\times = \{(-1)^a 2^{e_1} 3^{e_2}\}$$

```
sage: K.<a> = NumberField(x)
```

$$\dots$$
: S = (K.ideal(2), K.ideal(3))

Wall time: 237 ms

7.150369969667384570286131254306e17

LLL Reduction

LLL allows us to construct a significantly "better" basis.

LLL uses the Gram Schmidt process but restricts to a lattice.

The perk of LLL is that it acts like magic to reduce our bound!

****IN POLYNOMIAL TIME****

Example

```
S = \{2,3\}, \ \mathcal{O}_S^{\times} = \{(-1)^a 2^{e_1} 3^{e_2}\}
```

```
sage: K.<a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: Sunits = UnitGroup(K, S=S)
....: KO_func(Sunits, [1,-1])
```

7.150369969667384570286131254306e17

```
....: cx_LLL_bound(Sunits, [1,-1])
```

CPU times: user 568 ms, sys: 24 ms, total: 592 ms

Wall time: 575 ms

Small detail (*p*-adics)

Baker bound and standard LLL only guaranteed to work if the maximum exponent occurs at an infinite prime.

i.e. The absolute value is bigger than the exponents.

Malmskog-Rasmussen: We can assume this is true if S contains but one finite prime.

Yu: There is a p-adic Baker bound that works for this finite place.

Koutsianas: Coded Yu's bound as part of his PhD work.

p-adic Bound and LLL

```
Example
             S = \{2,3\}, \ \mathcal{O}_{S}^{\times} = \{(-1)^{a}2^{e_{1}}3^{e_{2}}\}
sage: K.<a> = NumberField(x)
....: S = (K.ideal(2), K.ideal(3))
....: Sunits = UnitGroup(K, S=S)
\dots: v = K.places()[0]
....: %time K1_func(Sunits, v, [1,-1])
CPU times: user 100 ms, sys: 0 ns, total: 100 ms
Wall time: 95.3 ms
2.204650291205225666538006217583e15
sage: p_adic_LLL_bound(Sunits, [1,-1])
CPU times: user 1.65 s, sys: 20 ms, total: 1.67 s
Wall time: 1.68 s
52
```

Part 2 of the story - Sieve

Now that we have an upper bound, what are the actual solutions?

$$max(|exponents|) \le H = 52$$

The number of pairs (σ, τ) in this range is:

$$\frac{(2H+1)^{2n}}{2} = (2(52)+1)^4/2 \approx 6.7 \times 10^7$$

Time to be creative!

Preliminary steps

Let $q \in \mathbb{Z}$ be a prime such that $q \notin S$. Then $\mathbb{Z}/q\mathbb{Z} \cong \mathbb{F}_q$, and we can define

$$\begin{array}{cccc} \Phi_q \colon \mathcal{O}_{\mathcal{S}}^{\times} & \to & \mathbb{F}_q^{\times} \\ & \sigma & \mapsto & \sigma \pmod{q}. \end{array}$$

Notice that if $\sigma, \tau \in \mathcal{O}_{\mathcal{S}}^{\times}$ such that $\sigma + \tau = 1$ then

$$\Phi_q(\sigma) + \Phi_q(\tau) = 1.$$

Let $Y_q \subseteq \mathbb{F}_q^{\times}$ be the intersection of the image of Φ_q with the solutions to x+y=1 in \mathbb{F}_q^{\times} .

Sieve

$$\mathcal{O}_{\mathcal{S}}^{\times} = \{(-1)^{s} p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^{n}, \ q \in \mathbb{Z} \setminus \mathcal{S}$$

$$Y_{q} = \operatorname{im}(\Phi_{q}) \cap \operatorname{solutions}$$

S-units
$$\mathcal{O}_{\mathcal{S}}^{\times} \xrightarrow{\Phi_{q}} \mathbb{F}_{q}^{\times}$$

$$\downarrow^{\cong} \qquad \qquad \psi_{q} \nearrow$$
 Exponent Vectors
$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^{n}$$

$$\alpha \in \mathbb{F}_{q}^{\times} \Rightarrow \alpha^{q-1} = 1$$

New Vertical Map: Take exponent vectors modulo q-1

Sieve

 $X_q = \text{all possible vectors mod } q - 1$

Narrowing using X_q and Y_q

$$X_q\subseteq (\mathbb{Z}/(q-1)\mathbb{Z})^{n+1}\stackrel{\Xi_q}{\longrightarrow} \mathbb{F}_q^ imes\supseteq Y_q$$

Definitions

▶ Two vectors $x, x' \in X_q$ are *complementary* if

$$\Xi_q(x) + \Xi_q(x') = 1.$$

Let r be another prime not in S. The vectors $x \in X_q$ and $x' \in X_r$ are *compatible* if there is a $y \in \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}^n$ s.t.

$$y \equiv x \pmod{q-1}$$
 and $y \equiv x' \pmod{r-1}$.

Next Step: Do complementary and compatibility check for all $x \in X_a$ and drop them as we go.

We have solutions!

11

 $S = \{2,3\}, \ \mathcal{O}_{S}^{\times} = \{(-1)^{a}2^{e_1}3^{e_2}\}$

Solutions

$$S = \{2,3\}, \ \mathcal{O}_S^{\times} = \{(-1)^a 2^{e_1} 3^{e_2}\}$$

```
sage: solns
\lceil \lceil (0, -1, 1), (1, -1, 0), 3/2, -1/2 \rceil
 [(0, 1, 0), (1, 0, 0), 2, -1],
 [(0, 0, -1), (0, 1, -1), 1/3, 2/3],
 [(1, 1, 0), (0, 0, 1), -2, 3].
 \lceil (0, 2, 0), (1, 0, 1), 4, -3 \rceil,
 [(0, 0, -2), (0, 3, -2), 1/9, 8/9].
 [(1, 0, -1), (0, 2, -1), -1/3, 4/3].
 [(0, -2, 1), (0, -2, 0), 3/4, 1/4],
 [(0, 0, 2), (1, 3, 0), 9, -8].
 [(1, -3, 0), (0, -3, 2), -1/8, 9/8],
 [(0, -1, 0), (0, -1, 0), 1/2, 1/2]]
```

A Larger Number Field

```
sage: K.<xi> = NumberField(x^2+x+1)
....: S = K.primes_above(3)
....: %time solve_S_unit_equation(K,S)
CPU times: user 872 ms, sys: 56 ms, total: 928 ms
Wall time: 1.81 s
[[(2, 1), (4, 0), xi + 2, -xi - 1],
[(5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3],
[(5, 0), (1, 0), -xi, xi + 1],
[(1, 1), (2, 0), -xi + 1, xi]]
```

A Larger Number Field (cont)

Thus taking $\mathbb{Q}(\xi)$ to be the number field defined by x^2+x+1 , and $S=\{\mathfrak{p}_1,\mathfrak{p}_2\}$ where $\mathfrak{p}_1\mathfrak{p}_2=(3)$, the solutions to x+y=1 in \mathcal{O}_5^{\times} are:

$$(\xi+2,-\xi-1),(\frac{1}{3}\xi+\frac{2}{3},-\frac{1}{3}\xi+\frac{1}{3}),(-\xi,\xi+1), \text{ and } (-\xi+1,\xi).$$