Crystals and Box-Ball systems

Travis Scrimshaw
University of Minnesota
Hebrew University of Jerusalem November 21th, 2016

Table of Contents

(1) Kirillov-Reshetikhin crystals

- Definition
- Tensor products
- Classical crystals
- Combinatorial R-matrix
(2) Box-ball systems
- Takahashi-Satsuma box-ball system
- Generalizations
(3) Rigged configurations
- Definition
- Connections

Outline

(1) Kirillov-Reshetikhin crystals

- Definition
- Tensor products
- Classical crystals
- Combinatorial R-matrix
(2) Box-ball systems
(3) Rigged configurations

Definition

Definition

The Kirillov-Reshetikhin (KR) crystal $B^{1, s}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is

$$
B^{1, s}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \sum_{i=1}^{n} x_{i}=s\right\}
$$

Definition

Definition

The Kirillov-Reshetikhin $(K R)$ crystal $B^{1, s}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is

$$
B^{1, s}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \sum_{i=1}^{n} x_{i}=s\right\}
$$

with crystal operators

$$
\begin{aligned}
& e_{i}\left(\ldots, x_{i}, x_{i+1}, \ldots\right)= \begin{cases}0 & \text { if } x_{i+1}=0 \\
\left(\ldots, x_{i}+1, x_{i+1}-1, \ldots\right) & \text { if } x_{i+1}>0\end{cases} \\
& f_{i}\left(\ldots, x_{i}, x_{i+1}, \ldots\right)= \begin{cases}0 & \text { if } x_{i}=0 \\
\left(\ldots, x_{i}-1, x_{i+1}+1, \ldots\right) & \text { if } x_{i}>0\end{cases}
\end{aligned}
$$

where all indices are understood $\bmod n$.

Definition

Definition

The Kirillov-Reshetikhin (KR) crystal $B^{1, s}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is

$$
B^{1, s}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \sum_{i=1}^{n} x_{i}=s\right\}
$$

statistics

$$
\begin{array}{ll}
\varepsilon_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i+1} & =\max \left\{k \mid e_{i}^{k}\left(x_{1}, \ldots, x_{n}\right) \neq 0\right\} \\
\varphi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i} & =\max \left\{k \mid f_{i}^{k}\left(x_{1}, \ldots, x_{n}\right) \neq 0\right\}
\end{array}
$$

where all indices are understood $\bmod n$.

Definition

Definition

The Kirillov-Reshetikhin (KR) crystal $B^{1, s}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is

$$
B^{1, s}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{\geq 0}^{n} \mid \sum_{i=1}^{n} x_{i}=s\right\}
$$

and weight function

$$
\mathrm{wt}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} / \mathbb{Z}(1, \ldots, 1)
$$

where all indices are understood $\bmod n$.

$B^{1,3}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{3}\right)$

$B^{1,3}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{3}\right)$ using tableaux

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule.

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule. To obtain $f_{i}(b)$ for $b=b_{1} \otimes \cdots \otimes b_{L}$, we construct the signature:

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule. To obtain $f_{i}(b)$ for $b=b_{1} \otimes \cdots \otimes b_{L}$, we construct the signature:

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule. To obtain $f_{i}(b)$ for $b=b_{1} \otimes \cdots \otimes b_{L}$, we construct the signature:

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule. To obtain $f_{i}(b)$ for $b=b_{1} \otimes \cdots \otimes b_{L}$, we construct the signature:

Then we have

$$
f_{i}(b)=b_{1} \otimes \cdots \otimes b_{j+1} \otimes f\left(b_{j}\right) \otimes b_{j-1} \otimes \cdots \otimes b_{L},
$$

where j corresponds to the factor which contains the rightmost + (changing it to $\mathrm{a}-$).

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule. To obtain $f_{i}(b)$ for $b=b_{1} \otimes \cdots \otimes b_{L}$, we construct the signature:

Then we have

$$
f_{i}(b)=b_{1} \otimes \cdots \otimes b_{j+1} \otimes f\left(b_{j}\right) \otimes b_{j-1} \otimes \cdots \otimes b_{L},
$$

where j corresponds to the factor which contains the rightmost + (changing it to $a-$). $e_{i}(b)$ is defined similarly but using the leftmost - .

Tensor product rule

Definition

The crystal structure on $B_{1} \otimes B_{2} \otimes \cdots \otimes B_{L}$ is given by the signature rule. To obtain $f_{i}(b)$ for $b=b_{1} \otimes \cdots \otimes b_{L}$, we construct the signature:

Then we have

$$
f_{i}(b)=b_{1} \otimes \cdots \otimes b_{j+1} \otimes f\left(b_{j}\right) \otimes b_{j-1} \otimes \cdots \otimes b_{L}
$$

where j corresponds to the factor which contains the rightmost + (changing it to a -). $e_{i}(b)$ is defined similarly but using the leftmost - .

Remark

Our convention is opposite of Kashiwara.

$B^{1,1} \otimes B^{1,2}$ for $U_{q}^{\prime}\left(\widehat{s l}_{3}\right)$

Crystals for $U_{q}\left(\mathfrak{s l}_{n}\right)$

- Finite-dimensional irreducible highest weight representations V_{λ} of $\mathfrak{s l}_{n}$, and hence $U_{q}\left(\mathfrak{s l}_{n}\right)$, parameterized by partitions λ.

Crystals for $U_{q}\left(\mathfrak{s l}_{n}\right)$

- Finite-dimensional irreducible highest weight representations V_{λ} of $\mathfrak{s l}_{n}$, and hence $U_{q}\left(\mathfrak{s l}_{n}\right)$, parameterized by partitions λ.
- We have the crystal B_{1} corresponding to natural representation V_{1} and given by $B^{1,1}$ and removing 0 -arrows.

Crystals for $U_{q}\left(\mathfrak{s l}_{n}\right)$

- Finite-dimensional irreducible highest weight representations V_{λ} of $\mathfrak{s l}_{n}$, and hence $U_{q}\left(\mathfrak{s l}_{n}\right)$, parameterized by partitions λ.
- We have the crystal B_{1} corresponding to natural representation V_{1} and given by $B^{1,1}$ and removing 0 -arrows.

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1} n
$$

Crystals for $U_{q}\left(\mathfrak{s l}_{n}\right)$

- Finite-dimensional irreducible highest weight representations V_{λ} of $\mathfrak{s l}_{n}$, and hence $U_{q}\left(\mathfrak{s l}_{n}\right)$, parameterized by partitions λ.
- We have the crystal B_{1} corresponding to natural representation V_{1} and given by $B^{1,1}$ and removing 0 -arrows.

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1} n
$$

- $U_{q}\left(\mathfrak{s l}_{n}\right)$-representation V_{λ} admits crystal basis B_{λ}, set of all semistandard Young tableaux of shape λ and max entry n.

Crystals for $U_{q}\left(\mathfrak{s l}_{n}\right)$

- Finite-dimensional irreducible highest weight representations V_{λ} of $\mathfrak{s l}_{n}$, and hence $U_{q}\left(\mathfrak{s l}_{n}\right)$, parameterized by partitions λ.
- We have the crystal B_{1} corresponding to natural representation V_{1} and given by $B^{1,1}$ and removing 0 -arrows.

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1} n
$$

- $U_{q}\left(\mathfrak{s l}_{n}\right)$-representation V_{λ} admits crystal basis B_{λ}, set of all semistandard Young tableaux of shape λ and max entry n.
- Can construct $B_{\lambda} \subseteq B(1)^{\otimes|\lambda|}$ using tensor product rule and taking the reverse Far-Eastern reading word.

Example B_{21} for $U_{q}\left(\mathfrak{s l}_{3}\right)$

Example B_{21} for $U_{q}\left(\mathfrak{s l}_{3}\right)$

Combinatorial R-matrix

- The tensor product $B=B^{1, s} \otimes B^{1, s^{\prime}}$ is connected.

Combinatorial R-matrix

- The tensor product $B=B^{1, s} \otimes B^{1, s^{\prime}}$ is connected.
- There is a unique element of weight $\left(s+s^{\prime}, 0, \ldots, 0\right)$ and it generates B : Specifically $(s, 0, \ldots) \otimes\left(s^{\prime}, 0, \ldots\right)$.

Combinatorial R-matrix

- The tensor product $B=B^{1, s} \otimes B^{1, s^{\prime}}$ is connected.
- There is a unique element of weight $\left(s+s^{\prime}, 0, \ldots, 0\right)$ and it generates B : Specifically $(s, 0, \ldots) \otimes\left(s^{\prime}, 0, \ldots\right)$.
- There exists a canonical isomorphism $R: B^{1, s} \otimes B^{1, s^{\prime}} \rightarrow B^{1, s^{\prime}} \otimes B^{1, s}$.

Combinatorial R-matrix

- The tensor product $B=B^{1, s} \otimes B^{1, s^{\prime}}$ is connected.
- There is a unique element of weight $\left(s+s^{\prime}, 0, \ldots, 0\right)$ and it generates B : Specifically $(s, 0, \ldots) \otimes\left(s^{\prime}, 0, \ldots\right)$.
- There exists a canonical isomorphism $R: B^{1, s} \otimes B^{1, s^{\prime}} \rightarrow B^{1, s^{\prime}} \otimes B^{1, s}$.

Definition

The isomorphism R is called the combinatorial R-matrix.

Combinatorial R-matrix

- The tensor product $B=B^{1, s} \otimes B^{1, s^{\prime}}$ is connected.
- There is a unique element of weight $\left(s+s^{\prime}, 0, \ldots, 0\right)$ and it generates B : Specifically $(s, 0, \ldots) \otimes\left(s^{\prime}, 0, \ldots\right)$.
- There exists a canonical isomorphism $R: B^{1, s} \otimes B^{1, s^{\prime}} \rightarrow B^{1, s^{\prime}} \otimes B^{1, s}$.

Definition

The isomorphism R is called the combinatorial R-matrix.

Remark

Generally, the tensor product $\bigotimes_{i=1}^{N} B^{1, s_{i}}$ is connected.

$B^{1,1} \otimes B^{1,2}$ and $B^{1,2} \otimes B^{1,1}$ for $U_{q}\left(\widehat{\mathfrak{s l}_{3}}\right)$

(3) 83

$B^{1,1} \otimes B^{1,2}$ and $B^{1,2} \otimes B^{1,1}$ for $U_{q}\left(\widehat{\mathfrak{s l}_{3}}\right)$

Computing the combinatorial R-matrix

- We have $R\left(b \otimes b^{\prime}\right)=\widetilde{b^{\prime}} \otimes \widetilde{b}$, where $\widetilde{b}^{\prime} \in B^{1, s^{\prime}}$ and $\widetilde{b} \in B^{1, s}$ as the unique elements such that

$$
b \leftarrow b^{\prime}=\widetilde{b^{\prime}} \leftarrow \widetilde{b},
$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Computing the combinatorial R-matrix

- We have $R\left(b \otimes b^{\prime}\right)=\widetilde{b^{\prime}} \otimes \widetilde{b}$, where $\widetilde{b}^{\prime} \in B^{1, s^{\prime}}$ and $\widetilde{b} \in B^{1, s}$ as the unique elements such that

$$
b \leftarrow b^{\prime}=\widetilde{b^{\prime}} \leftarrow \widetilde{b}
$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Example

Consider $R: B^{1,5} \otimes B^{1,4} \rightarrow B^{1,4} \otimes B^{1,5}$ for $\widehat{\mathfrak{s l}}_{5}$:

Computing the combinatorial R-matrix

- We have $R\left(b \otimes b^{\prime}\right)=\widetilde{b^{\prime}} \otimes \widetilde{b}$, where $\widetilde{b}^{\prime} \in B^{1, s^{\prime}}$ and $\widetilde{b} \in B^{1, s}$ as the unique elements such that

$$
b \leftarrow b^{\prime}=\widetilde{b^{\prime}} \leftarrow \widetilde{b}
$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Example

Consider $R: B^{1,5} \otimes B^{1,4} \rightarrow B^{1,4} \otimes B^{1,5}$ for $\widehat{\mathfrak{s l}_{5}}$:

Computing the combinatorial R-matrix

- We have $R\left(b \otimes b^{\prime}\right)=\widetilde{b^{\prime}} \otimes \widetilde{b}$, where $\widetilde{b}^{\prime} \in B^{1, s^{\prime}}$ and $\widetilde{b} \in B^{1, s}$ as the unique elements such that

$$
b \leftarrow b^{\prime}=\widetilde{b}^{\prime} \leftarrow \widetilde{b}
$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Example

Consider $R: B^{1,5} \otimes B^{1,4} \rightarrow B^{1,4} \otimes B^{1,5}$ for $\widehat{\mathfrak{s l}_{5}}$:

Outline

(1) Kirillov-Reshetikhin crystals
(2) Box-ball systems

- Takahashi-Satsuma box-ball system
- Generalizations
(3) Rigged configurations

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Example

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Example

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Example

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Example

Definition

Definition

Consider an infinite number of boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the box-ball system.
We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Example

$$
\cdots \square \square \square \square \square \square \square \square \square \square
$$

Avoiding interaction

Example

$\square \square \square(t=0)$

Avoiding interaction

Example

$\square \square \square(t=0)$
$\square \square \quad(t=1)$

Avoiding interaction

Example

$\square \square \square(t=0)$
$\square \square \square(t=1)$
$\square \square \square(t=2)$

Avoiding interaction

Example

$\square \square \square(t=0)$
$\square \square \square(t=1)$
$\square \square \square(t=2)$
$\square \square \square(t=3)$

Solitons

The box-ball system exhibits solitonic behavior:

Solitons

The box-ball system exhibits solitonic behavior:

- Clusters, called solitons, of size n move n steps each evolution.

Solitons

The box-ball system exhibits solitonic behavior:

- Clusters, called solitons, of size n move n steps each evolution.
- Solitons may interact, then separate into same size solitons once there is no more interaction.

Solitons

The box-ball system exhibits solitonic behavior:

- Clusters, called solitons, of size n move n steps each evolution.
- Solitons may interact, then separate into same size solitons once there is no more interaction.
- Interaction process is called scattering.

Solitons

The box-ball system exhibits solitonic behavior:

- Clusters, called solitons, of size n move n steps each evolution.
- Solitons may interact, then separate into same size solitons once there is no more interaction.
- Interaction process is called scattering.
- After scattering, there is generally a phase shift.

Example

Example

$\square \square \quad(t=0)$

Example

Example

$\square \square \quad(t=0)$ $\square \square \quad(t=1)$

Example

Example

$\square \square \quad(t=0)$
 $\square \square ण \square \square \quad(t=1)$
 $\square \square \square(t=2)$

Example

Example

$\square \square \quad(t=0)$
 $\square \square ण \square \square \quad(t=1)$
 $\square \square \quad(t=2)$
 $\square \square \square(t=3)$

Example

Example

Example

Example

$\square \square \quad(t=0)$
$\square \square \quad(t=1)$
$\square \square \quad(t=2)$
$\square \square \quad(t=3)$
$\square \square \quad(t=4)$
$\square \square \quad(t=5)$

Example

Example

Example

Example

Example

Example

Example

Example

-

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1

1

2

1

2

1

2

2

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1

1

2

1

2

1

2

2

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1

1

2

1

2

1

2
2

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1

1

2

1

2

12
2 $1^{3} 2^{2}$
\ddagger
1 $1^{4} 2 \underset{1}{\ddagger} 1^{5}$

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1

1

2

1

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1

1

2
\square
1

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

1

1
\square

$$
\begin{array}{lcc}
1 & 2 & 1 \\
& 1^{3} 2^{2} & \underset{\downarrow}{\ddagger} \\
& 1^{4} 2 & \underset{\downarrow}{\ddagger} \\
& & 2
\end{array} 1^{3} 2^{2}
$$

2

2 222

1	\downarrow	1	1	1

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

$\cdots \quad \square$
1

1

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

$\ldots \quad \square$ \square
\square

1

2

1
12
2
$-1^{4} 2$
1

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

$$
\begin{aligned}
& \cdots \square
\end{aligned}
$$

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $\left.U_{q}^{\prime}(\widehat{\mathfrak{s}})_{2}\right)$.
- An empty box is a 1 , called the vacuum, and a box with a ball is a 2 .
- The time evolution is add $B^{1, k}$ for $k \geq \#$ balls and pass through using combinatorial R-matrices.

Example

$$
\begin{aligned}
& \cdots \square
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \quad \square \\
& \text { - }
\end{aligned}
$$

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.
- The evolution is the same as before.

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.
- The evolution is the same as before.
- System exhibits same solitonic behavior.

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\bigotimes_{i=0}^{-\infty} B^{1, s_{i}}$ of type $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ with the vacuum being $1^{s_{i}}$ and the same time evolution of passing through a $B^{1, k}$ for $k \gg 1$ using combinatorial R-matrices.

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\otimes_{i=0}^{-\infty} B^{1, s_{i}}$ of type $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ with the vacuum being $1^{s_{i}}$ and the same time evolution of passing through a $B^{1, k}$ for $k \gg 1$ using combinatorial R-matrices.

Example

$\square \square 000 \square \square \square 00 \square(t=0)$

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\otimes_{i=0}^{-\infty} B^{1, s_{i}}$ of type $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ with the vacuum being $1^{s_{i}}$ and the same time evolution of passing through a $B^{1, k}$ for $k \gg 1$ using combinatorial R-matrices.

Example

Larger capacity

- We can consider boxes $\left\{b_{i} \mid i \in \mathbb{Z}_{\geq 0}\right\}$ with capacity s_{i}.
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\otimes_{i=0}^{-\infty} B^{1, s_{i}}$ of type $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{2}\right)$ with the vacuum being $1^{s_{i}}$ and the same time evolution of passing through a $B^{1, k}$ for $k \gg 1$ using combinatorial R-matrices.

Example

Soliton Cellular Automata

- More generally, there are KR crystals $B^{r, s}$ for $r=\{1, \ldots, n\}$ for $U_{q}^{\prime}(\mathfrak{g}$), where \mathfrak{g} is an affine type (still conjectural in some cases for exceptional types).

Soliton Cellular Automata

- More generally, there are KR crystals $B^{r, s}$ for $r=\{1, \ldots, n\}$ for $U_{q}^{\prime}(\mathfrak{g}$), where \mathfrak{g} is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.

Soliton Cellular Automata

- More generally, there are KR crystals $B^{r, s}$ for $r=\{1, \ldots, n\}$ for $U_{q}^{\prime}(\mathfrak{g}$), where \mathfrak{g} is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial R-matrix.

Soliton Cellular Automata

- More generally, there are KR crystals $B^{r, s}$ for $r=\{1, \ldots, n\}$ for $U_{q}^{\prime}(\mathfrak{g}$), where \mathfrak{g} is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial R-matrix.
- With the same time evolution, the system still exhibits solitonic behavior and existence of phase shifts after scattering.

Soliton Cellular Automata

- More generally, there are KR crystals $B^{r, s}$ for $r=\{1, \ldots, n\}$ for $U_{q}^{\prime}(\mathfrak{g}$), where \mathfrak{g} is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial R-matrix.
- With the same time evolution, the system still exhibits solitonic behavior and existence of phase shifts after scattering.
- Phase shifts are (conjecturally) related to the (local) energy function.

Soliton Cellular Automata

- More generally, there are KR crystals $B^{r, s}$ for $r=\{1, \ldots, n\}$ for $U_{q}^{\prime}(\mathfrak{g}$), where \mathfrak{g} is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial R-matrix.
- With the same time evolution, the system still exhibits solitonic behavior and existence of phase shifts after scattering.
- Phase shifts are (conjecturally) related to the (local) energy function.
- Have been well-studied, along with KR crystals, over the past 30 years by numerous authors.

Outline

(1) Kirillov-Reshetikhin crystals
(2) Box-ball systems
(3) Rigged configurations

- Definition
- Connections

Some mathematical physics

- Certain exactly solvable 2D lattice models, such as the 6 -vertex model, give rise to tensor products of KR modules (and crystals).

Some mathematical physics

- Certain exactly solvable 2D lattice models, such as the 6 -vertex model, give rise to tensor products of KR modules (and crystals).
- Kerov, Kirillov and Reshetikhin were solving Heisenberg spin chains using Bethe ansatz (with string hypothesis).

Some mathematical physics

- Certain exactly solvable 2D lattice models, such as the 6 -vertex model, give rise to tensor products of KR modules (and crystals).
- Kerov, Kirillov and Reshetikhin were solving Heisenberg spin chains using Bethe ansatz (with string hypothesis).
- One point energy function conjecturally related to solutions to Heisenberg spin chain (the $X=M$ conjecture of Hatayama et al.).

Some mathematical physics

- Certain exactly solvable 2D lattice models, such as the 6 -vertex model, give rise to tensor products of KR modules (and crystals).
- Kerov, Kirillov and Reshetikhin were solving Heisenberg spin chains using Bethe ansatz (with string hypothesis).
- One point energy function conjecturally related to solutions to Heisenberg spin chain (the $X=M$ conjecture of Hatayama et al.).
- The Bethe vectors are naturally indexed by rigged configurations.

Definition

Definition

Let $B=\bigotimes_{i=1}^{N} B^{1, s_{i}}$ be a finite tensor product of KR crystals of $U_{q}^{\prime}\left(\widehat{\mathfrak{s}}_{n}\right)$.

Definition

Definition

Let $B=\bigotimes_{i=1}^{N} B^{1, s_{i}}$ be a finite tensor product of KR crystals of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$. A rigged configuration in $\mathrm{RC}(B)$ is a sequence of partitions $\nu=\left(\nu^{(\mathrm{a})}\right)_{a=1}^{n-1}$ with integers $J=\left\{J_{\ell}^{(a)}\right\}$ called riggings attached to each row

Definition

Definition

Let $B=\bigotimes_{i=1}^{N} B^{1, s_{i}}$ be a finite tensor product of KR crystals of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$. A rigged configuration in $\mathrm{RC}(B)$ is a sequence of partitions $\nu=\left(\nu^{(a)}\right)_{a=1}^{n-1}$ with integers $J=\left\{J_{\ell}^{(a)}\right\}$ called riggings attached to each row such that

$$
0 \leq J_{\ell}^{(a)} \leq p_{\ell}^{(a)}:=\left|\nu_{[\ell]}^{(a-1)}\right|-2\left|\nu_{[\ell]}^{(a)}\right|+\left|\nu_{[\ell]}^{(a+1)}\right|
$$

where $\mu_{[\ell]}$ is the partition μ trimmed so that each row has max size μ_{ℓ} and $\nu^{(0)}=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$.

Definition

Definition

Let $B=\bigotimes_{i=1}^{N} B^{1, s_{i}}$ be a finite tensor product of KR crystals of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$. A rigged configuration in $\mathrm{RC}(B)$ is a sequence of partitions $\nu=\left(\nu^{(a)}\right)_{a=1}^{n-1}$ with integers $J=\left\{J_{\ell}^{(a)}\right\}$ called riggings attached to each row such that

$$
0 \leq J_{\ell}^{(a)} \leq p_{\ell}^{(a)}:=\left|\nu_{[\ell]}^{(a-1)}\right|-2\left|\nu_{[\ell]}^{(a)}\right|+\left|\nu_{[\ell]}^{(a+1)}\right|
$$

where $\mu_{[\ell]}$ is the partition μ trimmed so that each row has max size μ_{ℓ} and $\nu^{(0)}=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$.
The value $p_{\ell}^{(a)}$ is called the vacancy number and only depends on the size of the row.

Definition

Definition

Let $B=\bigotimes_{i=1}^{N} B^{1, s_{i}}$ be a finite tensor product of KR crystals of $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$. A rigged configuration in $\mathrm{RC}(B)$ is a sequence of partitions $\nu=\left(\nu^{(\mathrm{a})}\right)_{a=1}^{n-1}$ with integers $J=\left\{J_{\ell}^{(a)}\right\}$ called riggings attached to each row such that

$$
0 \leq J_{\ell}^{(a)} \leq p_{\ell}^{(a)}:=\left|\nu_{[\ell]}^{(a-1)}\right|-2\left|\nu_{[\ell]}^{(a)}\right|+\left|\nu_{[\ell]}^{(a+1)}\right|
$$

where $\mu_{[\ell]}$ is the partition μ trimmed so that each row has max size μ_{ℓ} and $\nu^{(0)}=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$.
The value $p_{\ell}^{(a)}$ is called the vacancy number and only depends on the size of the row.
As usual with partitions, we are allowed to reorder the rows.

Example rigged configurations

Example

Rigged configurations in $\mathrm{RC}\left(B^{1,3} \otimes B^{1,5} \otimes B^{1,2} \otimes B^{1,2}\right)$ for $U_{q}^{\prime}\left(\widehat{\mathfrak{s} s} /_{5}\right)$:

$$
\begin{aligned}
& (\nu, J)=\begin{array}{l|l|l|}
1 \\
1 & \square & \\
\square & \\
0
\end{array} \\
& 0 \square 0
\end{aligned}
$$

Vacancy numbers are on the left, and riggings are on the right.

Rigged configurations and KR crystals

- Rigged configurations can be efficiently computed using the Kleber algorithm.

Rigged configurations and KR crystals

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal structure.

Rigged configurations and KR crystals

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal structure.
- There exists a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal isomorphism $\Phi: \mathrm{RC}(B) \rightarrow B$ for $B=\bigotimes_{i=1}^{N} B^{r_{i}, s_{i}}$.

Rigged configurations and KR crystals

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal structure.
- There exists a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal isomorphism $\Phi: \mathrm{RC}(B) \rightarrow B$ for $B=\bigotimes_{i=1}^{N} B^{r_{i}, s_{i}}$.
- The algebraic statistic energy on B is sent to the combinatorial statistic cocharge on rigged configurations under Φ. This proves bijectively the $X=M$ conjecture.

Rigged configurations and KR crystals

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal structure.
- There exists a $U_{q}^{\prime}\left(\widehat{\mathfrak{s l}}_{n}\right)$-crystal isomorphism $\Phi: \mathrm{RC}(B) \rightarrow B$ for $B=\bigotimes_{i=1}^{N} B^{r_{i}, s_{i}}$.
- The algebraic statistic energy on B is sent to the combinatorial statistic cocharge on rigged configurations under Φ. This proves bijectively the $X=M$ conjecture.
- The combinatorial R-matrix becomes the identity map on rigged configurations under Φ.

Rigged configurations and box-ball systems

- The bijection Φ can be extended to states of a box-ball system.

Rigged configurations and box-ball systems

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to action-angle variables of box-ball system.

Rigged configurations and box-ball systems

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to action-angle variables of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).

Rigged configurations and box-ball systems

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to action-angle variables of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).
- $\nu^{(1)}$ corresponds to the sizes of the solitons (with no interaction).

Rigged configurations and box-ball systems

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to action-angle variables of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).
- $\nu^{(1)}$ corresponds to the sizes of the solitons (with no interaction).
- Time evolution increases the riggings $J_{\ell}^{(1)}$ by the row length.

Rigged configurations and box-ball systems

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to action-angle variables of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).
- $\nu^{(1)}$ corresponds to the sizes of the solitons (with no interaction).
- Time evolution increases the riggings $J_{\ell}^{(1)}$ by the row length.
- The inversion bijection Φ^{-1} has been given in terms of the tropicalization of the τ function from the Kadomtsev-Petviashvili (KP) hierarchy.

Thank you!

