Crystals and Box-Ball systems

Travis Scrimshaw

University of Minnesota

Hebrew University of Jerusalem November 21th, 2016

< 同 > < 三 > < 三 >

Table of Contents

Kirillov–Reshetikhin crystals

- Definition
- Tensor products
- Classical crystals
- Combinatorial *R*-matrix

2 Box-ball systems

- Takahashi-Satsuma box-ball system
- Generalizations

3 Rigged configurations

- Definition
- Connections

* E > * E >

A >

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Outline

Kirillov–Reshetikhin crystals

- Definition
- Tensor products
- Classical crystals
- Combinatorial *R*-matrix

2 Box-ball systems

3 Rigged configurations

- 4 同 2 4 日 2 4 日 2

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Definition

Definition

The Kirillov–Reshetikhin (KR) crystal $B^{1,s}$ for $U'_q(\widehat{\mathfrak{sl}}_n)$ is

$$B^{1,s} := \left\{ (x_1,\ldots,x_n) \in \mathbb{Z}_{\geq 0}^n \mid \sum_{i=1}^n x_i = s
ight\}$$

<ロ> <四> <四> <日> <日> <日</p>

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Definition

Definition

The Kirillov–Reshetikhin (KR) crystal $B^{1,s}$ for $U'_q(\widehat{\mathfrak{sl}}_n)$ is

$$B^{1,s} := \left\{ (x_1,\ldots,x_n) \in \mathbb{Z}_{\geq 0}^n \mid \sum_{i=1}^n x_i = s \right\}$$

with crystal operators

$$e_i(\ldots, x_i, x_{i+1}, \ldots) = \begin{cases} 0 & \text{if } x_{i+1} = 0, \\ (\ldots, x_i + 1, x_{i+1} - 1, \ldots) & \text{if } x_{i+1} > 0, \end{cases}$$
$$f_i(\ldots, x_i, x_{i+1}, \ldots) = \begin{cases} 0 & \text{if } x_i = 0, \\ (\ldots, x_i - 1, x_{i+1} + 1, \ldots) & \text{if } x_i > 0, \end{cases}$$

where all indices are understood mod n.

- 4 回 > - 4 回 > - 4 回 >

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Definition

Definition

The Kirillov–Reshetikhin (KR) crystal $B^{1,s}$ for $U'_q(\widehat{\mathfrak{sl}}_n)$ is

$$B^{1,s} := \left\{ (x_1,\ldots,x_n) \in \mathbb{Z}_{\geq 0}^n \mid \sum_{i=1}^n x_i = s \right\}$$

statistics

$$\varepsilon_i(x_1,\ldots,x_n) = x_{i+1} \qquad = \max\{k \mid e_i^k(x_1,\ldots,x_n) \neq 0\},\$$

$$\varphi_i(x_1,\ldots,x_n) = x_i \qquad = \max\{k \mid f_i^k(x_1,\ldots,x_n) \neq 0\},\$$

where all indices are understood mod n.

<ロ> <四> <四> <日> <日> <日</p>

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Definition

Definition

The Kirillov–Reshetikhin (KR) crystal $B^{1,s}$ for $U'_q(\widehat{\mathfrak{sl}}_n)$ is

$$B^{1,s} := \left\{ (x_1,\ldots,x_n) \in \mathbb{Z}_{\geq 0}^n \mid \sum_{i=1}^n x_i = s \right\}$$

and weight function

$$\operatorname{wt}(x_1,\ldots,x_n)=(x_1,\ldots,x_n)\in\mathbb{Z}^n/\mathbb{Z}(1,\ldots,1),$$

where all indices are understood mod n.

<ロ> <四> <四> <日> <日> <日</p>

Definition

Tensor products Classical crystals Combinatorial *R*-matrix

 $B^{1,3}$ for $U'_q(\widehat{\mathfrak{sl}}_3)$

Definition Tensor products Classical crystals

Combinatorial R-matrix

$B^{1,3}$ for $U_q'(\widehat{\mathfrak{sl}}_3)$ using tableaux

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature rule*.

イロト イポト イヨト イヨト

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature* rule. To obtain $f_i(b)$ for $b = b_1 \otimes \cdots \otimes b_L$, we construct the signature:

(日) (同) (三) (三)

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature* rule. To obtain $f_i(b)$ for $b = b_1 \otimes \cdots \otimes b_L$, we construct the signature:

(日) (同) (三) (三)

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature* rule. To obtain $f_i(b)$ for $b = b_1 \otimes \cdots \otimes b_L$, we construct the signature:

- 4 同 6 - 4 三 6 - 4 三 6

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature* rule. To obtain $f_i(b)$ for $b = b_1 \otimes \cdots \otimes b_L$, we construct the signature:

Then we have

$$f_i(b) = b_1 \otimes \cdots \otimes b_{j+1} \otimes f(b_j) \otimes b_{j-1} \otimes \cdots \otimes b_L,$$

where j corresponds to the factor which contains the rightmost + (changing it to a -).

(日) (同) (三) (三)

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature* rule. To obtain $f_i(b)$ for $b = b_1 \otimes \cdots \otimes b_L$, we construct the signature:

Then we have

$$f_i(b) = b_1 \otimes \cdots \otimes b_{j+1} \otimes f(b_j) \otimes b_{j-1} \otimes \cdots \otimes b_L,$$

where *j* corresponds to the factor which contains the rightmost + (changing it to a -). $e_i(b)$ is defined similarly but using the leftmost -.

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Tensor product rule

Definition

The crystal structure on $B_1 \otimes B_2 \otimes \cdots \otimes B_L$ is given by the *signature* rule. To obtain $f_i(b)$ for $b = b_1 \otimes \cdots \otimes b_L$, we construct the signature:

Then we have

$$f_i(b) = b_1 \otimes \cdots \otimes b_{j+1} \otimes f(b_j) \otimes b_{j-1} \otimes \cdots \otimes b_L,$$

where *j* corresponds to the factor which contains the rightmost + (changing it to a -). $e_i(b)$ is defined similarly but using the leftmost -.

Remark

Our convention is opposite of Kashiwara.

Definition Tensor products Classical crystals Combinatorial *R*-matrix

$B^{1,1} \otimes B^{1,2}$ for $U'_q(\widehat{\mathfrak{sl}}_3)$

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Crystals for $U_q(\mathfrak{sl}_n)$

• Finite-dimensional irreducible highest weight representations V_{λ} of \mathfrak{sl}_n , and hence $U_q(\mathfrak{sl}_n)$, parameterized by partitions λ .

- 4 同 2 4 日 2 4 日 2

Crystals for $U_q(\mathfrak{sl}_n)$

- Finite-dimensional irreducible highest weight representations V_{λ} of \mathfrak{sl}_n , and hence $U_q(\mathfrak{sl}_n)$, parameterized by partitions λ .
- We have the crystal B_1 corresponding to natural representation V_1 and given by $B^{1,1}$ and removing 0-arrows.

< ロ > < 同 > < 三 > < 三 >

Crystals for $U_q(\mathfrak{sl}_n)$

- Finite-dimensional irreducible highest weight representations V_{λ} of \mathfrak{sl}_n , and hence $U_q(\mathfrak{sl}_n)$, parameterized by partitions λ .
- We have the crystal B_1 corresponding to natural representation V_1 and given by $B^{1,1}$ and removing 0-arrows.

$$\boxed{1} \xrightarrow{1} \boxed{2} \xrightarrow{2} \boxed{3} \xrightarrow{3} \cdots \xrightarrow{n-1} \boxed{n}$$

- 4 同 2 4 日 2 4 日 2

Crystals for $U_q(\mathfrak{sl}_n)$

- Finite-dimensional irreducible highest weight representations V_{λ} of \mathfrak{sl}_n , and hence $U_q(\mathfrak{sl}_n)$, parameterized by partitions λ .
- We have the crystal B_1 corresponding to natural representation V_1 and given by $B^{1,1}$ and removing 0-arrows.

$$1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-1} n$$

 U_q(sl_n)-representation V_λ admits crystal basis B_λ, set of all semistandard Young tableaux of shape λ and max entry n.

< ロ > < 同 > < 三 > < 三 >

Crystals for $U_q(\mathfrak{sl}_n)$

- Finite-dimensional irreducible highest weight representations V_{λ} of \mathfrak{sl}_n , and hence $U_q(\mathfrak{sl}_n)$, parameterized by partitions λ .
- We have the crystal B_1 corresponding to natural representation V_1 and given by $B^{1,1}$ and removing 0-arrows.

$$\boxed{1} \xrightarrow{1} \boxed{2} \xrightarrow{2} \boxed{3} \xrightarrow{3} \cdots \xrightarrow{n-1} \boxed{n}$$

- $U_q(\mathfrak{sl}_n)$ -representation V_λ admits crystal basis B_λ , set of all semistandard Young tableaux of shape λ and max entry n.
- Can construct B_λ ⊆ B(1)^{⊗|λ|} using tensor product rule and taking the reverse Far-Eastern reading word.

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Example B_{21} for $U_q(\mathfrak{sl}_3)$

<ロ> <同> <同> < 回> < 回>

Definition Tensor products **Classical crystals** Combinatorial *R*-matrix

Example B_{21} for $U_q(\mathfrak{sl}_3)$

< 17 ▶

A B > A B >

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Combinatorial *R*-matrix

• The tensor product $B = B^{1,s} \otimes B^{1,s'}$ is connected.

イロン 不同 とくほう イヨン

= nar

Combinatorial *R*-matrix

- The tensor product $B = B^{1,s} \otimes B^{1,s'}$ is connected.
- There is a unique element of weight (s + s', 0, ..., 0) and it generates B: Specifically (s, 0, ...) ⊗ (s', 0, ...).

Combinatorial *R*-matrix

- The tensor product $B = B^{1,s} \otimes B^{1,s'}$ is connected.
- There is a unique element of weight (s + s', 0, ..., 0) and it generates B: Specifically (s, 0, ...) ⊗ (s', 0, ...).
- There exists a canonical isomorphism $R \colon B^{1,s} \otimes B^{1,s'} \to B^{1,s'} \otimes B^{1,s'}$.

イロン イボン イヨン イヨン

Combinatorial *R*-matrix

- The tensor product $B = B^{1,s} \otimes B^{1,s'}$ is connected.
- There is a unique element of weight (s + s', 0, ..., 0) and it generates B: Specifically (s, 0, ...) ⊗ (s', 0, ...).
- There exists a canonical isomorphism $R \colon B^{1,s} \otimes B^{1,s'} \to B^{1,s'} \otimes B^{1,s}$.

Definition

The isomorphism *R* is called the *combinatorial R-matrix*.

イロン 不同 とくほう イヨン

Combinatorial *R*-matrix

- The tensor product $B = B^{1,s} \otimes B^{1,s'}$ is connected.
- There is a unique element of weight (s + s', 0, ..., 0) and it generates B: Specifically (s, 0, ...) ⊗ (s', 0, ...).
- There exists a canonical isomorphism $R: B^{1,s} \otimes B^{1,s'} \to B^{1,s'} \otimes B^{1,s}$.

Definition

The isomorphism R is called the *combinatorial R-matrix*.

Remark

Generally, the tensor product $\bigotimes_{i=1}^{N} B^{1,s_i}$ is connected.

イロン 不同 とくほう イヨン

Definition Tensor products Classical crystals Combinatorial *R*-matrix

 $B^{1,1} \otimes B^{1,2}$ and $B^{1,2} \otimes B^{1,1}$ for $U_q(\widehat{\mathfrak{sl}}_3)$

イロン イロン イヨン イヨン

Definition Tensor products Classical crystals Combinatorial *R*-matrix

$B^{1,1} \otimes B^{1,2}$ and $B^{1,2} \otimes B^{1,1}$ for $U_q(\widehat{\mathfrak{sl}}_3)$

Travis Scrimshaw Crystals and Box-Ball systems

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Computing the combinatorial *R*-matrix

• We have $R(b \otimes b') = \tilde{b}' \otimes \tilde{b}$, where $\tilde{b}' \in B^{1,s'}$ and $\tilde{b} \in B^{1,s}$ as the unique elements such that

$$b \leftarrow b' = \widetilde{b}' \leftarrow \widetilde{b},$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

(日) (同) (三) (三)

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Computing the combinatorial *R*-matrix

• We have $R(b \otimes b') = \tilde{b}' \otimes \tilde{b}$, where $\tilde{b}' \in B^{1,s'}$ and $\tilde{b} \in B^{1,s}$ as the unique elements such that

$$b \leftarrow b' = \widetilde{b}' \leftarrow \widetilde{b},$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Example

Consider $R: B^{1,5} \otimes B^{1,4} \to B^{1,4} \otimes B^{1,5}$ for $\widehat{\mathfrak{sl}}_5$:

- 4 同 2 4 日 2 4 日 2

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Computing the combinatorial *R*-matrix

• We have $R(b \otimes b') = \tilde{b}' \otimes \tilde{b}$, where $\tilde{b}' \in B^{1,s'}$ and $\tilde{b} \in B^{1,s}$ as the unique elements such that

$$b \leftarrow b' = \widetilde{b}' \leftarrow \widetilde{b},$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Example

Consider $R: B^{1,5} \otimes B^{1,4} \to B^{1,4} \otimes B^{1,5}$ for $\widehat{\mathfrak{sl}}_5$:

(日) (同) (三) (三)

Definition Tensor products Classical crystals Combinatorial *R*-matrix

Computing the combinatorial *R*-matrix

• We have $R(b \otimes b') = \tilde{b}' \otimes \tilde{b}$, where $\tilde{b}' \in B^{1,s'}$ and $\tilde{b} \in B^{1,s}$ as the unique elements such that

$$b \leftarrow b' = \widetilde{b}' \leftarrow \widetilde{b},$$

with $T \leftarrow w$ the RSK insertion of the word w into the tableau T.

Example

Consider $R: B^{1,5} \otimes B^{1,4} \to B^{1,4} \otimes B^{1,5}$ for $\widehat{\mathfrak{sl}}_5$:

$$\begin{array}{c}
2 & 2 & 3 & 5 & 5 \\
2 & 2 & 3 & 5 & 5 \\
\hline
2 & 2 & 3 & 5 \\
\hline
2 & 2 & 3 & 5 \\
\hline
2 & 2 & 3 & 5 \\
\hline
\end{array} \leftarrow \begin{array}{c}
1 & 1 & 2 & 4 & 5 \\
\hline
1 & 1 & 2 & 2 & 4 & 5 \\
\hline
2 & 2 & 3 & 5 \\
\hline
\end{array}$$

< ロ > < 同 > < 三 > < 三 >

Takahashi–Satsuma box-ball system Generalizations

Outline

2 Box-ball systems

- Takahashi-Satsuma box-ball system
- Generalizations

8 Rigged configurations

- 4 回 ト - 4 回 ト
Takahashi–Satsuma box-ball system Generalizations

Definition

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

- 4 同 6 - 4 三 6 - 4 三 6

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

- 4 同 6 - 4 三 6 - 4 三 6

-

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

- 4 同 2 4 日 2 4 日 2

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

The box-ball system is the ultradiscretization of the Korteweg-de Vries (KdV) equation.

Travis Scrimshaw

Example	e							
_					ш. r. з	LP 7 3	erser	= 4

Crystals and Box-Ball systems

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

Examp	le								
					3	ш. и. з	ur ri s	erser	= 4

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

Exampl	e								
					3	ш. х. з	ur e s	erser	= 9

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

Exampl	е											
							-	ш. к. з	LP 7 3	e k s e	r =	うつ
			Travis	Scrimsha	w	Crystals an	d Box-Bal	l systems				

Definition

Consider an infinite number of boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ that can hold at most one ball. Consider a finite number of balls places in the boxes. This is a state of the *box-ball system*.

We evolve the system by moving right to left. If we encounter a ball we have already moved, then we skip it. Otherwise we throw it into the next available box.

Remark

Takahashi–Satsuma box-ball system Generalizations

Avoiding interaction

Travis Scrimshaw Crystals and Box-Ball systems

(日) (同) (三) (三)

2

Takahashi–Satsuma box-ball system Generalizations

Avoiding interaction

Travis Scrimshaw Crystals and Box-Ball systems

- 4 同 2 4 日 2 4 日 2

3

Takahashi–Satsuma box-ball system Generalizations

Avoiding interaction

- 4 同 2 4 日 2 4 日 2

Takahashi–Satsuma box-ball system Generalizations

Avoiding interaction

Takahashi–Satsuma box-ball system Generalizations

Solitons

The box-ball system exhibits *solitonic* behavior:

<ロ> <同> <同> < 回> < 回>

2

Takahashi–Satsuma box-ball system Generalizations

Solitons

The box-ball system exhibits *solitonic* behavior:

• Clusters, called *solitons*, of size *n* move *n* steps each evolution.

- 4 同 2 4 日 2 4 日 2

3

Solitons

The box-ball system exhibits *solitonic* behavior:

- Clusters, called *solitons*, of size *n* move *n* steps each evolution.
- Solitons may interact, then separate into same size solitons once there is no more interaction.

< 回 > < 回 > < 回 >

Solitons

The box-ball system exhibits *solitonic* behavior:

- Clusters, called *solitons*, of size *n* move *n* steps each evolution.
- Solitons may interact, then separate into same size solitons once there is no more interaction.
- Interaction process is called *scattering*.

- 2 2 3 4 2 3 3

Solitons

The box-ball system exhibits *solitonic* behavior:

- Clusters, called *solitons*, of size *n* move *n* steps each evolution.
- Solitons may interact, then separate into same size solitons once there is no more interaction.
- Interaction process is called *scattering*.
- After scattering, there is generally a *phase shift*.

A 30 b

Takahashi–Satsuma box-ball system Generalizations

Example

Example

イロン イロン イヨン イヨン

2

Takahashi–Satsuma box-ball system Generalizations

Example

Example

<ロ> <同> <同> < 回> < 回>

æ

Takahashi–Satsuma box-ball system Generalizations

Example

Example

Travis Scrimshaw Crystals and Box-Ball systems

イロト イポト イヨト イヨト

Takahashi–Satsuma box-ball system Generalizations

Example

Example

イロト イポト イヨト イヨト

Takahashi–Satsuma box-ball system Generalizations

Example

Example

イロト イポト イヨト イヨト

Takahashi–Satsuma box-ball system Generalizations

Example

Example

(t = 0)
(t = 1)
(t = 2)
(t = 3)
(t = 4)
(t = 5)

・ロン ・回 と ・ ヨン ・ ヨン …

= 990

Takahashi–Satsuma box-ball system Generalizations

Example

Example

(t = 0)
(t = 1)
(t = 2)
(t = 3)
(t = 4)
(t = 5)
(t = 6)

Travis Scrimshaw Crystals and Box-Ball systems

・ロン ・日 ・ ・ ヨン ・ 日 ・

= 990

Takahashi–Satsuma box-ball system Generalizations

Example

Example

(t = 0)
(t = 1)
(t = 2)
(t = 3)
(t = 4)
(t = 5)
(t = 6)
(t = 7)

・ロン ・日 ・ ・ ヨン ・ 日 ・

æ –

Takahashi–Satsuma box-ball system Generalizations

Example

Example

(t = 0)
(t = 1)
(t = 2)
(t = 3)
(t = 4)
(t = 5)
(t = 6)
(t = 7)
(t = 8)

Travis Scrimshaw Crystals and Box-Ball systems

・ロン ・四 と ・ ヨ と ・ ヨ と

æ –

Takahashi–Satsuma box-ball system Generalizations

Example

Example

(t = 0)
(t = 1)
(t = 2)
(t = 3)
(t = 4)
(t = 5)
(t = 6)
(t = 7)
(t = 8)
(t = 9)

・ロト ・回ト ・ヨト ・ヨト

= 990

Takahashi–Satsuma box-ball system Generalizations

Realization using KR crystals

• We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_{a}(\widehat{\mathfrak{sl}}_{2})$.

- 4 同 2 4 日 2 4 日 2

3

Takahashi–Satsuma box-ball system Generalizations

Realization using KR crystals

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_{q}(\widehat{\mathfrak{sl}}_{2})$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.

- 4 同 6 - 4 三 6 - 4 三 6

-

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_{q}(\widehat{\mathfrak{sl}}_{2})$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

< ロ > < 同 > < 三 > < 三 >

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_q(\widehat{\mathfrak{sl}}_2)$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_{q}(\widehat{\mathfrak{sl}}_{2})$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_{q}(\widehat{\mathfrak{sl}}_{2})$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

- We consider a semi-infinite tensor product of $\bigotimes_{i=0}^{-\infty} B^{1,1}$ for $U'_{q}(\widehat{\mathfrak{sl}}_{2})$.
- An empty box is a 1, called the *vacuum*, and a box with a ball is a 2.
- The time evolution is add B^{1,k} for k ≥ # balls and pass through using combinatorial R-matrices.

Kirillov–Reshetikhin crystals Box-ball systems Rigged configurations

Takahashi–Satsuma box-ball system Generalizations

Larger capacity

• We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .

・ロン ・四 と ・ ヨ と ・ ヨ と …

- We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .
- The evolution is the same as before.

(日) (同) (三) (三)

- We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .
- The evolution is the same as before.
- System exhibits same solitonic behavior.

(日) (同) (三) (三)

- We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\bigotimes_{i=0}^{-\infty} B^{1,s_i}$ of type $U'_q(\widehat{\mathfrak{sl}}_2)$ with the vacuum being 1^{s_i} and the same time evolution of passing through a $B^{1,k}$ for $k \gg 1$ using combinatorial *R*-matrices.

- We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\bigotimes_{i=0}^{-\infty} B^{1,s_i}$ of type $U'_q(\widehat{\mathfrak{sl}}_2)$ with the vacuum being 1^{s_i} and the same time evolution of passing through a $B^{1,k}$ for $k \gg 1$ using combinatorial *R*-matrices.

Example			
		(<i>t</i> = 0)	
			J

- We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\bigotimes_{i=0}^{-\infty} B^{1,s_i}$ of type $U'_q(\widehat{\mathfrak{sl}}_2)$ with the vacuum being 1^{s_i} and the same time evolution of passing through a $B^{1,k}$ for $k \gg 1$ using combinatorial *R*-matrices.

Example			
			• $(t = 0)$ • $(t = 1)$
		< < >> < < < >> <	

- We can consider boxes $\{b_i \mid i \in \mathbb{Z}_{\geq 0}\}$ with capacity s_i .
- The evolution is the same as before.
- System exhibits same solitonic behavior.
- Realize by using $\bigotimes_{i=0}^{-\infty} B^{1,s_i}$ of type $U'_q(\widehat{\mathfrak{sl}}_2)$ with the vacuum being 1^{s_i} and the same time evolution of passing through a $B^{1,k}$ for $k \gg 1$ using combinatorial *R*-matrices.

Exa	amp	le										h
												l
											(t = 0)	L
						\bigcirc					(t = 1)	L
											(t = 2)	L
-	-	-	-	-	-	-	-	 				۳.
									• •	E≯.	<	4

Kirillov–Reshetikhin crystals Box-ball systems Rigged configurations

Takahashi–Satsuma box-ball system Generalizations

Soliton Cellular Automata

 More generally, there are KR crystals B^{r,s} for r = {1,...,n} for U'_q(g), where g is an affine type (still conjectural in some cases for exceptional types).

・ 同 ト ・ ヨ ト ・ ヨ ト

- More generally, there are KR crystals B^{r,s} for r = {1,..., n} for U'_q(g), where g is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.

・ 同 ト ・ ヨ ト ・ ヨ ト

- More generally, there are KR crystals B^{r,s} for r = {1,..., n} for U'_q(g), where g is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial *R*-matrix.

・ 同 ト ・ ヨ ト ・ ヨ ト

-

- More generally, there are KR crystals B^{r,s} for r = {1,..., n} for U'_q(g), where g is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial *R*-matrix.
- With the same time evolution, the system still exhibits solitonic behavior and existence of phase shifts after scattering.

・ 同 ト ・ ヨ ト ・ ヨ ト

- More generally, there are KR crystals B^{r,s} for r = {1,..., n} for U'_q(g), where g is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial *R*-matrix.
- With the same time evolution, the system still exhibits solitonic behavior and existence of phase shifts after scattering.
- Phase shifts are (conjecturally) related to the (local) energy function.

- More generally, there are KR crystals B^{r,s} for r = {1,..., n} for U'_q(g), where g is an affine type (still conjectural in some cases for exceptional types).
- Can form semi-infinite tensor products, where the vacuum is the unique maximal weight element.
- The tensor product is still connected and there exists a combinatorial *R*-matrix.
- With the same time evolution, the system still exhibits solitonic behavior and existence of phase shifts after scattering.
- Phase shifts are (conjecturally) related to the (local) energy function.
- Have been well-studied, along with KR crystals, over the past 30 years by numerous authors.

Kirillov–Reshetikhin crystals Box-ball systems Rigged configurations

Definition Connections

Outline

2 Box-ball systems

- 3 Rigged configurations
 - Definition
 - Connections

- 4 回 > - 4 回 > - 4 回 >

• Certain exactly solvable 2D lattice models, such as the 6-vertex model, give rise to tensor products of KR modules (and crystals).

< 回 > < 回 > < 回 >

э

- Certain exactly solvable 2D lattice models, such as the 6-vertex model, give rise to tensor products of KR modules (and crystals).
- Kerov, Kirillov and Reshetikhin were solving Heisenberg spin chains using Bethe ansatz (with string hypothesis).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Certain exactly solvable 2D lattice models, such as the 6-vertex model, give rise to tensor products of KR modules (and crystals).
- Kerov, Kirillov and Reshetikhin were solving Heisenberg spin chains using Bethe ansatz (with string hypothesis).
- One point energy function conjecturally related to solutions to Heisenberg spin chain (the *X* = *M* conjecture of Hatayama *et al.*).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Certain exactly solvable 2D lattice models, such as the 6-vertex model, give rise to tensor products of KR modules (and crystals).
- Kerov, Kirillov and Reshetikhin were solving Heisenberg spin chains using Bethe ansatz (with string hypothesis).
- One point energy function conjecturally related to solutions to Heisenberg spin chain (the X = M conjecture of Hatayama *et al.*).
- The Bethe vectors are naturally indexed by *rigged configurations*.

- 4 回 ト - 4 回 ト

Kirillov–Reshetikhin crystals Box-ball systems Rigged configurations

Definition Connections

Definition

Definition

Let $B = \bigotimes_{i=1}^{N} B^{1,s_i}$ be a *finite* tensor product of KR crystals of $U'_{q}(\widehat{\mathfrak{sl}}_{n})$.

- 4 同 2 4 日 2 4 日 2

Definition

Let $B = \bigotimes_{i=1}^{N} B^{1,s_i}$ be a *finite* tensor product of KR crystals of $U'_q(\widehat{\mathfrak{sl}}_n)$. A *rigged configuration* in RC(B) is a sequence of partitions $\nu = (\nu^{(a)})_{a=1}^{n-1}$ with integers $J = \{J^{(a)}_{\ell}\}$ called *riggings* attached to each row

< 回 > < 回 > < 回 >

э

Definition

Let $B = \bigotimes_{i=1}^{N} B^{1,s_i}$ be a *finite* tensor product of KR crystals of $U'_q(\widehat{\mathfrak{sl}}_n)$. A *rigged configuration* in RC(B) is a sequence of partitions $\nu = (\nu^{(a)})_{a=1}^{n-1}$ with integers $J = \{J^{(a)}_{\ell}\}$ called *riggings* attached to each row such that

$$0 \leq J_{\ell}^{(a)} \leq p_{\ell}^{(a)} := |\nu_{[\ell]}^{(a-1)}| - 2|\nu_{[\ell]}^{(a)}| + |\nu_{[\ell]}^{(a+1)}|$$

where $\mu_{[\ell]}$ is the partition μ trimmed so that each row has max size μ_{ℓ} and $\nu^{(0)} = \{s_1, s_2, \dots, s_N\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let $B = \bigotimes_{i=1}^{N} B^{1,s_i}$ be a *finite* tensor product of KR crystals of $U'_q(\widehat{\mathfrak{sl}}_n)$. A *rigged configuration* in RC(B) is a sequence of partitions $\nu = (\nu^{(a)})_{a=1}^{n-1}$ with integers $J = \{J^{(a)}_{\ell}\}$ called *riggings* attached to each row such that

$$0 \leq J_{\ell}^{(a)} \leq p_{\ell}^{(a)} := |\nu_{[\ell]}^{(a-1)}| - 2|\nu_{[\ell]}^{(a)}| + |\nu_{[\ell]}^{(a+1)}|$$

where $\mu_{[\ell]}$ is the partition μ trimmed so that each row has max size μ_{ℓ} and $\nu^{(0)} = \{s_1, s_2, \ldots, s_N\}$. The value $p_{\ell}^{(a)}$ is called the *vacancy number* and only depends on the size of the row.

Definition

Let $B = \bigotimes_{i=1}^{N} B^{1,s_i}$ be a *finite* tensor product of KR crystals of $U'_q(\widehat{\mathfrak{sl}}_n)$. A *rigged configuration* in RC(B) is a sequence of partitions $\nu = (\nu^{(a)})_{a=1}^{n-1}$ with integers $J = \{J^{(a)}_{\ell}\}$ called *riggings* attached to each row such that

$$0 \leq J_{\ell}^{(a)} \leq p_{\ell}^{(a)} := |\nu_{[\ell]}^{(a-1)}| - 2|\nu_{[\ell]}^{(a)}| + |\nu_{[\ell]}^{(a+1)}|$$

where $\mu_{[\ell]}$ is the partition μ trimmed so that each row has max size μ_{ℓ} and $\nu^{(0)} = \{s_1, s_2, \dots, s_N\}.$

The value $p_{\ell}^{(a)}$ is called the *vacancy number* and only depends on the size of the row.

As usual with partitions, we are allowed to reorder the rows.

Kirillov–Reshetikhin crystals Box-ball systems Rigged configurations

Definition Connections

Example rigged configurations

Example

Rigged configurations in $\mathsf{RC}(B^{1,3} \otimes B^{1,5} \otimes B^{1,2} \otimes B^{1,2})$ for $U'_q(\widehat{\mathfrak{slsl}}_5)$:

Vacancy numbers are on the left, and riggings are on the right.

- 4 同 6 4 日 6 4 日 6

э

• Rigged configurations can be efficiently computed using the Kleber algorithm.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a U'_q(ŝl_n)-crystal structure.

イロン 不同 とくほう イヨン

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a U'_q(ŝl_n)-crystal structure.
- There exists a $U'_q(\widehat{\mathfrak{sl}}_n)$ -crystal isomorphism $\Phi \colon \mathsf{RC}(B) \to B$ for $B = \bigotimes_{i=1}^N B^{r_i, s_i}$.

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a U'_q(ŝl_n)-crystal structure.
- There exists a $U'_q(\widehat{\mathfrak{sl}}_n)$ -crystal isomorphism $\Phi \colon \mathsf{RC}(B) \to B$ for $B = \bigotimes_{i=1}^N B^{r_i, s_i}$.
- The algebraic statistic *energy* on *B* is sent to the combinatorial statistic *cocharge* on rigged configurations under Φ . This proves bijectively the X = M conjecture.

イロト 不得 とくほ とくほ とうほう

- Rigged configurations can be efficiently computed using the Kleber algorithm.
- Rigged configurations can be extended with a U'_q(ŝl_n)-crystal structure.
- There exists a $U'_q(\widehat{\mathfrak{sl}}_n)$ -crystal isomorphism $\Phi \colon \mathsf{RC}(B) \to B$ for $B = \bigotimes_{i=1}^N B^{r_i, s_i}$.
- The algebraic statistic *energy* on *B* is sent to the combinatorial statistic *cocharge* on rigged configurations under Φ . This proves bijectively the X = M conjecture.
- The combinatorial *R*-matrix becomes the identity map on rigged configurations under Φ.

イロト 不得 とくほ とくほ とうほう

Rigged configurations and box-ball systems

• The bijection Φ can be extended to states of a box-ball system.
- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to *action-angle variables* of box-ball system.

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to *action-angle variables* of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).

- 4 同 2 4 回 2 4 U

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to *action-angle variables* of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).
- $\nu^{(1)}$ corresponds to the sizes of the solitons (with no interaction).

・ 同 ト ・ ヨ ト ・ ヨ ト

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to *action-angle variables* of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).
- $\nu^{(1)}$ corresponds to the sizes of the solitons (with no interaction).
- Time evolution increases the riggings $J_{\ell}^{(1)}$ by the row length.

- The bijection Φ can be extended to states of a box-ball system.
- Rigged configurations correspond to *action-angle variables* of box-ball system.
- Partitions of a rigged configuration are invariant under time evolution (via Φ).
- $\nu^{(1)}$ corresponds to the sizes of the solitons (with no interaction).
- Time evolution increases the riggings $J_{\ell}^{(1)}$ by the row length.
- The inversion bijection Φ⁻¹ has been given in terms of the tropicalization of the τ function from the Kadomtsev–Petviashvili (KP) hierarchy.

Thank you!

イロン イロン イヨン イヨン

Ξ.