Simplicial sets in Sage

John H. Palmieri
Department of Mathematics
University of Washington

Sage Days 74
1 June 2016
Meudon

Simplicial sets

A simplicial set is a combinatorial model for a topological space, consisting of

- a set X_{n} of n-simplices for each integer $n \geq 0$, and
- face maps d_{i} and degeneracy maps s_{j} between the sets X_{n}.

The maps have to satisfy certain "obvious" identities.

Face maps

Each n-simplex has $n+1$ faces, so there are $n+1$ face maps $d_{i}: X_{n} \rightarrow X_{n-1}, \quad 0 \leq i \leq n$.

Degeneracy maps

An n-simplex determines $n+1$ degenerate $(n+1)$-simplices, so there are $n+1$ degeneracy maps: $\quad s_{j}: X_{n} \rightarrow X_{n+1}, 0 \leq j \leq n$.

A morphism of simplicial sets $X \rightarrow Y$ is the obvious thing: a collection of maps $X_{n} \rightarrow Y_{n}$ which are compatible with the face and degeneracy maps.

Examples

Example

The simplest examples are

- the empty simplicial set: $X_{n}=\emptyset$ for all n
- a point: $X_{n}=$ (singleton) for all n

Examples

Any simplicial complex can be made into a simplicial set: just add degeneracies freely.

Example

Triangulation of S^{1} :

$$
\begin{aligned}
& X_{0}=\{0,1,2\} \\
& X_{1}=\left\{01,02,12, s_{0}(0), s_{0}(1), s_{1}(2)\right\} \\
& X_{2}=\left\{s_{0}(01), s_{1}(01), s_{0}(02), s_{1}(02), s_{0}(12), s_{1}(12), s_{1} s_{0}(0), s_{1} s_{0}(1), s_{1} s_{0}(2)\right\} \\
& X_{3}=\{\ldots \text { degenerate simplices } \ldots\}
\end{aligned}
$$

Examples

The n-sphere, more efficiently:
One vertex v and one nondegenerate n-simplex σ (plus many degenerate simplices).

Example

$n=1$:
$X_{0}=\{v\} \quad X_{1}=\left\{\sigma, s_{0} v\right\} \quad X_{2}=\left\{s_{0} \sigma, s_{1} \sigma, s_{1} s_{0} v\right\} \quad \cdots$
Face maps: $d_{0} \sigma=d_{1} \sigma=v$. The others are automatic.

Examples

The n-sphere, more efficiently:
One vertex v and one nondegenerate n-simplex σ (plus many degenerate simplices).

Example

$n=2$:
$X_{0}=\{v\}, X_{1}=\left\{s_{0} v\right\}, X_{2}=\left\{\sigma, s_{1} s_{0} v\right\}, \ldots$
Face maps: $d_{i} \sigma=s_{0} v$ for all i. The others are automatic.

Motivation: size

As you can see from the sphere examples, simplicial sets can be more efficient than simplicial complexes if you ignore degenerate simplices.

Fortunately, you can frequently ignore them.

Motivation: Homotopy theory

From an abstract point of view, you can study homotopy theory purely using the category of simplicial sets.

- The homotopy theory of simplicial sets is equivalent to the homotopy theory of topological spaces.
- For some homotopy theorists, "space" means "simplicial set".
- Some constructions are easier for simplicial sets, some for topological spaces.
- Some constructions are easier for simplicial sets, some for simplicial complexes.

Motivation: products

Simplicial complexes can be annoying to work with. For example, products: how do you triangulate the product of two simplices? (Known and understood, but requires a little work.)

Example

Taken from Sage documentation: if T, K are minimal triangulations of the torus and Klein bottle, with 14 and 16 facets respectively, then $T \times K$ has 1344 facets and takes a little time to compute.

Products of simplicial sets: if X and Y are simplicial sets, then their product has n-simplices $X_{n} \times Y_{n}$.

Products of simplicial sets: if X and Y are simplicial sets, then their product has n-simplices $X_{n} \times Y_{n}$. For example, if X and Y are both 1-simplices:

Motivation: Nerves

The nerve of a category (or group or monoid) is naturally constructed as a simplicial set.

The nerve (= classifying space) of a group:

- one vertex
- one edge for each element of the group
- one n-simplex for each n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$, non-degenerate if $a_{i} \neq 1$ for all i
- face maps: multiply consecutive elements
- degeneracy maps: insert 1

Nerves

A little more detail:

- $d_{0}\left(a_{1} a_{2} \cdots a_{n}\right)=a_{2} \cdots a_{n}$
- $d_{n}\left(a_{1} a_{2} \cdots a_{n}\right)=a_{1} \cdots a_{n-1}$
- $d_{i}\left(a_{1} a_{2} \cdots a_{n}\right)=a_{1} \cdots\left(a_{i} a_{i+1}\right) \cdots a_{n-1}, 1 \leq i \leq n-1$
- $s_{j}\left(a_{1} \cdots a_{n}\right)=a_{1} \cdots a_{j} 1 a_{j+1} \cdots a_{n}, 0 \leq j \leq n$ (insert 1 in the j th spot).

Nerves

Similar for monoids or categories: one vertex for each object, one 1 -simplex for each morphism, one n-simplex for each collection of n composable morphisms.

Also, given the nerve of a category, you can recover the category.

Question

Are categories in good enough shape in Sage to be able to define the nerve of a (finite) category?

Example

Real projective space. $\mathbf{R} P^{\infty}$ is the classifying space of the group $\mathbf{Z} / 2 \mathbf{Z}$. There is one non-degenerate simplex in each dimension. $\mathbf{R} P^{n}$ is its n-skeleton.
Look at the f-vectors for simplicial complex versions of $\mathbf{R} P^{n}$ for small values of n :
$\mathbf{R} P^{2}:(6,15,10)$
$\mathbf{R} P^{3}:(11,51,80,40)$
$\mathbf{R} P^{4}:(16,120,330,375,150)$
$\mathbf{R} P^{5}: \quad(63,903,4200,8400,7560,2520)$
In comparison, as a simplicial set:
$\mathbf{R} P^{n}: \quad(1,1,1,1, \cdots, 1)$
As a result, computing is much faster with the simplicial set model.

Example

Classifying space of C_{3}. In Sage, the group C_{3} (constructed via C3 = groups.misc.MultiplicativeAbelian([3])) has three elements, $1, f, f^{2}$. So its classifying space has two nondegenerate 1-simplices, four non-degenerate 2-simplices $\left(f * f, f^{2} * f, f * f^{2}\right.$, $f^{2} * f^{2}$), eight non-degenerate 3 -simplices, etc.

Example

Classifying space of Σ_{3} and its fundamental group.

Example

Complex projective space. $\mathbf{C} P^{n}$ is the $2 n$-skeleton of the classifying space of the Lie group S^{1}. Sage can't construct it that way, but work of Sergeraert (Kenzo, CAT) leads to constructions we can use in Sage.
f-vectors as simplicial complexes:
$\mathbf{C} P^{2}: \quad(9,36,84,90,36)$
C P^{3} : not implemented
C P^{4} : not implemented
As simplicial sets:
$\mathbf{C} P^{2}:(1,0,2,3,3)$
C $P^{3}:(1,0,3,10,25,30,15)$
$\mathbf{C} P^{4}: \quad(1,0,4,22,97,255,390,315,105)$

To do:

- good conversions from simplicial complexes (and other objects) to simplicial sets
- simplicial abelian groups, k-skeleton of $K(\pi, n)$
- infinite simplicial sets
- general framework for simplicial objects in a category
- higher homotopy groups (?)

