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SnapPy is developed by Marc Culler, Nathan Dunfield, Matthias

Goerner, and Jeff Weeks.

With contributions from Mark Bell, Tracy Hall, Saul Schleimer,

Malik Obeidin, Robert Lipschitz, Jennet Dickinson and many

others...



Hyperbolic 3-Space

Hyperbolic 3-space H3 is the unique homogeneous Riemannian

3-manifold with all sectional curvatures equal to −1. Alternatively,

H3 = PSL2(C)/SO(3) with a normalized invariant metric.

There is a natural compactification H3=̇ H3 t S2∞ which is

homeomorphic to a 3-ball. The boundary S2∞ is the sphere at

infinity. It has a canonical conformal structure.

There are 8 simply-connected Riemannian 3-manifolds whose full

isometry group acts transitively with compact point stabilizers,

and which admit a compact quotient under the action of some

discrete torsion free group of isometries. These are the

“geometries” in Thurston’s Geometrization Conjecture, proved by

Grisha Perelman in 2003.



Hyperbolic 3-Space: The Poincaré model

• H3 is the open unit ball in R3;
• S2∞ is the unit sphere;

• A line is an arc of a circle which is perpendicular to S2∞;

• A plane is the intersection of the unit ball with a Euclidean

sphere perpendicular to S2∞;

• The metric is conformal to the Euclidean metric.



Hyperbolic 3-Space: The Poincaré model

A convex polyhedron in the Poincaré model:



Hyperbolic 3-Space: The Klein model

• H3 is the open unit ball in R3;
• S2∞ is the unit sphere;

• A line is the intersection of the ball with a Euclidean line.

• A plane is the intersection of the ball with a Euclidean plane.

• The metric is not conformal to the Euclidean metric.



Hyperbolic 3-Space: The Klein model

A convex polyhedron in the Klein model:



Hyperbolic 3-Space: The upper half-space model:

• H3 = {(x , y , t)|t > 0} ⊂ R3;
• S2∞ is the plane t = 0 together with the point ∞. If the

plane is identified with C, isometries of H3 extend to M0̈bius

transformations on C (z → az+b
cz+d );

• A line is a circle orthogonal to t = 0, or a vertical line.

• A plane is a half-sphere with center on t = 0, or a vertical

plane.

• The metric is the Euclidean metric scaled by 1t .



Hyperbolic 3-Space: The upper half-space model

An ideal tetrahedron in the upper half-space:

This tetrahedron is the convex hull of the points 0, ∞, 1, z . Up

to isometry, every ideal tetrahedron has this form.



Hyperbolic 3-Space: Convex hulls

The closure in H3 of a plane in H3 is a 2-disk whose boundary is a

geometric circle on S2∞. Call this an extended plane.

Each extended plane in H3 divides H into two closed half-spaces

which meet along the extended plane. The convex hull of a

subset X of H3 is the intersection of all half-spaces containing X .

An ideal tetrahedron is the convex hull of four points on S2∞.

Every ideal tetrahedron has three symmetries which interchange

two pairs of opposite edges and reflect the other two edges.

The cross-ratio of the vertices of an ordered ideal tetrahedron is

invariant under order-preserving isometries. Take an ordered

tetrahedron ∆ with cross-ratio z and apply an order 2 symmetry.

The new ordered tetrahedron will have cross-ratio z , 1
1−z , or z−1z .

Remark: The boundary of the convex hull of any closed subset of

S2∞ is a pleated surface bent along a geodesic lamination.



Hyperbolic 3-Space: Shapes

The shape of an ideal tetrahedron assigns complex numbers to

the edges in the following pattern.
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If an ordered tetrahedron ∆ = (v0, v1, v2, v3) is translated to

(0, 1,∞, z), then the shape assigns z to the edge v0 – v 1. When

Im(z) > 0 say that ∆ is positively oriented.

If tetrahedra T1,T2, . . . ,Tn fit around an edge as shown, and the

shape values for that edge are z1, z2, . . . , zn, then z1 · · · zn = 1.



Hyperbolic 3-Space: Volumes

Consider a co-compact discrete group Γ of Euclidean translations

of R2 with fundamental domain a parallelogram P. The action

extends to an action by translations on R3, which are isometries

of the upper half-space model.

The region D = P × [1,∞) is a fundamental domain for the

action of Γ on R2 × [1,∞). The quotient is diffeomorphic to

T 2 × [1,∞) and inherits a complete hyperbolic metric. The

hyperbolic manifold, D/Γ is called a cusp neighborhood. A simple

computation, using dVHyp = 1
t3

dVEuc, shows that cusp

neighborhoods have finite volume.

A 3-manifold M with a complete hyperbolic metric of finite

volume is either compact or has finitely many ends, each isometric

to a cusp neighborhood. Thus M is diffeomorphic to the interior

of a compact 3-manifold with torus boundary components.



Hyperbolic 3-Space: Volumes

A cusp neighborhood.



Geometrization

A 3-manifold M has a geometric structure if

• M arises as the quotient of one of the 8 geometries by a

discrete torsion-free group of isometries.

• The induced Riemannian metric on M is complete.

Every 3-manifold is a connected sum of irreducible 3-manifolds

which cannot be decomposed as a non-trivial connected sum.

The Geometrization Conjecture asserts that every compact

irreducible 3-manifold with (possibly empty) torus boundary can

be cut along a canonical family of tori to produce (open)

geometric manifolds.

For the 7 non-hyperbolic geometries, the geometric manifolds

have been classified.

A finite volume hyperbolic 3-manifold has a unique hyberbolic

structure by Mostow-Prasad rigidity. So geometric invariants are

topological invariants. (!!!!)



Computation

SnapPy’s data structure for representing a 3-manifold M contains:

An ideal triangulation:

• A pseudo-manifold K constructed by identifying pairs of

faces of finitely many tetrahedra so that every vertex link is

either a sphere or a torus. (To recover M, take the

realization and delete the vertices with torus links.)

• A complex shape parameter assigned to one edge of each

tetrahedron. (The parameters for the other edges are

determined.)

The shapes satisfy the gluing equations:

• For each equivalence class e of edges, the product of the

shapes assigned to the edges in e equals e2πi .

These equations have the simple form:

za11 (1− z1)
b1 · · · zakk (1− zk)bk = c = ±1



Solving the gluing equations

The complex dimension of the space of solutions to the gluing

equations is equal to the number of cusps. Adding a

“completeness equation” for each cusp cuts the dimension down

to 0, giving finitely many solutions.

In practice, if the manifold has a hyperbolic structure then it will

be described by one of these finitely many solutions. This means

that M = H3/Γ and there is a Γ-invariant tiling of H3 by

tetrahedra of the specified shapes.

In practice, starting with all regular ideal tetrahedra, Newton’s

method converges extremely quickly to the hyperbolic structure

(if one exists, as almost always happens).

Here is a plot of times required for computing hyperbolic

structures on knot complements, against the number of crossings

in the knot diagram.
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Dehn filling

Without the completeness equations, solutions to the gluing

equations near the hyperbolic structure correspond to incomplete

hyperbolic structures.

Under certain conditions, the completion of one of these

incomplete metrics adds exactly a circle of points at the end of a

cusp, producing a hyperbolic manifold with different topology.

The topological operation, called Dehn filling, is: add a boundary

torus and then glue S1 ×D2 to the new boundary component.

The topology of the result is determined by the homotopy class

of the curve {∗} × ∂D2 in the torus.

All but finitely many dehn fillings of a cusp yield a hyperbolic

manifold. Finding the hyperbolic structure involves adding a filling

equation instead of the completeness equation for the cusp.

Again, in practice Newton’s method is amazingly effective.



Demo



Code profile

Under the hood, SnapPy is:

C kernel: 40K LOC started by Weeks in 1990.

Cython wrapper: 5K LOC.

Python code: 20K LOC.

Databases with 2M+ manifolds.

Modules hosted on PyPI.

User-friendly native installers provided for OS X and

Windows.

Why we’re here: SnapPy and SageMath are friends! Nathan will

expand on this after the break . . .


