Simplicial Complexes (And Sage, Of Course!) From A Combinatorialist's Point Of View

Jeremy L. Martin
University of Kansas, USA

Sage Days 74
CIAS, Observatoire de Paris, Meudon
June 2, 2016

Simplicial Complexes

Let V be a finite set of vertices. Typically $V=[n]=\{1,2, \ldots, n\}$.

Definition

An (abstract) simplicial complex Δ on V is a family of sets
$\Delta \subseteq 2^{V}$ such that if $\sigma \in \Delta$ and $\tau \subseteq \sigma$, then $\tau \in \Delta$. The elements of Δ are called faces or simplices.

- Δ gives rise to a topological space (e.g., its standard geometric realization in \mathbb{R}^{n})
- $\operatorname{dim} \sigma=|\sigma|-1 ; \operatorname{dim} \Delta=\max \{\operatorname{dim} \sigma \mid \sigma \in \Delta\}$
- Face poset $F(\Delta)$: set of all faces, partially ordered by inclusion
- f-vector: enumerates faces by dimension

Simplicial Complexes

$$
\begin{aligned}
& \Delta_{1}=\langle 124,23,34\rangle \\
& \quad \operatorname{dim} \Delta_{1}=2 \\
& \quad f\left(\Delta_{1}\right)=(1,4,5,1) \\
& \text { not pure }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{2}=\langle 12,14,23,24,34\rangle \\
& \quad \operatorname{dim} \Delta_{2}=1 \\
& f\left(\Delta_{2}\right)=(1,4,5) \\
& \quad \text { pure }
\end{aligned}
$$

Simplicial Complexes in Combinatorics

1. Order complexes of posets.

The order complex $\Delta(P)$ of a finite poset P is the simplicial complex on P whose faces are its chains, i.e., the sets

$$
\{C \subseteq P \mid \text { every two elements of } C \text { are comparable. }\}
$$

Simplicial Complexes in Combinatorics

1. Order complexes of posets.

- Typical posets you'd want to do this with: lattice of flats of a matroid, Bruhat order or weak order on a Coxeter group, ...
- Often, combinatorics of $P \Longleftrightarrow$ topology of $\Delta(P)$
- Note: $\Delta(F(\Delta))$ is the barycentric subdivision of Δ.

Simplicial Complexes in Combinatorics

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in \mathbb{R}^{d}.
If $n>d$ and the points are chosen generically, then ∂P is a simplicial complex.

Simplicial Complexes in Combinatorics

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in \mathbb{R}^{d}.
If $n>d$ and the points are chosen generically, then ∂P is a simplicial complex.

Simplicial Complexes in Combinatorics

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in \mathbb{R}^{d}.
If $n>d$ and the points are chosen generically, then ∂P is a simplicial complex.

Problem: What are the possible f-vectors of simplicial polytopes?

Simplicial Complexes in Combinatorics

3. Stanley-Reisner theory.

Let \mathbb{k} be a base ring (typically \mathbb{Z} or a field), $R=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, and $I \subseteq R$ an ideal generated by square-free monomials.
Definition
The Stanley-Reisner complex of I is

$$
\Delta(I)=\left\{\sigma \subseteq[n]: \prod_{j \in \sigma} x_{j} \notin l\right\} .
$$

SR ideals also arise from simplicial fans (as in Volker's talk).
Conversely, every complex Δ on $[n]$ has a Stanley-Reisner ring

$$
\mathbb{k}[\Delta]=R /\left\langle\prod_{j \in \sigma} x_{j}: \sigma \text { a minimal nonface of } \Delta\right\rangle
$$

The h-Vector

Definition

Suppose $\operatorname{dim} \Delta=d-1$ and $f(\Delta)=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$.
The h-vector $h(\Delta)=\left(h_{0}, \ldots, h_{d}\right)$ is given by

$$
h_{k}=\sum_{i=0}^{k}\binom{d-i}{k-i}(-1)^{k-i} f_{i-1} .
$$

$$
\begin{aligned}
f & =(1,4,5,2) \\
h & =(1,1)
\end{aligned}
$$

$$
\begin{aligned}
& f=(1,5,6,2) \\
& h=(1,2,-1)
\end{aligned}
$$

The h-Vector

- Knowing $f(\Delta)$ is equivalent to knowing $h(\Delta)$.
- The Stanley-Reisner ring $S=\mathbb{k}[\Delta]$ is graded:

$$
S=\bigoplus_{i \geq 0} S_{i}=\bigoplus_{i \geq 0} \mathbb{k}\langle\text { monomials supported on a face of } \Delta\rangle
$$

with Hilbert series

$$
\sum_{i \geq 0}\left(\operatorname{dim}_{\mathbb{k}} S_{i}\right) q^{i}=\frac{h_{0}+h_{1} q+\cdots+h_{d} q^{d}}{(1-q)^{d}}
$$

Example
If $P \subseteq \mathbb{R}^{d}$ is a simplicial polytope, then $h(\partial P)$ is strictly positive and satisfies $h_{i}=h_{d-i}$ (the Dehn-Sommerville equations).

Problem

What (if anything) do the h-numbers count?

Shellable Complexes

Definition

A simplicial complex Δ is shellable if its facets can be ordered F_{1}, \ldots, F_{k} such that for every $i>1$, the face set

$$
\left\langle F_{i}\right\rangle \backslash\left\langle F_{1}, \ldots, F_{i-1}\right\rangle
$$

has a unique minimum element R_{i}.
Equivalently, the subcomplex of F_{i} along which it is attached, i.e.,

$$
\left\langle F_{i}\right\rangle \cap\left\langle F_{1}, \ldots, F_{i-1}\right\rangle
$$

is a pure, codimension-1 subcomplex of F_{i}.

Shellable Complexes

Shellability is a strong property!
Topologically, shellable complexes are wedges of spheres.
Combinatorially, shellability provides a combinatorial interpretation of the h-vector. In the simplest case where Δ is pure, it is

$$
h_{j}=\#\left\{i:\left|R_{i}\right|=j\right\}
$$

and h_{d} is the number of spheres in the wedge.

Theorem (Bruggesser-Mani)
Convex simplicial spheres are shellable.

Example: The Octahedron

[$\varnothing, 123]$

Example: The Octahedron

$$
\begin{aligned}
& {[\varnothing, 123]} \\
& \cup[4,124] \\
& \cup[5,135] \\
& \cup[45,145] \\
& \cup[6,246] \\
& \cup[36,236]
\end{aligned}
$$

Example: The Octahedron

Example: The Octahedron

$$
\begin{aligned}
& {[\varnothing, 123]} \\
& \cup[4,124] \\
& \cup[5,135] \\
& \cup[45,145] \\
& \cup[6,246] \\
& \cup[36,236] \\
& \cup[56,356] \\
& \cup[456,456]
\end{aligned}
$$

Example: The Octahedron

$$
\begin{aligned}
& {[\varnothing, 123]} \\
& \cup[4,124] \\
& \cup[5,135] \\
& \cup[45,145] \\
& \cup[6,246] \\
& \cup[36,236] \\
& \cup[56,356] \\
& \cup[456,456]
\end{aligned}
$$

So $h(\Delta)=(1,3,3,1)$.

Cohen-Macaulay Complexes

Definition

Let \mathbb{k} be a ring. An \mathbb{k}-algebra A is Cohen-Macaulay (CM) over \mathbb{k} iff its Krull dimension equals its depth as an \mathbb{k}-module. A simplicial complex is Cohen-Macaulay iff its Stanley-Reisner ring is CM.

Theorem (Hochster 1972, Reisner 1976)
Δ is Cohen-Macaulay over \mathbb{k} iff for every $\sigma \in \Delta$,

$$
\tilde{H}_{j}\left(\text { link }_{\Delta}(\sigma) ; \mathbb{k}\right)=0 \quad \forall j<\operatorname{dim} \Delta-\operatorname{dim} \sigma-1
$$

where

$$
\operatorname{link}_{\Delta}(\sigma)=\{\tau \in \Delta: \tau \cap \sigma=\varnothing \text { and } \tau \cup \sigma \in \Delta\}
$$

Cohen-Macaulay Complexes

- Shellable implies CM over any base ring,
- Reisner's theorem means that checking CMness reduces to computing links and homology - exponential, but easier than shellability,
- $\Delta \mathrm{CM} \Longrightarrow h(\Delta)$ nonnegative and gap-free.
- Constraints on CM h-vectors are the same as those on shellable h-vectors.
- CMness is a topological condition [Munkres 1980].

Constructibility

Definition

A simplicial complex Δ of dimension $d-1$ is constructible if either

1. Δ is a simplex; or
2. $\Delta=\Delta_{1} \cup \Delta_{2}$, where Δ_{1} and Δ_{2} are constructible of dimension $d-1$ and $\Delta_{1} \cap \Delta_{2}$ is constructible of dimension $d-2$.

- Shellable \Longrightarrow constructible \Longrightarrow Cohen-Macaulay
- Constructibility is a nightmare to check algorithmically!

Partitionability

Definition

Δ is partitionable if its face poset (ordered by inclusion) can be written as a disjoint union

$$
\bigcup_{i=1}^{k}\left[R_{i}, F_{i}\right]
$$

where the F_{i} 's are the facets.
Like shellability, partitionability implies that

$$
h_{j}=\#\left\{i:\left|R_{i}\right|=j\right\} \geq 0 \quad \forall j
$$

but is a much weaker condition.

Partitionability

Example (Björner)

$$
\begin{aligned}
\Delta & =[\varnothing, 156] \cup[2,123] \cup[3,134] \cup[4,124] \cup[234,234] \\
f(\Delta) & =(1,3,0,1) \quad(\text { has a gap }- \text { not Cohen-Macaulay })
\end{aligned}
$$

Testing Partitionability

Testing partitionability can be reduced to an integer programming problem (Sage: use MixedIntegerLinearProgram).

1. (Optional) Check that $h(\Delta) \geq 0$.
2. Create a MILP with

- a binary variable $X_{r, f}$ for each pair (r, f), where f is a facet and $r \subseteq f$,
- constraints $X_{r, f}+X_{r^{\prime}, f^{\prime}} \leq 1$ whenever $[r, f] \cap\left[r^{\prime}, f^{\prime}\right] \neq \varnothing$,
- and objective function

$$
\sum_{(r, f)} 2^{\operatorname{dim} f-\operatorname{dim} r} X_{r, f}
$$

3. Partitionability \Longleftrightarrow optimal value $=$ total number of faces.

Partitionability

- Shellable \Longrightarrow partitionable: immediate from definition
- Shellable \Longrightarrow Cohen-Macaulay: not too hard; easiest via constructibility
- Converse is false (M.E. Rudin constructed a nonshellable 3-ball in 1958; more recent, smaller examples due to Grünbaum, Ziegler, others)
- Cohen-Macaulay does not imply partitionable [Duval-Goeckner-Klivans-JLM 2015 ${ }^{+}$], disproving a conjecture of Stanley (1980), although some special cases remain open

Relative Simplicial Complexes

Definition

A relative simplicial complex is a set family $\Omega \subseteq 2^{[n]}$ such that

$$
\tau, \sigma \in \Omega, \tau \subseteq \rho \subseteq \sigma \quad \Longrightarrow \quad \rho \in \Omega .
$$

- The face poset $F(\Omega)$ is always of the form $F(\Delta) \backslash F(\Gamma)$, where $\Gamma \subseteq \Delta$ are simplicial complexes.
- Geometrically, $[\Omega]=[\Delta] /[\Gamma]$.
- Many simplicial complex methods (link, deletion, f - and h-vectors, shellability, CMness, partitionability, ...) extend well to the relative case
- Behave better for some operations (e.g., quotients).

Simplicial Complexes in Sage

- The SimplicialComplex class contains many of the methods discussed, plus others (join, induced subcomplex, simplicial (co)homology, ...)
- Methods already tested/improved at Sage Days 74: shellability, CMness
- Methods I have written and hope to push to the server later today: partitionability (efficient), constructibility (horrible)
- What I'd like to see in the future: full support for relative complexes (I have written a class but need to figure out how to integrate it with existing Sage functionality)

Thank you!!
Merci beaucoup!!

