Simplicial Complexes (And Sage, Of Course!) From A Combinatorialist's Point Of View

Jeremy L. Martin University of Kansas, USA

Sage Days 74 CIAS, Observatoire de Paris, Meudon June 2, 2016

Let V be a finite set of vertices. Typically $V = [n] = \{1, 2, ..., n\}$.

Definition

An (abstract) simplicial complex Δ on V is a family of sets $\Delta \subseteq 2^V$ such that if $\sigma \in \Delta$ and $\tau \subseteq \sigma$, then $\tau \in \Delta$. The elements of Δ are called faces or simplices.

- ► ∆ gives rise to a topological space (e.g., its standard geometric realization in ℝⁿ)
- dim $\sigma = |\sigma| 1$; dim $\Delta = \max\{\dim \sigma \mid \sigma \in \Delta\}$
- Face poset $F(\Delta)$: set of all faces, partially ordered by inclusion
- f-vector: enumerates faces by dimension

Simplicial Complexes

$$egin{aligned} \Delta_1 &= \langle 124, 23, 34
angle \ \dim \Delta_1 &= 2 \ f(\Delta_1) &= (1, 4, 5, 1) \ & ext{not pure} \end{aligned}$$

 $egin{aligned} \Delta_2 &= \langle 12, 14, 23, 24, 34
angle \ \dim \Delta_2 &= 1 \ f(\Delta_2) &= (1, 4, 5) \ pure \end{aligned}$

Simplicial Complexes in Combinatorics

1. Order complexes of posets.

The order complex $\Delta(P)$ of a finite poset P is the simplicial complex on P whose faces are its chains, i.e., the sets

 $\{C \subseteq P \mid \text{ every two elements of } C \text{ are comparable.}\}$

Simplicial Complexes in Combinatorics

1. Order complexes of posets.

- Typical posets you'd want to do this with: lattice of flats of a matroid, Bruhat order or weak order on a Coxeter group, ...
- Often, combinatorics of $P \iff$ topology of $\Delta(P)$
- Note: $\Delta(F(\Delta))$ is the barycentric subdivision of Δ .

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in \mathbb{R}^d .

If n > d and the points are chosen generically, then ∂P is a simplicial complex.

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in \mathbb{R}^d .

If n > d and the points are chosen generically, then ∂P is a simplicial complex.

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in \mathbb{R}^d .

If n > d and the points are chosen generically, then ∂P is a simplicial complex.

Problem: What are the possible *f*-vectors of simplicial polytopes?

3. Stanley-Reisner theory.

Let \Bbbk be a base ring (typically \mathbb{Z} or a field), $R = \Bbbk[x_1, \ldots, x_n]$, and $I \subseteq R$ an ideal generated by square-free monomials.

Definition

The Stanley-Reisner complex of I is

$$\Delta(I) = \left\{ \sigma \subseteq [n] : \prod_{j \in \sigma} x_j \notin I \right\}.$$

SR ideals also arise from simplicial fans (as in Volker's talk).

Conversely, every complex Δ on [n] has a Stanley-Reisner ring

$$\Bbbk[\Delta] = R \ / \ \left\langle \prod_{j \in \sigma} x_j : \ \sigma \text{ a minimal nonface of } \Delta \right\rangle.$$

The *h*-Vector

Definition

Suppose dim $\Delta = d - 1$ and $f(\Delta) = (f_{-1}, f_0, \dots, f_{d-1})$. The *h*-vector $h(\Delta) = (h_0, \dots, h_d)$ is given by

$$h_k = \sum_{i=0}^k {d-i \choose k-i} (-1)^{k-i} f_{i-1}.$$

The *h*-Vector

- Knowing $f(\Delta)$ is equivalent to knowing $h(\Delta)$.
- The Stanley-Reisner ring $S = \Bbbk[\Delta]$ is graded:

$$S = igoplus_{i \geq 0} S_i = igoplus_{i \geq 0} \Bbbk \langle ext{monomials supported on a face of } \Delta
angle$$

with Hilbert series

$$\sum_{i\geq 0} (\dim_{\mathbb{k}} S_i)q^i = \frac{h_0 + h_1q + \dots + h_dq^d}{(1-q)^d}.$$

Example

If $P \subseteq \mathbb{R}^d$ is a simplicial polytope, then $h(\partial P)$ is strictly positive and satisfies $h_i = h_{d-i}$ (the Dehn-Sommerville equations).

Problem

What (if anything) do the h-numbers count?

Definition

A simplicial complex Δ is shellable if its facets can be ordered F_1, \ldots, F_k such that for every i > 1, the face set

$$\langle F_i \rangle \setminus \langle F_1, \ldots, F_{i-1} \rangle$$

has a unique minimum element R_i .

Equivalently, the subcomplex of F_i along which it is attached, i.e.,

$$\langle F_i \rangle \cap \langle F_1, \ldots, F_{i-1} \rangle,$$

is a pure, codimension-1 subcomplex of F_i .

Shellability is a strong property!

Topologically, shellable complexes are wedges of spheres.

Combinatorially, shellability provides a combinatorial interpretation of the *h*-vector. In the simplest case where Δ is pure, it is

$$h_j = \#\{i : |R_i| = j\}$$

and h_d is the number of spheres in the wedge.

Theorem (Bruggesser–Mani) Convex simplicial spheres are shellable.

[*Ø*, 123]

 $\begin{matrix} [\varnothing, 123] \\ \cup \ [4, 124] \end{matrix}$

So $h(\Delta) = (1, 3, 3, 1)$.

Definition

Let \Bbbk be a ring. An \Bbbk -algebra A is Cohen-Macaulay (CM) over \Bbbk iff its Krull dimension equals its depth as an \Bbbk -module. A simplicial complex is Cohen-Macaulay iff its Stanley-Reisner ring is CM.

Theorem (Hochster 1972, Reisner 1976)

 Δ is Cohen-Macaulay over \Bbbk iff for every $\sigma \in \Delta$,

$$\widetilde{H}_{j}(\mathsf{link}_{\Delta}(\sigma); \Bbbk) = 0 \qquad orall j < \dim \Delta - \dim \sigma - 1.$$

where

$$\mathsf{link}_{\Delta}(\sigma) = \{ \tau \in \Delta : \ \tau \cap \sigma = \varnothing \text{ and } \tau \cup \sigma \in \Delta \}.$$

Cohen-Macaulay Complexes

- Shellable implies CM over any base ring,
- Reisner's theorem means that checking CMness reduces to computing links and homology — exponential, but easier than shellability,
- $\Delta \text{ CM} \implies h(\Delta)$ nonnegative and gap-free.
- Constraints on CM *h*-vectors are the same as those on shellable *h*-vectors.
- CMness is a topological condition [Munkres 1980].

Definition

A simplicial complex Δ of dimension d-1 is constructible if either

- 1. Δ is a simplex; or
- 2. $\Delta = \Delta_1 \cup \Delta_2$, where Δ_1 and Δ_2 are constructible of dimension d 1 and $\Delta_1 \cap \Delta_2$ is constructible of dimension d 2.

- Shellable \implies constructible \implies Cohen-Macaulay
- Constructibility is a nightmare to check algorithmically!

Definition Δ is partitionable if its face poset (ordered by inclusion) can be written as a disjoint union

$$\bigcup_{i=1}^{k} [R_i, F_i]$$

where the F_i 's are the facets.

Like shellability, partitionability implies that

$$h_j = \#\{i: |R_i| = j\} \ge 0 \quad \forall j$$

but is a much weaker condition.

Example (Björner)

$$\begin{split} \Delta &= [\varnothing, 156] \ \cup \ [2, 123] \ \cup \ [3, 134] \ \cup \ [4, 124] \ \cup \ [234, 234] \\ f(\Delta) &= (1, \ 3, \ 0, \ 1) \quad (\text{has a gap} - \text{not Cohen-Macaulay}) \end{split}$$

Testing partitionability can be reduced to an integer programming problem (Sage: use MixedIntegerLinearProgram).

- 1. (Optional) Check that $h(\Delta) \ge 0$.
- 2. Create a MILP with
 - a binary variable X_{r,f} for each pair (r, f), where f is a facet and r ⊆ f,
 - ▶ constraints $X_{r,f} + X_{r',f'} \leq 1$ whenever $[r, f] \cap [r', f'] \neq \emptyset$,
 - and objective function

$$\sum_{(r,f)} 2^{\dim f - \dim r} X_{r,f}$$

3. Partitionability \iff optimal value = total number of faces.

- \blacktriangleright Shellable \implies partitionable: immediate from definition
- ► Shellable ⇒ Cohen-Macaulay: not too hard; easiest via constructibility
 - Converse is false (M.E. Rudin constructed a nonshellable 3-ball in 1958; more recent, smaller examples due to Grünbaum, Ziegler, others)
- Cohen-Macaulay does not imply partitionable [Duval–Goeckner–Klivans–JLM 2015⁺], disproving a conjecture of Stanley (1980), although some special cases remain open

Definition A relative simplicial complex is a set family $\Omega \subseteq 2^{[n]}$ such that

$$\tau, \sigma \in \Omega, \ \tau \subseteq \rho \subseteq \sigma \quad \Longrightarrow \quad \rho \in \Omega.$$

- The face poset F(Ω) is always of the form F(Δ) \ F(Γ), where Γ ⊆ Δ are simplicial complexes.
- Geometrically, $[\Omega] = [\Delta]/[\Gamma]$.
- Many simplicial complex methods (link, deletion, *f* and *h*-vectors, shellability, CMness, partitionability, ...) extend well to the relative case
- Behave better for some operations (e.g., quotients).

- The SimplicialComplex class contains many of the methods discussed, plus others (join, induced subcomplex, simplicial (co)homology, ...)
- Methods already tested/improved at Sage Days 74: shellability, CMness
- Methods I have written and hope to push to the server later today: partitionability (efficient), constructibility (horrible)
- What I'd like to see in the future: full support for relative complexes (I have written a class but need to figure out how to integrate it with existing Sage functionality)

Thank you!! Merci beaucoup!!