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Radix Representation in Euclidean Spaces

Notations and Basic Theorems

Notations

We consider a discrete linear model of number representation in
euclidean spaces.
Given are

I a lattice Λ in Rn

I a linear operator M : Λ→ Λ such that det(M) 6= 0

I 0 ∈ D ⊆ Λ a finite subset

Lattices have many significant applications in pure mathematics
(Lie algebras, number theory and group theory), in applied
mathematics (coding theory, cryptography) because of conjectured
computational hardness of several lattice problems, and are used in
various ways in the physical sciences.
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Lattices in the Plane

Figure : Lattices in the Euclidean plane

I A lattice Λ in Rn has the form Λ = {
∑n

i=1 λi ai | λi ∈ Z}
where ai ’s are linearly independent vectors

I Alternatively, Λ can be seen as a finitely generated free
abelian group
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Number Systems

Definition
The triple (Λ,M,D) is called a number system (GNS) if every
element x of Λ has a unique, finite representation of the form
x =

∑λ
i=0 M i di , where di ∈ D and λ ∈ N. λ is the length of the

expansion.

I A GNS satisfies the unique representation property.

I M is called the base and D is the digit set
I Exercise: Are the following number systems?

I (N, 2, {0, 1})
I (Z, 10, {0, 1, . . . , 9})



Numeration Sytems in Sage

Radix Representation in Euclidean Spaces

Notations and Basic Theorems

Remarks on the Base

I Similarity preserves the number system property, i.e, if M1 and
M2 are similar via the matrix Q then (Λ,M1,D) is a number
system if and only if (QΛ,M2,QD) is a number system

I If we change the basis in Λ a similar integer matrix can be
obtained

I Hence, no loss of generality in assuming that M is integral
acting on the lattice Λ = Zn

I An important case is when Q unimodular
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Congruences

I If two elements of Λ are in the same coset of the factor group
Λ/MΛ then they are said to be congruent modulo M.

I Example. Let Λ = Z2, M =
(

4 1
1 2

)
.

Figure : The lattices Z2 and MZ2

Then v1 =
(1

1

)
6≡
(2

2

)
= v2 since there is not exist a v3 ∈ Z2

for which M · z3 = v2 − v1. But v4 =
(−1

1

)
≡
(3

2

)
= v5 since

v5 − v4 =
(4

1

)
= M ·

(1
0

)
.
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Necessary conditions of GNS

Theorem
If (Λ,M,D) is a number system then

1. D must be a full residue system modulo M

2. M must be expansive

3. det(I −M) 6= ±1. (“Unit condition”)

If a system fulfills the first two conditions then it is called a radix
system.

Exercise: Construct appropriate digit sets for the operators

I
(

1 1
1 m

)
, m ∈ Z

I 2I + S where S is strictly upper or lower triangular



Numeration Sytems in Sage

Radix Representation in Euclidean Spaces

Notations and Basic Theorems

GNS Composition

One can take the direct product of several systems as follows:
Let the radix systems (Λi ,Mi ,Di ) be given (1 ≤ i ≤ k). Let

I Λ = ⊗Λi (direct product)

I M = ⊕k
i=1Mi (direct sum)

I Dh = {(dT
1 ‖dT

2 ‖ · · · ‖dT
k )T : di ∈ Di} (homomorphic digit

set)

Theorem
(Λ,M,Dh) is a number system if and only if (Λi ,Mi ,Di ) are
number systems.

Corollary

Many new GNS can be created via homomorphic construction.
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Frobenius Normal Form

I The Frobenius normal form of a square n × n matrix M has
the structure diag(C1, . . . ,Cr ) where Ci ’s are companion
matrices associated with monic polynomials p1, . . . , pr , where
pi ’s are factors of the characteristic polynomials of M with the
property pi |pi+1, (i = 1, . . . , r − 1)

I The Frobenius normal form is unique and every matrix can be
transformed by a similarity transformation to its Frobenius
form

I We remark that the transformation is not necessary Z-similar

I Frobenius normal form can be the starting point of the
decomposition of systems
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Dynamical Properties of Radix Systems

I Let ϕ : Λ→ Λ, x
ϕ7→ M−1(x − d) for the unique d ∈ D

satisfying x ≡ d (mod M).

I Since M−1 is contractive and D is finite, there exists a norm
‖.‖ on Λ and a constant C such that the orbit of every x ∈ Λ
eventually enters the finite set S = {x ∈ Λ | ‖x‖ < C} for the
repeated application of ϕ

I This means that the sequence x , ϕ(x), ϕ2(x), . . . is eventually
periodic for all x ∈ Λ

I (Λ,M,D) is a GNS iff for every x ∈ Λ the orbit of x
eventually reaches 0

I A point p is called periodic if ϕk (p) = p for some k > 0

I The orbit of a periodic point p is a cycle

I All the periodic points are denoted by P
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Dynamical Properties (contd.)

I Let G(P) be a directed graph defined on P by drawing an
edge from p ∈ P to ϕ(p)

I G(P) is a disjoint union of directed cycles (loops are allowed)
I P is finite
I if p ∈ P then ϕ(p) ∈ P
I if p ∈ P then ‖p‖ ≤ L = Kr/(1− r), where

r = ‖M−1‖ = sup‖x‖≤1 ‖M−1x‖ < 1, and K = maxd∈D ‖d‖

To be a bit more precise:

I If ‖z‖ ≤ L then ‖ϕ(z)‖ ≤ r(L + K ) = L

I If ‖z‖ > L then
‖ϕ(z)‖ ≤ r‖z‖+ L(1− r) < ‖z‖(r + 1− r) = ‖z‖
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Problem Classes

I The decision problem for (Λ,M,D) asks if they form a GNS or
not.

I The classification problem means finding all cycles (witnesses).

I The parametrization problem means finding parametrized
families of GNS.

I The construction problem aims constructing a digit set D to
M for which (Λ,M,D) is GNS.

We remark that the algorithmic complexity of the decision and
classification problem is unknown. Regarding the construction
problem even the two dimensional case is unknown.
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Example

Let Λ = Z, M = −3, D = {0,−4, 7}.
Then K = 7, r = 1/3, L = 3.5, therefore P ⊆ [−3, 3].
It is a radix system but not a GNS since

1 = 7 + 2 · (−3)⇒ φ(1) = 2,

2 = −4 + (−2) · (−3)⇒ φ(2) = −2
3 = 0 + (−1) · (−3)⇒ φ(3) = −1
−3 = 0 + 1 · (−3)⇒ φ(−3) = 1

−2 = 7 + 3 · (−3)⇒ φ(−2) = 3

−1 = −4 + (−1) · (−3)⇒ φ(−1) = −1

Hence G(P) = {0→ 0,−1→ −1}.
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Estimation for the Length of Expansions

Let z ∈ Λ. If z0 := z 6∈ P then there is a unique λ ∈ N (length of
expansion) and d0, d1, . . . , dλ−1 ∈ D such that

zj = dj + Mzj+1 (j = 0, . . . , λ− 1), zλ = p ∈ P

and none of z0, z1, . . . , zλ−1 do belong to P. Then the standard
expansion of z is

z = (d0, d1, . . . , dλ−1 | p) .

In this case z = d0 + Md1 + . . .+ Mλ−1dλ−1 + M l p.
For a given (Λ,M,D) and z ∈ Λ there is a constant c ∈ N for
which

λ(z) ≤ log ‖z‖
log (1/‖M−1‖)

+ c
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Fractions or Fundamental Domain

I The set of “fractions” in (Λ,M,D) is

H =

{ ∞∑
i=1

M−i di : di ∈ D

}
⊆ Rn

I H is compact.

I H has interior points. More specifically
⋃

p∈P(p + H) contains
a neighborhood of the origin.

I Rn =
⋃

(H + Λ)

I For every x ∈ Rn there is a z ∈ Λ and h ∈ H such that
x = z + h.

I µ(H) > 0 (µ is the Lebesgue measure on Rn).

I x ∈ P ⇒ x ∈ −H
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Shape of H

Let gd : Rn → Rn, gd (z) = Mz − d , d ∈ D and
let K (H) be a bounded subset of Rn containing H.

Escape Algorithm(K(H), lim)

1: for all z ∈ K(H) do
2: S0 ← {z}, j ← 0
3: while j < lim or Sj 6= ∅ do
4: Sj ← {gdi (z) : z ∈ Sj−1, di ∈ D, gdi (z) ∈ K(H)}
5: j ← j + 1
6: end while
7: if j < lim then
8: z /∈ H
9: else
10: z ∈ H
11: end if
12: end for
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Shape of H

... or simply plot the points of the set{
iterNum∑

i=1

M−i di : di ∈ D

}

I Exercise: Implement it!
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Example - Twindragon

M =
(−1 −1

1 −1

)
,D = {(0, 0)T , (1, 0)T}.
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Example - Twindragon Tiling
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Algorithmical Aspects

I How to compute ϕ efficiently?

I How to decide the number system property?

I How to classify the expansions?

I How to construct number systems?
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Hashing by the Adjoint method

I Using the fact that M∗M = t · I where M∗ denotes the
adjoint of M and t = det(M) one can easily compute the
congruent element of a given point in Zn. Let

ListD =
[
0 = a1, a2, . . . , a|t|

]
where ai ∈ D. Let ListD1 = M∗ · ListD (mod t · I ). Due to
the CRS property of D for every z ∈ Zn there exist a unique
dj ∈ ListD1 such that dj = M∗z (mod t · I )

I Exercise: Implement the Adjoint method in Sage

I What about the running time?
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Hashing by Smith normal form

I For fast computation of ϕ we can use the Smith normal form:
there are linear transformations U,V mapping Zn onto itself
such that UMV = G has diagonal form with positive integer
elements g1, . . . , gn in the diagonal such that gi | gi+1 for
i = 1, 2, . . . , n − 1, and

∏n
i=1 gi = |det(M)|

I The Smith normal form can be obtained by doing elementary
row and column operations of M

I U and V are unimodular operators

I z1 ≡ z2 (mod M) iff Uz1 ≡ Uz2 (mod G )

I Exercise: Implement it! What about the running time?
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Determining the congruent digit

I Exercise: Implement the searching of the congruent digit

I What about the running time?

I Why Smith method is more efficient than the Adjoint method?

I Is there an even better method?
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Congruence Hash

Theorem
Let u1, u2, . . . , un denote the coordinates of Uz, z ∈ Λ and let
h : Λ→ {0, 1, . . . , | det(M)| − 1},

h(z) =
n∑

i=s+1

(ui mod gi )
i−1∏

j=s+1

gj ,

where gi = 1, i = 1, . . . , s. Then z1 ≡ z2 modulo M if and only if
h(z1) = h(z2)

I Exercise: Implement it!

I Note: this is called mixed radix representation
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Computing the orbit

I Implement the function ϕ
I y = ϕ(z)
I y , d = ϕ(z), where z ≡ d (mod ()M)

I Implement the procedure OrbitFrom which computes the orbit
of a given element v



Numeration Sytems in Sage

Radix Representation in Euclidean Spaces

Problems of Decision and Classification

Decide and Classify

I There are various deterministic methods for solving the
decision and the classification problem

I Consider the decision problem. Our task is to find a witness
for a non-trivial period

I Consider the classification problem. In this case we have to
find all periods

I Since the possible periodic points are in the set −H we have
to analyze the orbits starting from a finite set of points (H is
compact)
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IFS-Method

I Iterated Function System Method: The functions

fd : Rn → Rn

fd (z) = M−1(z + d)

for all d ∈ D are linear contractions.

I If z ∈ H then fd (z) ∈ H for all d ∈ D.

I Hence fd are right shift maps and

H =
⋃

d∈D

fd (H)

I H is a self-affine attractor of the IFS generated by {fd}
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Example for the IFS-Method
M =

(
2 −1
1 2

)
,D = {(0, 0)T , (1, 0)T , (0, 1)T , (0,−1)T , (−2,−3)T}.
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Box Coverage

I This method uses a covering of the set of fractions −H.

I Since −H is compact, it gives lower and upper bounds on the
coordinates of periodic points.

I The basic idea is the following: since M is expansive there is a
constant C such that ‖M−c‖∞ < 1 for all c ≥ C . Hence
(I −M−C )−1 exists and

γ :=
1

1− ‖M−C‖∞
≥ ‖(I −M−C )−1‖∞
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Box Coverage (contd.)

I Let ξ
(j)
m = maxd∈D Projm(M−j d) and

η
(j)
m = mind∈D Projm(M−j d) for all 1 ≤ m ≤ n.

I Then M−j d can be covered by the sets Xj where

η
(j)
m ≤ ProjmXj ≤ ξ

(j)
m

I Similarly, the set
∑C

j=1 M−j dj can be covered by an

appropriate set W , where
∑C

j=1 η
(j)
m ≤ ProjmW ≤

∑C
j=1 ξ

(j)
m .

I Hence,
H ⊆W + M−C W + M−2C W + · · ·
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Box Coverage (contd.)

I Putting together, if p is a periodic point then
li ≤ Projmp ≤ ui where

li = −dγ
C∑

j=1

η
(j)
m e and ui = −bγ

C∑
j=1

ξ
(j)
m c

I Implement the Box Coverage method

I Let us denote this box by K (Λ,M,D)

I The volume of K (Λ,M,D) is Vol =
∏n

i=1(ui − li + 1)
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Decide-Method-A

I For each element z of K (Λ,M,D) one could determine the
orbit of z

I If the orbit ends up with a non-zero cycle we have found a
witness of the non-numeration-system

I Implement the method

I Can the method make parallel?
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Classify-Method A

I Decide-Method-A can be extended for solving the
classification problem

I Design and implement your solution
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Decide-Method-B

Brunotte’s canonical number system decision algorithm can be
extended

Construct-Set-E(M,D)

1: E ← D, E ′ ← ∅
2: while E 6= E ′ do
3: E ′ ← E
4: for all e ∈ E and d ∈ D do
5: put ϕ(e + d) into E
6: end for
7: end while
8: return E

It can be proved that the algorithm terminates
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Decide-Method-B

Denote B = {(0, 0, . . . , 0,±1, 0, . . . , 0)T} the n basis vectors and
their opposites

Decide-Method-B(M,D)

1: E ← Construct-set-E(M,D)

2: for all p ∈ B ∪ E do
3: if p has no finite expansion then
4: return false
5: end if
6: end for
7: return true
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Classification, Method B
The second method can also be modified for finding the all the
cycles.

Classify-Method-B(M,D)

1: D ← D
2: finished ← false
3: while not finished do
4: E ← Construct-Set-E(M,D)
5: finished ← true
6: for all p ∈ E ∪ B do
7: if p does not run eventually into D then
8: put newly found periodic points into D
9: finished ← false
10: end if
11: end for
12: end while
13: return D \ D (the set of non-zero periodic points)

I Can the method make parallel?
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GNS and Algebraic Integers

I What are the connections between algebraic numbers and
radix systems?

I Let

f (x) = a0 + a1x + a2x2 + · · ·+ an−1xn−1 + xn

be a monic integer polynomial

I Let us denote the factor ring Z[x ]/(f ) by Λf

I Then Λf is a lattice and all the problems regarding number
expansions can be formulated in Zn

I If f is irreducible then Λf is isomorphic with Z[θ] where
f (θ) = 0 in an appropriate extension of Q
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Digit sets

I If the digit set D is restricted to the set of non-negative
numbers D = {0, 1, . . . , |a0| − 1} we get a straightforward
generalization of traditional number systems in Z.

I The set Dc,j = {i · ej : i = 0, . . . , | det(M)| − 1} ⊂ Zn is
called j -canonical digit set. 1-canonical sets are simple called
canonical. Canonical GNS is called CNS.

I Canonicity depends on the chosen basis.

I j -symmetrical digit sets can be defined similarly,
Ds,j = {i · ej , i = −b(| det(M)| − 1)/2c, . . . , b| det(M)|/2c}

I Implement these constructions

I Write a Sage code which decides whether a given digit set is a
full residue system or not
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Example

I Consider the Gaussian ring Z[i ] = {a + bi | a, b ∈ Z}
I Let the base α = a + bi ∈ Z[i ] and the digit set

D = {0, 1, 2, . . . , a2 + b2} (since N(α) = a2 + b2)

I Let a = 3, b = 1. The Gaussian integer β = −53 + 88i has
the expansion (4321)β since β = 1 + 2α+ 3α2 + 4α3 (Verify!)

I Since the basis in Z[i ] is {1, i} and (a + bi)i = −b + ai
therefore the appropriate base in Z2 is M =

(
a −b
b a

)
and the

digit set is D = {(0, 0)T , (1, 0)T , . . . , (a2 + b2 − 1, 0)T}.
I Again, let a = −3, b = 1. Compute the expansion of

[−53, 88]T .
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Construction

I Given lattice Λ and operator M satisfying criteria 2) and 3) in
Theorem 1 is there any suitable digit set D for which
(Λ,M,D) is a number system?

I If yes, how many and how to construct them?

Theorem
If ρ(M−1) < 1/2 then there exists a digit set D for which
(Λ,M,D) is GNS.

Theorem
Let the polynomial c0 + c1x + · · ·+ xn ∈ Z[x ] be given and let us
denote its companion matrix by CM . If the condition
|c0| > 2

∑n
i=1 |ci | holds then there exists a digit set D for which

(Zn,CM ,D) is GNS.
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Existence of GNS

Is GNS exist for all bases?

I Is the digit set construction always possible?

Let

M =


1 1 −1 0
−1 0 1 1

1 0 −1 1
−1 0 0 0


M is expansive, its characteristic polynomial is f (x) = x4 + x2 + 2,

D = {0, e1} is a complete residue system modulo the companion matrix

CM of f (x) and (Z4,CM ,D) is a number system, but it is not possible to

give any digit set D ′, for which (Z4,M,D ′) would be a number system

(Barbé et al.).
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Existence of GNS

Theorem
For every radix base M1 : Zn1 → Zn1 either

1. there is a digit set D1 for which (Zn1 ,M1,D1) is GNS, or

2. there is a radix M2 : Zn2 → Zn2 , such that
(Zn1 ⊗ Zn2 ,M1 ⊕M2,D) is GNS for some digit set D

The proof is constructive.
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I Burcsi, P., Kovács, A., Papp-Varga, Zs., Decision and Classification Algorithms for Generalized Number
Systems, 28, (2008), 141–156.
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