
A survey of p-adic point counting

Jan Tuitman

KU Leuven

March 21, 2016

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 1 / 22

Introduction

The zeta function

Let X/Fq be an algebraic variety over a finite field. The zeta function of
X is defined as

Z (X ,T) = exp
∞∑
i=1

|X (Fqi)|
T i

i
.

Here |X (Fqi)| denotes the number of points on X with values in Fqi , i.e.
the number of solutions over Fqi of the equations that define X .

Theorem (Weil conjectures)

Suppose that X is smooth and projective of dimension d. Then:

Z (X ,T) =
P1P3...P(2d−1)

P0P2......P2d
, where Pi =

∏
j(1− αijT) ∈ Z[T].

The transformation t → qd/t maps the αi ,j to the α2d−i ,j .

|αi ,j | = qi/2 for all j , where |·| denotes the complex absolute value.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 2 / 22

Introduction

The zeta function

Let X/Fq be an algebraic variety over a finite field. The zeta function of
X is defined as

Z (X ,T) = exp
∞∑
i=1

|X (Fqi)|
T i

i
.

Here |X (Fqi)| denotes the number of points on X with values in Fqi , i.e.
the number of solutions over Fqi of the equations that define X .

Theorem (Weil conjectures)

Suppose that X is smooth and projective of dimension d. Then:

Z (X ,T) =
P1P3...P(2d−1)

P0P2......P2d
, where Pi =

∏
j(1− αijT) ∈ Z[T].

The transformation t → qd/t maps the αi ,j to the α2d−i ,j .

|αi ,j | = qi/2 for all j , where |·| denotes the complex absolute value.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 2 / 22

Introduction

Computing zeta functions

Problem

Compute Z (X ,T) efficiently.

Naive algorithm: compute enough of the X (Fqi) by trying all values.
Far too slow to be useful in practice!

Schoof’s `-adic method: in theory for all curves (Pila), in practice
only for elliptic curves (perhaps genus 2 with some extra structure).

For curves: use the group structure on the Jacobian (e.g. Baby Step
Giant Step). Better than naive counting, but still restricted to small
fields and low genus.

We will not say anything more about these and focus on p-adic algorithms
in the rest of this talk.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 3 / 22

Introduction

Computing zeta functions

Problem

Compute Z (X ,T) efficiently.

Naive algorithm: compute enough of the X (Fqi) by trying all values.
Far too slow to be useful in practice!

Schoof’s `-adic method: in theory for all curves (Pila), in practice
only for elliptic curves (perhaps genus 2 with some extra structure).

For curves: use the group structure on the Jacobian (e.g. Baby Step
Giant Step). Better than naive counting, but still restricted to small
fields and low genus.

We will not say anything more about these and focus on p-adic algorithms
in the rest of this talk.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 3 / 22

Introduction

Some applications

Discrete Logarithm Problem in cryptography:

X/Fq an algebraic curve.

J its Jacobian variety, J(Fq) is a finite abelian group.

DLP: given P,Q ∈ J(Fq) find n ∈ Z such that n ∗ P = Q.

weak if |J(Fq)| only has small prime factors.

|J(Fq)| can be deduced easily from Z (X ,T).

Collect data about conjectures in number theory, e.g.:

Sato-Tate and generalisations (higher genus),

Lang-Trotter and generalisations (modular forms),

Birch and Swinnerton-Dyer (distribution of analytic rank).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 4 / 22

Introduction

Some applications

Discrete Logarithm Problem in cryptography:

X/Fq an algebraic curve.

J its Jacobian variety, J(Fq) is a finite abelian group.

DLP: given P,Q ∈ J(Fq) find n ∈ Z such that n ∗ P = Q.

weak if |J(Fq)| only has small prime factors.

|J(Fq)| can be deduced easily from Z (X ,T).

Collect data about conjectures in number theory, e.g.:

Sato-Tate and generalisations (higher genus),

Lang-Trotter and generalisations (modular forms),

Birch and Swinnerton-Dyer (distribution of analytic rank).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 4 / 22

Kedlaya’s Algorithm

p-adic cohomology

X algebraic variety of dimension d over Fq with q = pn.

Qq the unique unramified extension of degree n of Qp, Zq its ring of
integers and σ ∈ Gal(Qq/Qp) the unique lift of x 7→ xp ∈ Gal(Fq/Fp).

Fact

One can define p-adic cohomology groups H i
rig (X) and H i

rig ,c(X) which
are finite dimensional Qq vector spaces with a σ-semilinear action of the
p-th power Frobenius map Fp on X (sending every coordinate to its p-th
power) such that the following Lefschetz formula holds:

Z (X ,T) =
2d∏
i=0

det(1− T Fn
p|H i

rig ,c(X))(−1)
i+1

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 5 / 22

Kedlaya’s Algorithm

p-adic cohomology

X algebraic variety of dimension d over Fq with q = pn.

Qq the unique unramified extension of degree n of Qp, Zq its ring of
integers and σ ∈ Gal(Qq/Qp) the unique lift of x 7→ xp ∈ Gal(Fq/Fp).

Fact

One can define p-adic cohomology groups H i
rig (X) and H i

rig ,c(X) which
are finite dimensional Qq vector spaces with a σ-semilinear action of the
p-th power Frobenius map Fp on X (sending every coordinate to its p-th
power) such that the following Lefschetz formula holds:

Z (X ,T) =
2d∏
i=0

det(1− T Fn
p|H i

rig ,c(X))(−1)
i+1

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 5 / 22

Kedlaya’s Algorithm

p-adic cohomology

X algebraic variety of dimension d over Fq with q = pn.

Qq the unique unramified extension of degree n of Qp, Zq its ring of
integers and σ ∈ Gal(Qq/Qp) the unique lift of x 7→ xp ∈ Gal(Fq/Fp).

Fact

One can define p-adic cohomology groups H i
rig (X) and H i

rig ,c(X) which
are finite dimensional Qq vector spaces with a σ-semilinear action of the
p-th power Frobenius map Fp on X (sending every coordinate to its p-th
power) such that the following Lefschetz formula holds:

Z (X ,T) =
2d∏
i=0

det(1− T Fn
p|H i

rig ,c(X))(−1)
i+1

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 5 / 22

Kedlaya’s Algorithm

Special case: smooth affine variety

Let:

X = Spec(A) with A a smooth Fq algebra of finite type.

smooth lift A = Zq[x1, . . . , xl]/(f1, . . . , fm) such that A⊗Zq Fq = A.

weak completion A† = Zq〈x1, . . . , xl〉†/(f1, . . . , fm), where

Zq〈x1, . . . , xl〉† := {
∑
I

aI x
I : aI ∈ Zq,∃ρ > 1 s.t. lim

|I |→∞
|aI |ρ|I | = 0}.

1-forms Ω1
A†

= (A†dx1 ⊕ . . .⊕ A†dxl)/(A†df1 + . . .A†dfm).

de Rham complex Ω•
A†

with Ωi
A†

= Λi (Ω1
A†

).

Then H•rig (X) is the cohomology of the complex Ω•
A†

.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 6 / 22

Kedlaya’s Algorithm

Hyperelliptic curves

Let:

Fq a finite field of odd characteristic,

Q ∈ Fq[x] monic of degree 2g + 1 without repeated roots,

X the smooth projective curve defined by y2 = Q(x).

X is a hyperelliptic curve of genus g (with a rational Weierstrass point).

For characteristic 2 or curves without a rational Weierstrass point this has
to be modified slightly.

Kedlaya (2001) proposed to compute Z (X ,T) using p-adic cohomology.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 7 / 22

Kedlaya’s Algorithm

Kedlaya’s algorithm

Sketch:

X : y2 = Q(x) hyperelliptic of genus g over Fq with q = pn odd.

U open in X defined by y 6∈ {0,∞}.
Q ∈ Zq[x] a monic lift of Q.

A† = Zq〈x , y , 1/y〉†/(y2 −Q).

basis for H1
rig (X) ⊂ H1

rig (U) given by [dxy , . . . , x
2g−1 dx

y].

lift Frobenius to A†: Fp(x) := xp, find Fp(y) ≡ yp mod p (Hensel).

Apply Fp to basis for H1
rig (X) and reduce to find matrix Fp.

Compute χ(T) = det(1− T Fn
p|H1

rig (X)).

Z (X ,T) = χ(T)/((1− T)(1− qT)).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 8 / 22

Kedlaya’s Algorithm

Complexity

X/Fq hyperelliptic q = pn genus g .

Theorem

Complexity of Kedlaya’s algorithm:

time O((pg4n3)1+ε) space O((pg3n3)1+ε)

Only polynomial time for fixed p, so restricted to (somewhat) small
characteristic p. All p-adic algorithms suffer from this, but the dependence
on p can be improved.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 9 / 22

Kedlaya’s Algorithm

Larger characteristic

Harvey (2006) improved the complexity of Kedlaya’s algorithm in p.

Main idea: use Baby Step Giant Step to carry out the reductions in
cohomology more efficiently.

Let ω denote an exponent for matrix multiplication.

Theorem

Complexity of Harvey’s
√

p algorithm:

time O
((

p1/2gω+5/2n7/2 + log(p)g8n5
)1+ε)

This is a lot better in p and still polynomial in g , n (but larger exponents).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 10 / 22

Kedlaya’s Algorithm

Average polynomial time

Harvey (2014) came up with an ’average polynomial time’ version of
Kedlaya’s algorithm.

Main idea: for a hyperelliptic curve over Z, i.e. such that Q ∈ Z[x], exploit
the overlap between the computations for Q mod p for various p (of good
reduction), to obtain an algorithm with polynomial runtime per prime.

||Q|| = maximum absolute values coefficients of Q, consider all primes
with p < N.

Theorem

Complexity of Harvey’s average polynomial time algorithm (per prime):

time O
(
g8+ε log3(N) log1+ε(||Q||N)

)
Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 11 / 22

Kedlaya’s Algorithm

Implementation

Sage: only contains code for q = p prime

Basic Kedlaya for odd p (hidden).

Harvey
√

p for large enough p (hypellfrob).

Magma:

Basic Kedlaya for all q (Harrison: q odd, Vercauteren: q even).

Harvey and Sutherland (2014, 2015) have implemented a mod p version of
the average polynomial time algorithm for g = 2, but the code does not
seem to be (publicly) available.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 12 / 22

Kedlaya’s Algorithm

Implementation

Sage: only contains code for q = p prime

Basic Kedlaya for odd p (hidden).

Harvey
√

p for large enough p (hypellfrob).

Magma:

Basic Kedlaya for all q (Harrison: q odd, Vercauteren: q even).

Harvey and Sutherland (2014, 2015) have implemented a mod p version of
the average polynomial time algorithm for g = 2, but the code does not
seem to be (publicly) available.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 12 / 22

Kedlaya’s Algorithm

Implementation

Sage: only contains code for q = p prime

Basic Kedlaya for odd p (hidden).

Harvey
√

p for large enough p (hypellfrob).

Magma:

Basic Kedlaya for all q (Harrison: q odd, Vercauteren: q even).

Harvey and Sutherland (2014, 2015) have implemented a mod p version of
the average polynomial time algorithm for g = 2, but the code does not
seem to be (publicly) available.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 12 / 22

Kedlaya’s Algorithm

Implementation

Sage: only contains code for q = p prime

Basic Kedlaya for odd p (hidden).

Harvey
√

p for large enough p (hypellfrob).

Magma:

Basic Kedlaya for all q (Harrison: q odd, Vercauteren: q even).

Harvey and Sutherland (2014, 2015) have implemented a mod p version of
the average polynomial time algorithm for g = 2, but the code does not
seem to be (publicly) available.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 12 / 22

More general curves

More general curves?

What about more general curves? Hyperelliptic curves (in odd
characteristic) are very special.

Some generalisations of Kedlaya’s algorithm:

Gaudry - Gurel (2001): superelliptic curves

Denef - Vercauteren (2004): hyperelliptic curves in characteristic 2

Denef - Vercauteren (2006): Cab curves

Castryck - Denef - Vercauteren (2006) : nondegenerate curves

In the last two cases the algorithms turned out to be quite unpractical,
complete implementations still not (publicly) available.

This is more or less where things stood until 2014: only practical
algorithms and implementations for (hyper/super)elliptic curves.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 13 / 22

More general curves

More general curves?

What about more general curves? Hyperelliptic curves (in odd
characteristic) are very special.

Some generalisations of Kedlaya’s algorithm:

Gaudry - Gurel (2001): superelliptic curves

Denef - Vercauteren (2004): hyperelliptic curves in characteristic 2

Denef - Vercauteren (2006): Cab curves

Castryck - Denef - Vercauteren (2006) : nondegenerate curves

In the last two cases the algorithms turned out to be quite unpractical,
complete implementations still not (publicly) available.

This is more or less where things stood until 2014: only practical
algorithms and implementations for (hyper/super)elliptic curves.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 13 / 22

More general curves

More general curves?

What about more general curves? Hyperelliptic curves (in odd
characteristic) are very special.

Some generalisations of Kedlaya’s algorithm:

Gaudry - Gurel (2001): superelliptic curves

Denef - Vercauteren (2004): hyperelliptic curves in characteristic 2

Denef - Vercauteren (2006): Cab curves

Castryck - Denef - Vercauteren (2006) : nondegenerate curves

In the last two cases the algorithms turned out to be quite unpractical,
complete implementations still not (publicly) available.

This is more or less where things stood until 2014: only practical
algorithms and implementations for (hyper/super)elliptic curves.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 13 / 22

More general curves

State of the art

We (2014) have developed a new extension of Kedlaya’s algorithm which:

works for (almost) all curves,

is more practical than the algorithms for Cab and nondegenerate
curves.

Why almost all curves? Input to the algorithm is a lift to characteristic 0
that has good reduction mod p (technical). For many curves easy to find
such a lift, but in general can be hard.

Starting from any curve over a number field, algorithm works mod almost
all p.

With Castryck (2016), we have developed a method that (almost always)
finds a good lift for curves of genus g ≤ 5.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 14 / 22

More general curves

State of the art

We (2014) have developed a new extension of Kedlaya’s algorithm which:

works for (almost) all curves,

is more practical than the algorithms for Cab and nondegenerate
curves.

Why almost all curves? Input to the algorithm is a lift to characteristic 0
that has good reduction mod p (technical). For many curves easy to find
such a lift, but in general can be hard.

Starting from any curve over a number field, algorithm works mod almost
all p.

With Castryck (2016), we have developed a method that (almost always)
finds a good lift for curves of genus g ≤ 5.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 14 / 22

More general curves

State of the art

We (2014) have developed a new extension of Kedlaya’s algorithm which:

works for (almost) all curves,

is more practical than the algorithms for Cab and nondegenerate
curves.

Why almost all curves? Input to the algorithm is a lift to characteristic 0
that has good reduction mod p (technical). For many curves easy to find
such a lift, but in general can be hard.

Starting from any curve over a number field, algorithm works mod almost
all p.

With Castryck (2016), we have developed a method that (almost always)
finds a good lift for curves of genus g ≤ 5.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 14 / 22

More general curves

State of the art

We (2014) have developed a new extension of Kedlaya’s algorithm which:

works for (almost) all curves,

is more practical than the algorithms for Cab and nondegenerate
curves.

Why almost all curves? Input to the algorithm is a lift to characteristic 0
that has good reduction mod p (technical). For many curves easy to find
such a lift, but in general can be hard.

Starting from any curve over a number field, algorithm works mod almost
all p.

With Castryck (2016), we have developed a method that (almost always)
finds a good lift for curves of genus g ≤ 5.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 14 / 22

More general curves

Complexity

Suppose that a plane model of a lift of the curve is defined by a
polynomial Q ∈ Zq[x , y] with q = pn which is

irreducible mod p,

monic in y ,

of degree dx in x and degree dy in y .

Theorem

Complexity of the algorithm:

time O((pd6
y d4

x n3)1+ε) space O((pd4
y d3

x n3)1+ε)

Perhaps possible to combine with Harvey’s ideas to obtain
√

p and average
polynomial time versions. Work in progress....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 15 / 22

More general curves

Implementation

Completely implemented in Magma.

On my website:

pcc p : computes zeta function over prime field Fp,

pcc q : computes zeta function over non prime field Fq,

goodmodels : find a good lift to characteristic zero for g ≤ 5.

Not in the standard distribution of Magma yet, but should be by the end
of the year.

I would like to do a Sage implementation, but some function field
functionality (integral bases) missing in Sage.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 16 / 22

More general curves

Implementation

Completely implemented in Magma.

On my website:

pcc p : computes zeta function over prime field Fp,

pcc q : computes zeta function over non prime field Fq,

goodmodels : find a good lift to characteristic zero for g ≤ 5.

Not in the standard distribution of Magma yet, but should be by the end
of the year.

I would like to do a Sage implementation, but some function field
functionality (integral bases) missing in Sage.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 16 / 22

More general curves

Implementation

Completely implemented in Magma.

On my website:

pcc p : computes zeta function over prime field Fp,

pcc q : computes zeta function over non prime field Fq,

goodmodels : find a good lift to characteristic zero for g ≤ 5.

Not in the standard distribution of Magma yet, but should be by the end
of the year.

I would like to do a Sage implementation, but some function field
functionality (integral bases) missing in Sage.

Show some examples....

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 16 / 22

Higher dimension

Direct method

Abbott, Kedlaya and Roe (AKR) (2006): Kedlaya’s algorithm for smooth
hypersurface X ⊂ Pn+1

Fq
of degree d with q = pa.

Main idea: compute the cohomology Hn+1
rig (U) of U = Pn+1 − X with its

action of Fp.

Running time should be about O((pndn2an)1+ε).

This is being improved by Costa, Harvey and Kedlaya (CHK) (201?):

Running time should be about O((pdn2an)1+ε) and there are also
√

p and
average polynomial time versions.

Can the dependence on the dimension be improved?

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 17 / 22

Higher dimension

Direct method

Abbott, Kedlaya and Roe (AKR) (2006): Kedlaya’s algorithm for smooth
hypersurface X ⊂ Pn+1

Fq
of degree d with q = pa.

Main idea: compute the cohomology Hn+1
rig (U) of U = Pn+1 − X with its

action of Fp.

Running time should be about O((pndn2an)1+ε).

This is being improved by Costa, Harvey and Kedlaya (CHK) (201?):

Running time should be about O((pdn2an)1+ε) and there are also
√

p and
average polynomial time versions.

Can the dependence on the dimension be improved?

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 17 / 22

Higher dimension

Deformation

Lauder (2004) proposes to put the hypersurface X ⊂ Pn+1
Fq

with q = pa

into a (smooth) family Y /T over some open T ⊂ P1 with:

Y0 a diagonal hypersurface,

Y1 = X .

The relative cohomology Hn
rig (Y /T) is an overconvergent F -isocrystal:

a p-adic differential equation (the Gauss-Manin connection),

a Frobenius structure with matrix Φ(t).

The Frobenius structure is horizontal w.r.t the connection, so Φ(t)
satisfies a p-adic differential equation.

Main idea: compute Φ(0) (easy, Y0 is diagonal) then solve the differential
equation for Φ(t), finally find Φ(1) and deduce Z (X ,T).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 18 / 22

Higher dimension

Deformation

Lauder (2004) proposes to put the hypersurface X ⊂ Pn+1
Fq

with q = pa

into a (smooth) family Y /T over some open T ⊂ P1 with:

Y0 a diagonal hypersurface,

Y1 = X .

The relative cohomology Hn
rig (Y /T) is an overconvergent F -isocrystal:

a p-adic differential equation (the Gauss-Manin connection),

a Frobenius structure with matrix Φ(t).

The Frobenius structure is horizontal w.r.t the connection, so Φ(t)
satisfies a p-adic differential equation.

Main idea: compute Φ(0) (easy, Y0 is diagonal) then solve the differential
equation for Φ(t), finally find Φ(1) and deduce Z (X ,T).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 18 / 22

Higher dimension

Deformation

Lauder (2004) proposes to put the hypersurface X ⊂ Pn+1
Fq

with q = pa

into a (smooth) family Y /T over some open T ⊂ P1 with:

Y0 a diagonal hypersurface,

Y1 = X .

The relative cohomology Hn
rig (Y /T) is an overconvergent F -isocrystal:

a p-adic differential equation (the Gauss-Manin connection),

a Frobenius structure with matrix Φ(t).

The Frobenius structure is horizontal w.r.t the connection, so Φ(t)
satisfies a p-adic differential equation.

Main idea: compute Φ(0) (easy, Y0 is diagonal) then solve the differential
equation for Φ(t), finally find Φ(1) and deduce Z (X ,T).

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 18 / 22

Higher dimension

Complexity

Pancratz and me (PT) (2013) improved this in terms of complexity (a bit)
and in practice (a lot).

Let ω be an exponent for matrix multiplication and e the basis of the
natural logarithm.

Theorem

The (simplified) complexity of the deformation method is:

time O
(
(pdn(ω+4)en(ω+1)a3)1+ε

)
space O

(
(pd5ne3na3)1+ε

)

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 19 / 22

Higher dimension

Fibration

Let Y /T be smooth projective family, T open in P1
Fq

.

Lauder (2006): compute the cohomology of the total space Y using Leray
spectral sequence.

E 2
p,q = Hq

rig (T ,Hp
rig (Y /T))⇒ Hp+q

rig (Y)

Degenerates at E 2, only get nonzero terms for q = 0, 1 etc..

The Hp
rig (Y /T) can be computed as in the deformation method: start

from a fibre in the family and solve a p-adic differential equation. Lauder
shows how to compute in H1

rig (Hp
rig (Y /T)).

Use this recursively to reduce the dimension of Y .

Has only been tried for a surface fibred in (hyperelliptic) curves.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 20 / 22

Higher dimension

Fibration

Let Y /T be smooth projective family, T open in P1
Fq

.

Lauder (2006): compute the cohomology of the total space Y using Leray
spectral sequence.

E 2
p,q = Hq

rig (T ,Hp
rig (Y /T))⇒ Hp+q

rig (Y)

Degenerates at E 2, only get nonzero terms for q = 0, 1 etc..

The Hp
rig (Y /T) can be computed as in the deformation method: start

from a fibre in the family and solve a p-adic differential equation. Lauder
shows how to compute in H1

rig (Hp
rig (Y /T)).

Use this recursively to reduce the dimension of Y .

Has only been tried for a surface fibred in (hyperelliptic) curves.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 20 / 22

Higher dimension

Fibration

Let Y /T be smooth projective family, T open in P1
Fq

.

Lauder (2006): compute the cohomology of the total space Y using Leray
spectral sequence.

E 2
p,q = Hq

rig (T ,Hp
rig (Y /T))⇒ Hp+q

rig (Y)

Degenerates at E 2, only get nonzero terms for q = 0, 1 etc..

The Hp
rig (Y /T) can be computed as in the deformation method: start

from a fibre in the family and solve a p-adic differential equation. Lauder
shows how to compute in H1

rig (Hp
rig (Y /T)).

Use this recursively to reduce the dimension of Y .

Has only been tried for a surface fibred in (hyperelliptic) curves.

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 20 / 22

Higher dimension

Average polynomial time

Harvey (2014) gave
√

p and average polynomial time algorithms for any
scheme X of finite type over Z (no smoothness assumptions).

Theorem

Let X/Z scheme of finite type and Xp the reduction of X modulo p.

Z (Xp,T) can be computed in
time O(p log1+ε(p)) space O(log(p)).

Z (Xp,T) can be computed in
time O(p1/2 log2+ε) space O(p1/2 log(p)).

Z (Xp,T) can be computed for all p < N in
time O(N log3+ε(N)) space O(N log2(N)).

To be able to work in this generality, Harvey avoids the use of cohomology.
This might also have some disadvantages, the matrices get very large!

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 21 / 22

Higher dimension

Average polynomial time

Harvey (2014) gave
√

p and average polynomial time algorithms for any
scheme X of finite type over Z (no smoothness assumptions).

Theorem

Let X/Z scheme of finite type and Xp the reduction of X modulo p.

Z (Xp,T) can be computed in
time O(p log1+ε(p)) space O(log(p)).

Z (Xp,T) can be computed in
time O(p1/2 log2+ε) space O(p1/2 log(p)).

Z (Xp,T) can be computed for all p < N in
time O(N log3+ε(N)) space O(N log2(N)).

To be able to work in this generality, Harvey avoids the use of cohomology.
This might also have some disadvantages, the matrices get very large!

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 21 / 22

Higher dimension

Average polynomial time

Harvey (2014) gave
√

p and average polynomial time algorithms for any
scheme X of finite type over Z (no smoothness assumptions).

Theorem

Let X/Z scheme of finite type and Xp the reduction of X modulo p.

Z (Xp,T) can be computed in
time O(p log1+ε(p)) space O(log(p)).

Z (Xp,T) can be computed in
time O(p1/2 log2+ε) space O(p1/2 log(p)).

Z (Xp,T) can be computed for all p < N in
time O(N log3+ε(N)) space O(N log2(N)).

To be able to work in this generality, Harvey avoids the use of cohomology.
This might also have some disadvantages, the matrices get very large!

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 21 / 22

Higher dimension

Implementation

What has been implemented?

AKR: Magma code for surfaces publicly available (webpage Kedlaya),
C++ implementation of CHK in progress, not (publicly) available yet.

Deformation PT: C implementation by Pancratz for prime fields Fp

publicly available (my webpage).

Fibration (in a few cases): Lauder has Magma code, not (publicly)
available.

General average polynomial time stuff: implementation not available
yet, not clear how practical.

Lots of things remain to be done, if you’re interested let me know!

Jan Tuitman KU Leuven A survey of p-adic point counting March 21, 2016 22 / 22

	Introduction
	Kedlaya's Algorithm
	More general curves
	Higher dimension

