Counting points using uniform p-adic integration

Immi Halupczok
University of Leeds

20th March 2016

Goal/motivation

\triangleright Fix a variety V given by polynomials $f_{1}, \ldots, f_{\ell} \in \mathbb{Z}[\underline{x}] \quad\left(\underline{x}:=\left(x_{1}, \ldots, x_{n}\right)\right)$
\triangleright For p prime and $r \in \mathbb{N}$:

$$
N_{p^{r}}:=\# V\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)=\#\left\{\underline{x} \in\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{n} \mid f_{1}(\underline{x})=\cdots=f_{\ell}(\underline{x})=0\right\}
$$

\triangleright The Poincaré series is: $P_{V, p}(Z):=\sum_{r=0}^{\infty} N_{p^{r}} Z^{r} \quad \in \mathbb{Z}[[Z]]$
Theorem (Denef, Igusa, Meuser; 80s)
$P_{V, p}(Z) \in \mathbb{Q}(Z)$

Theorem (Denef, Loeser, Macintyre, Pas; later)

"Uniformity in p ": For $P_{V, p}(Z)=\frac{g_{p}(Z)}{h_{p}(Z)}$:
\triangleright degree of $g_{p}(Z), h_{p}(Z)$ bounded
\triangleright description of how the coefficients of g_{p} and h_{p} can depend on p
This talk: a proof of this using uniform p-adic integration (\approx motivic integration)

Expressing things using the p-adic measure

\triangleright (Recall: variety V fixed)
$\triangleright N_{p^{r}}=\# V\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)=\# V\left(\mathbb{Z}_{p} / p^{r} \mathbb{Z}_{p}\right)$
$\triangleright X_{r}:=\left\{\underline{x} \in \mathbb{Z}_{p}^{n} \mid v(\underline{f}(\underline{x})) \geq r\right\}$ is a union of translates of $B_{r}:=\left(p^{r} \mathbb{Z}_{p}\right)^{n}$
$\triangleright N_{p^{r}}=$ number of translates of B_{r} covering X_{r}

$$
=\mu\left(X_{r}\right) / \underbrace{\mu\left(B_{r}\right)}_{=p^{-n \cdot r}} \quad\left(\mu \text { : induced by Haar measure on } \mathbb{Q}_{p} \text { with } \mu\left(\mathbb{Z}_{p}\right)=1\right)
$$

\triangleright Thus: Goal: understand $r \mapsto \mu\left(X_{r}\right)$
\triangleright A variant:
$\triangleright \tilde{N}_{p^{r}}=$ number of points of $V\left(\mathbb{Z}_{p} / p^{r} \mathbb{Z}_{p}\right)$ that lift to $V\left(\mathbb{Z}_{p}\right)$

$$
=\text { number translates of } B_{r} \text { needed to cover } V\left(\mathbb{Z}_{p}\right)
$$

$$
=\mu\left(\tilde{X}_{r}\right) / \mu\left(B_{r}\right) \quad \text { where } \tilde{X}_{r}=\left\{\underline{x}+\underline{x}^{\prime} \mid \underline{x} \in V\left(\mathbb{Z}_{p}\right), \underline{x}^{\prime} \in B_{r}\right\}
$$

\triangleright The following includes both versions and much more:

Theorem

Suppose X_{r} is a definable family of subsets of \mathbb{Q}_{p}^{n}, parametrized by $r \in \mathbb{N}$.
Then $\sum_{r=0}^{\infty} \mu\left(X_{r}\right) Z^{r} \in \mathbb{Q}(Z)$.
Need to define "definable family"...

The Denef-Pas language

A definable set is a set given by a Denef-Pas formula.
A definable family of sets is a family of sets given by a Denef-Pas formula.
Example: $\tilde{X}_{r}=\left\{\underline{x}+\underline{x}^{\prime} \mid \underline{x} \in V\left(\mathbb{Z}_{p}\right), \underline{x}^{\prime} \in B_{r}\right\}$

$$
=\left\{\underline{\tilde{\tilde{x}}} \in \mathbb{Q}_{p}^{n} \mid \phi(\underline{\tilde{\tilde{x}}}, r) \text { holds }\right\} \text {, where }
$$

$\phi(\underline{\tilde{x}}, r)=\underbrace{\exists \underline{x}:\left(f_{1}(\underline{x})=0 \wedge \cdots \wedge f_{\ell}(\underline{x})=0 \wedge v\left(x_{1}-\tilde{x}_{1}\right) \geq r \wedge \cdots \wedge v\left(x_{n}-\tilde{x}_{n}\right) \geq r\right)}$
Denef-Pas formula
A Denef-Pas formula is a mathematical expression built as follows:
\triangleright three sorts of variables: valued field vars, residue field vars, value group vars
\triangleright build terms:
\triangleright in the valued field and the residue field: use,,$+- \cdot$ and constants from \mathbb{Z}
\triangleright in the value group: use,,+- 0
$\triangleright v$: valued field \rightarrow value group,
ac: valued field \rightarrow residue field $\quad(\mathrm{ac}=$ angular component map)
\triangleright build equations ($t_{1}=t_{2}$) and, in the value group, inequations ($t_{1}>t_{2}$)
\triangleright apply boolean combinations and quantifiers \forall, \exists
Note: Formulas work uniformly in p
A definable function is a function whose graph is a definable set.

Uniform p-adic integration

\triangleright Introduce "motivic functions": expressions for functions $X \rightarrow \mathbb{R}$, where X is a definable set.
\triangleright Uniform p-adic integration $=$ symbolic integration of such expressions
\triangleright Example: $X=\{(x, r) \in \mathbb{Q}_{p} \times \mathbb{Z} \mid \underbrace{0 \leq v(x)<r}_{\text {Denef-Pas formula }}\}, f(x, r)=\underbrace{p^{v(x)}}_{\text {motivic function }}$

$$
\Rightarrow \quad g(r):=\int_{X_{r}} f(x, r) d x=\underbrace{\frac{p-1}{p} \cdot r}
$$

motivic function
\triangleright A motivic functions is a linear combination of products of:
$\triangleright \underline{x} \mapsto \mathbf{1}_{Z}(\underline{x}) \quad$ for a definable set Z
$\triangleright \underline{x} \mapsto p^{f(\underline{x})} \quad$ for f a definable function into the value group
$\triangleright \underline{x} \mapsto f(\underline{x}) \quad$ for f a definable function into the value group
\triangleright A few others...
\triangleright Note: p is also a symbol, so this integration indeed treats all \mathbb{Q}_{p} uniformly... ... but - in some versions - only for p sufficiently big
\triangleright A key ingredient to make such symbolic integration possible:
"Cell decomposition": a precise description of definable subsets of \mathbb{Q}_{p}
\triangleright Note: The same symbolic integration applied in other valued fields yields motivic integration

Application to our goal

\triangleright Recall:
Given a definable family of sets $X_{r} \subseteq \mathbb{Q}_{p}^{n}$, parametrized by $r \in \mathbb{N}$, understand $r \mapsto \mu\left(X_{r}\right)$.
$\triangleright \mu\left(X_{r}\right)=\int_{X_{r}} 1 d \underline{x}$, so $\mu\left(X_{r}\right)=f(r)$ for some motivic function f.
\triangleright We now need to prove: For motivic $f: \mathbb{N} \rightarrow \mathbb{R}$, we have $\sum_{r} f(r) Z^{r} \in \mathbb{Q}(Z)$
\triangleright This is rather easy, using:
\triangleright motivic functions on \mathbb{Z} are given in terms of definable functions $\mathbb{Z} \rightarrow \mathbb{Z}$
\triangleright definable functions $\mathbb{Z} \rightarrow \mathbb{Z}$ are well understood (cf. Presburger arithmetic)

Thanks for your attention.

