Zeta functions of quartic K 3 surfaces over \mathbb{F}_{3}

Edgar Costa
Dartmouth College

Explicit p-adic methods, 20th March 2016

Joint work with: David Harvey and Kiran Kedlaya

Setup

$X \subset \mathbb{P}_{\mathbb{F}_{q}}^{3}:=$ a quartic K 3 surface, a smooth surface defined by

$$
f\left(x_{0}, \ldots, x_{3}\right)=0, \quad \operatorname{deg} f=4
$$

Then

$$
\begin{aligned}
\zeta_{x}(t) & :=\exp \left(\sum_{a>0} \frac{\# X\left(\mathbb{F}_{p^{a}}\right) t^{a}}{a}\right) \in \mathbb{Q}(t) \\
& =\frac{1}{(1-t)(1-q t)\left(1-q^{2} t\right) q^{-1} L(q t)}, \\
L(t) & \in \mathbb{Z}[t], \quad \operatorname{deg} L=21, \quad L(0)=q \\
& \quad \text { all roots on the unit circle. }
\end{aligned}
$$

Goal: Compute $L(t)$ efficiently!

Existing algorithms for "generic" hypersurfaces

With p-adic cohomology:

- Lauder-Wan: $p^{2 \operatorname{dim} X+2+o(1)}$
- Abbott-Kedlaya-Roe: $p^{\operatorname{dim} X+1+o(1)}$
- Voight - Sperber: $p^{1+\operatorname{dim} X \cdot(f a i l u r e ~ t o ~ b e ~ s p a r s e)+o(1) ~}$
- Lauder's deformation: $p^{2+o(1)}$.
- Pantratz - Tuitman: $p^{1+o(1)}$
- C. - Harvey - Kedlaya: $p^{1+o(1)}, p^{1 / 2+o(1)}$, or $\log ^{4+o(1)} p$ on average.

Existing algorithms for "generic" hypersurfaces

With p-adic cohomology:

- Lauder-Wan: $p^{2 \operatorname{dim} X+2+o(1)}$
- Abbott-Kedlaya-Roe: $p^{\operatorname{dim} X+1+o(1)}$
- Voight - Sperber: $p^{1+\operatorname{dim} X \cdot(f a i l u r e ~ t o ~ b e ~ s p a r s e)+o(1) ~}$
- Lauder's deformation: $p^{2+o(1)}$.
- Pantratz - Tuitman: $p^{1+o(1)}$
- C. - Harvey - Kedlaya: $p^{1+o(1)}, p^{1 / 2+o(1)}$, or $\log ^{4+o(1)} p$ on average.

Without "using" p-adic cohomology or smoothness:

- Harvey: $p^{1+o(1)}, p^{1 / 2+o(1)}$, or $\log ^{4+o(1)} p$ on average.

C.-Harvey-Kedlaya quasi-linear implementation

What if p is fixed?

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_{p} ?

What if p is fixed?

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_{p} ?

- $p=2$

Done! [Kedlaya-Sutherland]
528,257 classes of smooth surfaces (of $1,732,564$ classes)
~ 7.3 months CPU time (optimized) naive point counting.

What if p is fixed?

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_{p} ?

- $p=2$

Done! [Kedlaya-Sutherland]
528,257 classes of smooth surfaces (of $1,732,564$ classes)
~ 7.3 months CPU time (optimized) naive point counting.

- $p=3$

4,127,971,480 classes to consider!
1 second per surface $\rightsquigarrow 131$ years of CPU time

What if p is fixed?

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_{p} ?

- $p=2$

Done! [Kedlaya-Sutherland]
528,257 classes of smooth surfaces (of $1,732,564$ classes)
~ 7.3 months CPU time (optimized) naive point counting.

- $p=3$

4,127,971,480 classes to consider!
1 second per surface $\rightsquigarrow 131$ years of CPU time

- naive point count will not work!

What if p is fixed?

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_{p} ?

- $p=2$

Done! [Kedlaya-Sutherland]
528,257 classes of smooth surfaces (of $1,732,564$ classes)
~ 7.3 months CPU time (optimized) naive point counting.

- $p=3$

4,127,971,480 classes to consider!
1 second per surface $\rightsquigarrow 131$ years of CPU time

- naive point count will not work!
- Deformation method: 1s for a diagonal K3 surface [Pantratz Tuitman]

What if p is fixed?

Question

What are the possible zeta functions for a smooth quartic surface over \mathbb{F}_{p} ?

- $p=2$

Done! [Kedlaya-Sutherland]
528,257 classes of smooth surfaces (of $1,732,564$ classes)
~ 7.3 months CPU time (optimized) naive point counting.

- $p=3$

4,127,971,480 classes to consider!
1 second per surface $\rightsquigarrow 131$ years of CPU time

- naive point count will not work!
- Deformation method: 1s for a diagonal K3 surface [Pantratz Tuitman]
- C.-Harvey-Kedlaya : almost 25 min

C.-Harvey-Kedlaya Implementation

Why is my code so slow for $p=3$?

- Precision
- p-adic approximation of the Frobenius
- Number of reductions

Why is my code so slow for $p=3$?

- Precision
- p-adic approximation of the Frobenius
- Number of reductions

How many p-adic digits we need to pin down the zeta function?

- $p>42 \longrightarrow 2 p$-adic significant digits
- $p=3 \longrightarrow 5 p$-adic significant digits

Why is my code so slow for $p=3$?

- Precision
- p-adic approximation of the Frobenius
- Number of reductions

How many p-adic digits we need to pin down the zeta function?

- $p>42 \longrightarrow 2 p$-adic significant digits
- $p=3 \longrightarrow 5 p$-adic significant digits

Terms to reduce $=O(p)$ matrix vector multiplications

- $p>42 \longrightarrow \sim 4000$
- $p=3 \longrightarrow \sim 130,00$

Can we do it?

Yes!

Can we do it?

Yes!

- We have the list of $4,127,971,480$ surfaces ~ 145 days

Can we do it?

Yes!

- We have the list of $4,127,971,480$ surfaces
~ 145 days
- Baby version implemented in SAGE ~ 7 min per surface

Can we do it?

Yes!

- We have the list of $4,127,971,480$ surfaces
~ 145 days
- Baby version implemented in SAGE ~ 7 min per surface
- No C version yet

We estimate that should take about 0.5 seconds per surface.

