
Bugs in computer algebra systems:
how to catch or even avoid

Jakob Kröker

April 3, 2015

Content

Motivation: why get obsessed with bug hunting
famous software bugs
observed CAS-bugs in our research project

What probably did went wrong

Bug hunting: do it yourself
tests
conservative programming
code review

some observations
error classes, error examples

Avoiding errors
basic suggestions

the impact of software errors: famous software bugs

I faulty conversion from a float to 16 bit int responsible for the
explosion of Ariane 5

I error in sovjet early warning system against a first-strike
almost triggered nuclear war in 1983

I Patriot-missile-bug

I in medicine: error in THerac-25 system

reference selecton:

I http://wwwzenger.informatik.tu-muenchen.de/
persons/huckle/bugs.html

I http://www.softwareqatest.com/qatfaq1.html

I http://www.ima.umn.edu/~arnold/disasters/

1 / 46

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugs.html
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugs.html
http://www.softwareqatest.com/qatfaq1.html
http://www.ima.umn.edu/~arnold/disasters/

Software bugs nearly brought on nuclear war in 1983

The software was supposed to filter out false missile detections
caused by Soviet satellites picking up sunlight reflections off
cloud-tops, but failed to do so.

Disaster was averted when a Soviet commander, based on what he
said was a ’...funny feeling in my gut’, decided the apparent missile
attack was a false alarm.

The filtering software code was rewritten.

2 / 46

why get obsessed with bug hunting

one of projects I’m working on:

resolution of singularities of arithmetic algebraic surfaces

I when tracking down a performance issue we observed that
different CAS versions returned different results.

3 / 46

BUG alert!

4 / 46

why get obsessed with testing

one of projects I’m working on:

resolution of singularities of arithmetic algebraic surfaces

I when tracking down a performance issue we observed that
different CAS versions returned different results.

I further investigation (mainly testing and reviewing)
uncovered more bugs

I about 30 bugs in our small package (one bug per 100 loc)
I >100 bugs in library and kernel code (including unrelated)

meanwhile our project slowly converges to something usable,
but it is not there yet

5 / 46

obvious observed bugs

using a polynomial ring with more that one variable
over rational numbers:

I take the radical of zero ideal in Macaulay2

I compute minimal associated primes of the unit ideal in Sage

I check if the zero ideal is primary in Macaulay2

6 / 46

what happened (my point of view):

In summary: (partly) failed quality assurance

7 / 46

in particulary, groebner basis related computation over Z
was/is experimental but was not marked as such any more

stabile

Codebasis

ex
perim

enteller Code

Projekt

8 / 46

what happened (not only over Z):

mainly incorrectly handled corner cases (not only)
(sometimes they were uninteresting from mathematical point of
view)

false feeling of safety:

I often a (couple of) single examples were considered as
sufficient tests

I high code coverage does not guarantee high quality code

I internal functions usually had no tests and no documentation

I not enough testers/ testing not adequate

9 / 46

a single example as a test

ungetesteter Pfad

ein kompliziertes Beispiel

10 / 46

what happened (my point of view):

I parts of source code checked in without review

I some reviews were not properly performed

I people start use new functionality everywhere

I here and there sources show programming or engineering skill
deficits or contain historical artifacts (Singular is old)

I no quality manager role ?

I unfortunate priorities caused by academic community pressure
(publish or perish)

11 / 46

what happened:

bug reporting:

I users do rather work around bugs than report

I not all reports are recorded in bug tracker (and get lost over
time)

12 / 46

influence of quality to project evolution

13 / 46

grobes Testnetz

14 / 46

Why is it hard to get serious about quality assurance?

15 / 46

Why is it hard to get serious about quality assurance?

Solving problems is a high-visibility process;
preventing problems is low-visibility.

16 / 46

Bug hunting: do it yourself

17 / 46

why bug hunting and preventing

I wish for low error rate

I production increase in long term

18 / 46

looking for bugs? You can catch them, too!

19 / 46

Ideas for bug hunting

I write (automated) tests

I add consistency checks (conservative programming)

I perform source and specification reviews

20 / 46

almost every in following presented strategy did lead to
uncovering bugs related to our project!

21 / 46

testing: ideas for bug hunting

I check corner and undefined cases

22 / 46

check corner cases

I primality test for nonegative integers
I special cases: 0, 1,2
I a while ago for CAS Axiom number 2 was not prime

I compute minimal associated primes
I corner cases: unit ideal, zero ideal
I sage tells that unit ideal has a minimal associated prime

23 / 46

testing: selection of ideas

I check corner and undefined cases

I check interfaces with random input

24 / 46

testing only by random input

Algorithmus

generiere
zufälliges Beispiel

Fehler

Ergebnis erhalten
-

25 / 46

testing: selection of ideas

I check corner and undefined cases

I check interfaces with random input

I verify examples with known results
I test with random input by comparing outputs of

I different algorithms (solving same problem)
I differing implementations (of same algorithm)

26 / 46

testing via result comparison (1)

Algorithmus A
Implementierung 1

Algorithmus A
Implementierung 2

Ergebnisse
nicht Äquivalent

generiere
zufälliges Beispiel

Fehlermeldung

Ergebnisse Äquivalent

27 / 46

testing via result comparison (2)

Algorithmus
Variante A

Algorithmus
Variante B

Ergebnisse
nicht Äquivalent

generiere
zufälliges Beispiel

Fehlermeldung

Ergebnisse Äquivalent

28 / 46

testing: selection of ideas

I check corner and undefined cases

I check interfaces with random input

I verify examples with known results
I test with random input by comparing outputs of

I different algorithms (solving same problem)
I differing implementations (of same algorithm)

I looking for bugs (siblings), which are similar to already known
ones

29 / 46

coarse-mesh testing

foo() bar()

foobar()

Tests

30 / 46

finegrained testing

foo() bar()

foobar()

Tests

TestsTests

31 / 46

who should test

I at best, not the developer

I sceptical persons

32 / 46

tests extent

I rule of thumb:
test to source ratio: 50/50

I extremal example SQLite:
(test loc)/(src loc) is 1000 to 1!

33 / 46

conservative programming: validate parameter input

foo(bar)

...

isValid(bar)

...

34 / 46

conservative programming: validate parameter input

foo(bar)

...

isValid(bar)

...

foobar()

foo(bar)

...

isValid(bar)

...

...

35 / 46

conservative programming: check result

check result integrity (if asked for)

I by checking expected properties or known invariants

I by comparing with a result obtained by an alternative
implementation

36 / 46

source code review

in the main sage project every added piece of sources is reviewed

however, it seems that issues sometimes slip through
- recent example: ’IntegerListsLex’

37 / 46

observed errors

38 / 46

selection of observed error types

I incorrecly handled corner case 27+

I memory management bug 11+

I design issue 6+

I incorrect usage of a function 5+

I incomplete documentation 4+

I new bugs as consequence of refactoring (changed behaviour)
2+

I too much intelligence 2+

I bugs caused by unfortunate naming 2+

I others 25+

39 / 46

example: unfortunate naming

Let R = Q[x , y]; ideal I = {x , 0, y}

What is the purpose of

I nsize(I) ?

I ncols(I) ?

40 / 46

example: unfortunate naming

Let R = Q[x , y]; ideal I = {x , 0, y}

what could be the purpose of

I nNonzeroGens(I)

I nGens(I)Nonzero

?

41 / 46

example for too much intelligence

I Singular: autorenaming of ring variables in case of conflict

leads to bugs or shadows bugs, see

I http://www.singular.uni-kl.de:8002/trac/ticket/609

I http://www.singular.uni-kl.de:8002/trac/ticket/508

I ...

42 / 46

Avoiding errors

43 / 46

basic suggestions

I offer and ensure continuing education in programming,
engineering and development process areas

I know and follow common best practices

I do not accept/use experimental (library) code or mark is as
such

I should there be consequences for sharing broken code? (I
don’t know)

I prefer correctness to optimization

I conservative programming

I rate quality of libraries/packages

I apply for quality manager and tester position grants

I value high quality and performant software

I write a testing bot/framework

44 / 46

Thank you for attention!

45 / 46

Questions?

46 / 46

	Motivation: why get obsessed with bug hunting
	famous software bugs
	observed CAS-bugs in our research project

	What probably did went wrong
	Bug hunting: do it yourself
	tests
	conservative programming
	code review

	some observations
	error classes, error examples

	Avoiding errors
	basic suggestions

