Bugs in computer algebra systems:
how to catch or even avoid

Jakob Kroker

April 3, 2015

Content

Motivation: why get obsessed with bug hunting
famous software bugs
observed CAS-bugs in our research project

What probably did went wrong

Bug hunting: do it yourself
tests
conservative programming
code review

some observations
error classes, error examples

Avoiding errors
basic suggestions

the

v

impact of software errors: famous software bugs

faulty conversion from a float to 16 bit int responsible for the
explosion of Ariane 5

error in sovjet early warning system against a first-strike
almost triggered nuclear war in 1983

Patriot-missile-bug

» in medicine: error in THerac-25 system

reference selecton:

http://wuwzenger.informatik.tu-muenchen.de/
persons/huckle/bugs.html

» http://www.softwareqatest.com/qatfaql.html

» http://www.ima.umn.edu/~arnold/disasters/

1/46

http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugs.html
http://wwwzenger.informatik.tu-muenchen.de/persons/huckle/bugs.html
http://www.softwareqatest.com/qatfaq1.html
http://www.ima.umn.edu/~arnold/disasters/

Software bugs nearly brought on nuclear war in 1983

The software was supposed to filter out false missile detections
caused by Soviet satellites picking up sunlight reflections off
cloud-tops, but failed to do so.

Disaster was averted when a Soviet commander, based on what he
said was a "...funny feeling in my gut’, decided the apparent missile

attack was a false alarm.

The filtering software code was rewritten.

2/46

why get obsessed with bug hunting

one of projects I'm working on:

resolution of singularities of arithmetic algebraic surfaces

» when tracking down a performance issue we observed that
different CAS versions returned different results.

3 /46

BUG alert!

4/46

why get obsessed with testing

one of projects I'm working on:

resolution of singularities of arithmetic algebraic surfaces

» when tracking down a performance issue we observed that
different CAS versions returned different results.

» further investigation (mainly testing and reviewing)
uncovered more bugs

» about 30 bugs in our small package (one bug per 100 loc)
» >100 bugs in library and kernel code (including unrelated)

meanwhile our project slowly converges to something usable,
but it is not there yet

5/46

obvious observed bugs

using a polynomial ring with more that one variable
over rational numbers:

» take the radical of zero ideal in Macaulay?2
» compute minimal associated primes of the unit ideal in Sage

» check if the zero ideal is primary in Macaulay2

6

46

what happened (my point of view):

In summary: (partly) failed quality assurance

46

in particulary, groebner basis related computation over 7Z
was/is experimental but was not marked as such any more

stabile
Codebasis

Projekt

what happened (not only over Z):

mainly incorrectly handled corner cases (not only)
(sometimes they were uninteresting from mathematical point of
view)

false feeling of safety:

> often a (couple of) single examples were considered as
sufficient tests

» high code coverage does not guarantee high quality code
» internal functions usually had no tests and no documentation

> not enough testers/ testing not adequate

9 /46

a single example as a test

ein kompliziertes Beispiel

ungetesteter Pfad

10 /46

vV v v .Y

v

what happened (my point of view):

parts of source code checked in without review
some reviews were not properly performed
people start use new functionality everywhere

here and there sources show programming or engineering skill
deficits or contain historical artifacts (Singular is old)

no quality manager role ?

» unfortunate priorities caused by academic community pressure

(publish or perish)

11 /46

what happened:

bug reporting:
» users do rather work around bugs than report

» not all reports are recorded in bug tracker (and get lost over
time)

12 /46

influence of quality to project evolution

13 /46

HOW QUALITY AFFECTS SOFTWARE COSTS

T Pathological
Technical debt
X
- Health: .
coSsT SR
€ ,/"/ Poor quality is cheaper until
e the end of the coding phase.
e After that, high quality is
T - cheaper.
,"l
K/
Requirements Design Coding Testing Maintenance
TIME
Copyright ©2011 by Capers Jones. All Rights Reserved. SWQUALO085

14 /46

Why is it hard to get serious about quality assurance?

15 /46

Why is it hard to get serious about quality assurance?

Solving problems is a high-visibility process;
preventing problems is low-visibility.

16 / 46

Bug hunting: do it yourself

17 /46

why bug hunting and preventing

» wish for low error rate

» production increase in long term

18 /46

looking for bugs? You can catch them, too!

19 /46

Ideas for bug hunting

> write (automated) tests
» add consistency checks (conservative programming)

» perform source and specification reviews

20 /46

almost every in following presented strategy did lead to
uncovering bugs related to our project!

21 /46

testing: ideas for bug hunting

» check corner and undefined cases

22/46

check corner cases

» primality test for nonegative integers
» special cases: 0, 1,2
» a while ago for CAS Axiom number 2 was not prime

» compute minimal associated primes

» corner cases: unit ideal, zero ideal
> sage tells that unit ideal has a minimal associated prime

23 /46

testing: selection of ideas

» check corner and undefined cases

» check interfaces with random input

24 /46

testing only by random input

|

generiere

zufalliges Beispiel

Algorithmus

Ergebnis erhalten

25 /46

testing: selection of ideas

» check corner and undefined cases
» check interfaces with random input
» verify examples with known results

> test with random input by comparing outputs of

» different algorithms (solving same problem)
» differing implementations (of same algorithm)

26

46

testing via result comparison (1)

Ergebnisse Aquivalent

generiere
zufalliges Beispiel

Algorithmus A
Implementierung 1

Algorithmus A
Implementierung 2

Ergebnisse
nicht Aquivalent

Fehlermeldung

27

testing via result comparison (2)

Ergebnisse Aquivalent

generiere
zufalliges Beispiel

Algorithmus
Variante A

Algorithmus
Variante B

Ergebnisse
nicht Aquivalent

Fehlermeldung

28

vvy VvVYyYy

testing: selection of ideas

check corner and undefined cases
check interfaces with random input
verify examples with known results

test with random input by comparing outputs of

» different algorithms (solving same problem)
» differing implementations (of same algorithm)

looking for bugs (siblings), which are similar to already known
ones

29 /46

coarse-mesh testing

foobar()

,'~

| foo() | [bar()]

finegrained testing

foobar()

,'~

[bar()]|

| foo() |

who should test

» at best, not the developer

» sceptical persons

32/46

tests extent

» rule of thumb:
test to source ratio: 50/50

> extremal example SQLite:
(test loc)/(src loc) is 1000 to 1!

33 /46

conservative programming: validate parameter input

foo(bar)

isValid(bar)

34/46

conservative programming: validate parameter input

foobar()
foo(bar)
isValit’:l‘(. bar) Y.
 foo(bar)
isVali&(‘ bar)

35/ 46

conservative programming: check result

check result integrity (if asked for)

» by checking expected properties or known invariants

» by comparing with a result obtained by an alternative
implementation

36

46

source code review

in the main sage project every added piece of sources is reviewed

however, it seems that issues sometimes slip through
- recent example: 'IntegerListsLex’

37 /46

observed errors

38 /46

vV V. v v vY

v

selection of observed error types

incorrecly handled corner case 27+
memory management bug 11+
design issue 6+

incorrect usage of a function 5+
incomplete documentation 4+

new bugs as consequence of refactoring (changed behaviour)
2+

too much intelligence 2+

» bugs caused by unfortunate naming 2+
» others 25+

39 /46

example: unfortunate naming

Let R = Q[x,y]; ideal I = {x, 0, y}

What is the purpose of

> size(l) ?

» ncols(l) ?

40 /46

example: unfortunate naming

Let R = Q[x,y]; ideal I = {x, 0, y}

what could be the purpose of

» nNonzeroGens(|)

» nGens(l)

41 /46

example for too much intelligence

» Singular: autorenaming of ring variables in case of conflict

leads to bugs or shadows bugs, see
» http://www.singular.uni-kl.de:8002/trac/ticket /609
» http://www.singular.uni-kl.de:8002/trac/ticket /508
> ...

42 /46

Avoiding errors

43 /46

basic suggestions

offer and ensure continuing education in programming,
engineering and development process areas

» know and follow common best practices

» do not accept/use experimental (library) code or mark is as

vV V. v v.Vv Y

such

should there be consequences for sharing broken code? (I
don’t know)

prefer correctness to optimization

conservative programming

rate quality of libraries/packages

apply for quality manager and tester position grants
value high quality and performant software

write a testing bot/framework

44 /46

Thank you for attention!

45 / 46

Questions?

46 / 46

	Motivation: why get obsessed with bug hunting
	famous software bugs
	observed CAS-bugs in our research project

	What probably did went wrong
	Bug hunting: do it yourself
	tests
	conservative programming
	code review

	some observations
	error classes, error examples

	Avoiding errors
	basic suggestions

