Calculating Automorphic Forms for Unitary Groups in SAGE

David Loeffler

Department of Mathematics Imperial College, London

SAGE Days 6, November 2007

David Loeffler Automorphic Forms for Unitary Groups

Aims of this Talk

- Introduce automorphic forms
- Special cases amenable to calculation
- Experimental results calculated using SAGE
- Room for optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Outline of talk

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups

2 The Algorithm

- Double Cosets
- Hecke Operators
- Weights

3 Experimental results

Coset decompositions

・ロン ・ 一 マン・ 日 マー・

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Outline

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups
- 2 The Algorithm
 - Double Cosets
 - Hecke Operators
 - Weights
- Experimental results
 Coset decompositions

・ロト ・ 一下・ ・ ヨト ・ ヨト

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Motivation: Lie Groups

- G connected real Lie group e.g. S¹ × S³, GL₂(ℝ)
- Good classification theory exists
- Γ some discrete subgroup
- Coset space $\Gamma \setminus G$ has *G*-invariant measure for nice *G*
- Want to understand $L^2(\Gamma \setminus G)$

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

K-types

- K maximal compact subgroup
- A K-type is an irreducible representation of K
- Decompose $L^2(\Gamma \setminus G)$ by *K*-types
- Irreducible constituents correspond to automorphic forms

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Classical Example: Modular Forms

Definition

Let \mathbb{H} upper half-plane, $\Gamma \subset SL_2(\mathbb{Z})$ discrete subgroup, $k \ge 0$ integer. Then an automorphic form of level Γ and weight k is

$$f : \mathbb{H} \to \mathbb{C} \mid f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z)$$

(+ some analytic conditions)

- Automorphic forms for the group SL₂
- Rich arithmetical structure

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Outline

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups
- 2 The Algorithm
 - Double Cosets
 - Hecke Operators
 - Weights
- Experimental results
 Coset decompositions

ヘロン ヘアン ヘビン ヘビン

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Algebraic Groups

- Variety with group structure "compatible" with variety structure
- Two major classes
 - Projective case: Abelian varieties always commutative
 - Affine case: Linear algebraic groups always embed in a matrix group
- All groups are extensions of Abelian by linear (Chevalley) (K perfect)

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Linear algebraic groups

- Determined up to isogeny by Lie algebra
- Radical = largest solvable subgroup
 - Semisimple if trivial radical
 - Reductive if radical = centre
- Reductive ⇒ representations are *completely reducible*
- Strong classification theory for reductive groups over algebraically closed fields
 - Isogenous to a product of tori and simple groups
 - Simple groups up to isogeny:
 - Infinite families A_n, B_n, C_n, D_n
 - Six exceptional cases: *E*₆, *E*₇, *E*₈, *F*₄ and *G*₂.

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Forms of groups and Galois cohomology

- L subfield of C
- If *G*, *G*′ isomorphic after base extension, say they are *L*-forms of each other
- Classified by $H^1(\text{Gal}(\overline{L}/L), \text{Aut } G)$.
- Example: *SU*₂ and *SL*₂ over ℝ − drastically different topologically.

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Arithmetic Subgroups

- Subgroups *H*₁, *H*₂ ≤ *G*(ℚ) commensurable if intersection has finite index in each
- Arithmetic = commensurable with $G(\mathbb{Z})$
- Special case: congruence subgroups
 - Correspond to open compact subgroups of G(A_f), A_f = finite adeles of Q
- Congruence Subgroup Problem: is every arithmetic subgroup a congruence subgroup?
 - True for $SL_n(n \ge 3)$ (Bass–Milnor–Serre)
 - False for SL₂

・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Outline

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups
- 2 The Algorithm
 - Double Cosets
 - Hecke Operators
 - Weights
- Experimental results
 Coset decompositions

ヘロン ヘアン ヘビン ヘビン

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Automorphic Forms

- Recall $\mathbb{A} = \prod_{\nu}' \mathbb{Q}_{\nu} = \mathbb{Q} \times \hat{\mathbb{Z}} \times \mathbb{R}_{>0}$
- $\mathbb{A}_f = \prod_{\nu \text{ finite}}^{\prime} \mathbb{Q}_{\nu} = \mathbb{Q} \times \hat{\mathbb{Z}}$
- G(Q) discrete in G(A)
- $G(\mathbb{A})$ unimodular for G reductive
- Can consider $L^2(G(\mathbb{Q}) \setminus G(\mathbb{A})/K_f)$ for $K_f \subset G(\mathbb{A}_f)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Equivalent Definition for Compact Groups

Functions G(A_f) → V, V a Q
 -representation of G, such that

$$f(\gamma g k) = \gamma \circ f(g) \quad \forall \gamma \in G(\mathbb{Q}), k \in K_f$$

- Analytical hypotheses disappear
- Finite amount of data as

 $G(\mathbb{Q}) \backslash G(\mathbb{A}_f) / K_f$

is finite

<ロト (四) (日) (日) (日) (日) (日) (日)

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Computing Automorphic Forms

- GL₂ relatively well understood
 - Modular symbols
- GL₃ much more difficult!
 - (Ash, Stevens + Pollack have something)
- G, G' isomorphic over Q ⇒ strong relations between automorphic forms (Langlands functoriality)
- Idea: compute on a compact form of *GL*₃ a unitary group.

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

Outline

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups
- 2 The Algorithm
 - Double Cosets
 - Hecke Operators
 - Weights
- Experimental results
 Coset decompositions

ヘロン ヘアン ヘビン ヘビン

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

What Is A Unitary Group?

Definition

E imaginary quadratic extension of \mathbb{Q} .

$$U_{n,E} = \left\{ m \in M_{n \times n}(E) \mid m\overline{m}^t = \mathrm{id} \right\}.$$

- Q-points of a reductive algebraic group
- \mathbb{R} -points usual unitary group; $U_n(\mathbb{R})$ compact, but $U_n(\mathbb{C}) \cong GL_n(\mathbb{C})$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete Subgroups of Lie Groups Reductive Groups Adelic Automorphic Forms Unitary Groups

U_n As An Adelic Group

- Can make sense of $U_n(\mathbb{Q}_p)$ for any prime p
- Also has *integral structure*: $U_n(\mathbb{Z})$ and $U_n(\mathbb{Z}_p)$ well defined
- For *p* any prime split in *E*, $U_n(\mathbb{Q}_p) \cong GL_n(\mathbb{Q}_p)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Double Cosets Hecke Operators Weights

Outline

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups

2 The Algorithm

- Double Cosets
- Hecke Operators
- Weights
- Experimental results
 Coset decompositions

ヘロア ヘビア ヘビア・

Double Cosets Hecke Operators Weights

Double Coset Decompositions

 We know how *f* transforms by *G*(ℚ) on the left and by *K* on the right ⇒ determined by values on

 $G(\mathbb{Q}) \setminus G(\mathbb{A}_f)/K.$

- Must have $f(\mu)$ fixed by $\Gamma = G(\mathbb{Q}) \cap \mu K \mu^{-1}$ (a finite group).
- The map *f* → (*f*(μ₁),..., *f*(μ_r)) identifies the space of automorphic forms with

$$\bigoplus_{i=1}^{r} V^{\Gamma_i}.$$

<ロト (四) (日) (日) (日) (日) (日) (日)

Double Cosets Hecke Operators Weights

Double Coset Decompositions (2)

- Given g, h ∈ G(A_f), can easily determine if g it lies in G(Q)hK: the coset h⁻¹gK contains finitely many rational points, corresponding to elements of G(Q) with bounded denominators
- In the unitary group case, this boils down to finding all $\delta \in M_{n \times n}(\mathcal{O}_E)$ with $\delta \overline{\delta}^t = m \cdot id_n$ for various integers m
- This is a key problem. In practice one enumerates all the *n*-tuples of elements in (a₁ ... a_n) ∈ Oⁿ_E with |a₁|² + ··· + |a_n|² = m, and searches for sets of n orthogonal vectors.
- Very slow for *m* large: for n = 3 and $E = \mathbb{Q}(\sqrt{-7})$, this takes several days for $m \sim 100$.

イロン 不良 とくほう 不良 とうほ

Double Cosets Hecke Operators Weights

The Mass Formula

Definition

The mass of the compact open subgroup K is defined as

$$\mathsf{Mass}(K) = \sum_{i=1}^{r} \frac{1}{|\mathsf{\Gamma}_i|}$$

where μ_1, \ldots, μ_r are double coset representatives and $\Gamma_i = G(\mathbb{Q}) \cap \mu_i K \mu_i^{-1}$.

- Much better behaved than the class number (e.g. if $K' \subset K$, Mass(K') = [K : K'] Mass(K)).
- If G = U_n, the mass of K = G(Â) is given in terms of the special value of an L-function (Gan–Hanke–Yu).

Double Cosets Hecke Operators Weights

Outline

Automorphic Forms

- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups
- 2 The Algorithm
 - Double Cosets
 - Hecke Operators
 - Weights
- 3 Experimental results
 - Coset decompositions

ヘロア ヘビア ヘビア・

Double Cosets Hecke Operators Weights

Hecke Operators

- The spaces of automorphic forms have an action of the Hecke algebra $\mathcal{H}(G, K)$.
- Abstractly this is the algebra of functions G(A_f) → Q which are invariant on both sides by K.
- Splits into a product of local Hecke algebras at each prime ℓ .
- If ℓ is split in E (so G(Qℓ) = GLn(Qℓ)), the local Hecke algebra is isomorphic to the symmetric polynomials in n variables
- Generators are double cosets of the form diag(1,...,1, l,...,l).

<ロト (四) (日) (日) (日) (日) (日) (日)

Double Cosets Hecke Operators Weights

Hecke Cosets

• The double coset $K\eta K$ acts on automorphic forms as follows: if $K\eta K = \bigsqcup_i \eta_i K$, then

$$([K\eta K] \circ f)(g) = \sum_{i} f(g\eta_i)$$

- If η is one of the basic Hecke operators at a split prime ℓ, then a set of coset representatives η_s ∈ G(Q_ℓ) can be found easily by linear algebra
- One must then express each product μ_rη_s in the form γμ_tk using the algorithm from before (store γ and discard k)

イロン 不同 とくほう イロン 一旦

Double Cosets Hecke Operators Weights

Some Short Cuts

- Can combine finding Hecke operators with finding the class group
- One-off calculation (independent of weight)
- Can skip parts of the computation using commutativity of the Hecke algebra

<ロト (四) (日) (日) (日) (日) (日) (日)

Double Cosets Hecke Operators Weights

Outline

Automorphic Forms

- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups

The Algorithm

- Double Cosets
- Hecke Operators
- Weights
- Coset decompositions

ヘロア ヘビア ヘビア・

Double Cosets Hecke Operators Weights

Representations of GL_n

- Irreducibles determined by highest weight
- Explicit models known using geometry of flag varieties (Borel-Weil-Bott theorem)
- SYMMETRICA?
- I coded a horrible combinatorial bodge, and another cleaner (but slower) approach using polynomial rings

・ロト ・ 同ト ・ ヨト ・ ヨト

Coset decompositions

Outline

- Automorphic Forms
- Discrete Subgroups of Lie Groups
- Reductive Groups
- Adelic Automorphic Forms
- Unitary Groups
- 2 The Algorithm
 - Double Cosets
 - Hecke Operators
 - Weights
- 3 Experimental results
 - Coset decompositions

ヘロア ヘビア ヘビア・

Coset decompositions

Double cosets

- Used $G = U_{n,E}$ for $n = 3, E = \mathbb{Q}(\sqrt{-7}), K = G(\hat{\mathbb{Z}})$
- Split primes are those 1, 2 or 4 (mod 7)
- No nontrivial roots of unity in $E \Rightarrow |G(\mathbb{Z})| = 2^n n! = 48$
- Mass formula gives Mass(K) = ¹/₄₂, so missing at least one coset

<ロト (四) (日) (日) (日) (日) (日) (日)

Coset decompositions

Nontrivial Double Coset

The element

$$\mu_2 = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ -1 & -1 & 2 \end{pmatrix} \in G(\mathbb{Q}_2)$$

isn't in $G(\mathbb{Q})K$

- $G(\mathbb{Q}) \cap \mu_2 K \mu_2^{-1}$ has order 336
- $\frac{1}{48} + \frac{1}{336} = \frac{1}{42}$ so finished

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Coset decompositions

Dimensions of Spaces

(Can be found efficiently using classical invariant theory)

				а			
		0	1	2	3	4	5
	0	2	0	1	0	3	0
	1	0	0	0	1	1	2
b	2	1	0	2	1	5	2
	3	0	1	1	4	3	6
	4	3	1	5	3	8	7
	5	0	2	2	6	7	10

Coset decompositions

The Trivial Representation

- $cl(G) = 2 \Rightarrow 2$ -dimensional space of trivial weight forms
- No central character so $T_{\rho,\rho,\rho}$ acts trivially and $T_{\rho} = T_{\rho,\rho}$
- Constant function has T_p -eigenvalue $p^2 + p + 1$
- Other eigenform:

• For p a prime above p we have T_p eigenvalue

$$\lambda_{p} = \mathfrak{p}^{2} + \mathfrak{p}\overline{\mathfrak{p}} + \overline{\mathfrak{p}}^{2}.$$

イロン 不良 とくほう 不良 とうほ

Nontrivial Weights

- For (2,0,0) there is a unique form whose $T_{\mathfrak{p}}$ eigenvalue is $\mathfrak{p}^4/\overline{\mathfrak{p}}^2 + \mathfrak{p}\overline{\mathfrak{p}} + \overline{\mathfrak{p}}^2$.
- For (2,2,0) there are two forms. One has $T_{\mathfrak{p}}$ eigenvalue $\mathfrak{p}\overline{\mathfrak{p}}\left(\frac{\mathfrak{p}^{3}}{\mathfrak{p}}+1+\frac{\overline{\mathfrak{p}}^{3}}{\mathfrak{p}}\right)$. The other is more subtle: $T_{\mathfrak{p}}$ acts as $p+\frac{1}{p^{2}}a_{p}$ where a_{p} is the Hecke eigenvalue of a modular form of weight 7 and level $\Gamma_{1}(7)$.
- For (3, 1, 0) there is a unique form whose Hecke eigenvalue of T_p is given by p + ¹/_{pp³} a_p where a_p is the same classical modular eigenvalue as before!
- First geninunely 3-dimensional form turns up at weight (3,3,0)

イロン 不良 とくほう 不良 とうほ

Coset decompositions

Galois Representations

• To an eigenform *f*, can associate a system of representations

$$\rho_f : \operatorname{Gal}(\overline{E}/E) \to \operatorname{GL}_3(\overline{\mathbb{Q}}_\ell).$$

- Endoscopic forms correspond to direct sums of lower-dimensional representations
- ρ_f conjecturally extends to Gal(Q
 − Q) → L^G(Q
 ℓ) (the Langlands L-group).
- This is false for U₂!
- Buzzard is working on finding a correct formulation

・ロト ・ 同ト ・ ヨト ・ ヨト

Coset decompositions

Computational bottlenecks

- Calculating "*r*-good matrices" (matrices $m \in GL_n(\mathcal{O}_E)$ with $m\overline{m}^t = r.id$)
- Finding large symmetric powers of matrices

David Loeffler Automorphic Forms for Unitary Groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで