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Aims of this Talk

Introduce automorphic forms
Special cases amenable to calculation
Experimental results calculated using SAGE
Room for optimization
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Motivation: Lie Groups

G connected real Lie group e.g. S1 × S3, GL2(R)

Good classification theory exists
Γ some discrete subgroup
Coset space Γ\G has G-invariant measure for nice G
Want to understand L2(Γ\G)
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K-types

K maximal compact subgroup
A K -type is an irreducible representation of K
Decompose L2(Γ\G) by K -types
Irreducible constituents correspond to automorphic forms
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Classical Example: Modular Forms

Definition
Let H upper half-plane, Γ ⊂ SL2(Z) discrete subgroup, k ≥ 0
integer. Then an automorphic form of level Γ and weight k is

f : H → C
∣∣ f

(
az + b
cz + d

)
= (cz + d)k f (z)

(+ some analytic conditions)

Automorphic forms for the group SL2

Rich arithmetical structure
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Algebraic Groups

Variety with group structure “compatible” with variety
structure
Two major classes

Projective case: Abelian varieties – always commutative
Affine case: Linear algebraic groups – always embed in a
matrix group

All groups are extensions of Abelian by linear (Chevalley)
(K perfect)
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Linear algebraic groups

Determined up to isogeny by Lie algebra
Radical = largest solvable subgroup

Semisimple if trivial radical
Reductive if radical = centre

Reductive ⇒ representations are completely reducible
Strong classification theory for reductive groups over
algebraically closed fields

Isogenous to a product of tori and simple groups
Simple groups up to isogeny:

Infinite families An, Bn, Cn, Dn

Six exceptional cases: E6, E7, E8, F4 and G2.
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Forms of groups and Galois cohomology

L subfield of C
If G, G′ isomorphic after base extension, say they are
L-forms of each other
Classified by H1(Gal(L/L), Aut G).
Example: SU2 and SL2 over R – drastically different
topologically.
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Arithmetic Subgroups

Subgroups H1, H2 ≤ G(Q) commensurable if intersection
has finite index in each
Arithmetic = commensurable with G(Z)

Special case: congruence subgroups
Correspond to open compact subgroups of G(Af ), Af =
finite adeles of Q

Congruence Subgroup Problem: is every arithmetic
subgroup a congruence subgroup?

True for SLn(n ≥ 3) (Bass–Milnor–Serre)
False for SL2
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Automorphic Forms

Recall A =
∏′

v Qv = Q× Ẑ× R>0

Af =
∏′

v finite Qv = Q× Ẑ
G(Q) discrete in G(A)

G(A) unimodular for G reductive
Can consider L2(G(Q)\G(A)/Kf ) for Kf ⊂ G(Af ).
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Equivalent Definition for Compact Groups

Functions G(Af ) → V , V a Q-representation of G, such
that

f (γgk) = γ ◦ f (g) ∀γ ∈ G(Q), k ∈ Kf

Analytical hypotheses disappear
Finite amount of data as

G(Q)\G(Af )/Kf

is finite
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Computing Automorphic Forms

GL2 relatively well understood
Modular symbols

GL3 much more difficult!
(Ash, Stevens + Pollack have something)

G, G′ isomorphic over Q ⇒ strong relations between
automorphic forms (Langlands functoriality)
Idea: compute on a compact form of GL3 – a unitary group.
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What Is A Unitary Group?

Definition
E imaginary quadratic extension of Q.

Un,E =
{

m ∈ Mn×n(E) | mmt = id
}

.

Q-points of a reductive algebraic group
R-points usual unitary group; Un(R) compact, but
Un(C) ∼= GLn(C).
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Un As An Adelic Group

Can make sense of Un(Qp) for any prime p
Also has integral structure: Un(Z) and Un(Zp) well defined
For p any prime split in E , Un(Qp) ∼= GLn(Qp).
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Double Coset Decompositions

We know how f transforms by G(Q) on the left and by K on
the right ⇒ determined by values on

G(Q)\G(Af )/K .

Must have f (µ) fixed by Γ = G(Q) ∩ µKµ−1 (a finite group).
The map f 7→ (f (µ1), . . . , f (µr )) identifies the space of
automorphic forms with

r⊕
i=1

V Γi .
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Double Coset Decompositions (2)

Given g, h ∈ G(Af ), can easily determine if g it lies in
G(Q)hK : the coset h−1gK contains finitely many rational
points, corresponding to elements of G(Q) with bounded
denominators
In the unitary group case, this boils down to finding all
δ ∈ Mn×n(OE) with δδ

t
= m · idn for various integers m

This is a key problem. In practice one enumerates all the
n-tuples of elements in (a1 . . . an) ∈ On

E with
|a1|2 + · · ·+ |an|2 = m, and searches for sets of n
orthogonal vectors.
Very slow for m large: for n = 3 and E = Q(

√
−7), this

takes several days for m ∼ 100.
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The Mass Formula

Definition
The mass of the compact open subgroup K is defined as

Mass(K ) =
r∑

i=1

1
|Γi |

where µ1, . . . , µr are double coset representatives and
Γi = G(Q) ∩ µiKµ−1

i .

Much better behaved than the class number (e.g. if
K ′ ⊂ K , Mass(K ′) = [K : K ′] Mass(K )).
If G = Un, the mass of K = G(Ẑ) is given in terms of the
special value of an L-function (Gan–Hanke–Yu).
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Hecke Operators

The spaces of automorphic forms have an action of the
Hecke algebra H(G, K ).
Abstractly this is the algebra of functions G(Af ) → Q which
are invariant on both sides by K .
Splits into a product of local Hecke algebras at each prime
`.
If ` is split in E (so G(Q`) = GLn(Q`)), the local Hecke
algebra is isomorphic to the symmetric polynomials in n
variables
Generators are double cosets of the form
diag(1, . . . , 1, `, . . . , `).
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Hecke Cosets

The double coset KηK acts on automorphic forms as
follows: if KηK =

⊔
i ηiK , then

([KηK ] ◦ f ) (g) =
∑

i

f (gηi)

If η is one of the basic Hecke operators at a split prime `,
then a set of coset representatives ηs ∈ G(Q`) can be
found easily by linear algebra
One must then express each product µrηs in the form γµtk
using the algorithm from before (store γ and discard k )
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Some Short Cuts

Can combine finding Hecke operators with finding the
class group
One-off calculation (independent of weight)
Can skip parts of the computation using commutativity of
the Hecke algebra
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Representations of GLn

Irreducibles determined by highest weight
Explicit models known using geometry of flag varieties
(Borel-Weil-Bott theorem)
SYMMETRICA?
I coded a horrible combinatorial bodge, and another
cleaner (but slower) approach using polynomial rings
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Double cosets

Used G = Un,E for n = 3, E = Q(
√
−7), K = G(Ẑ)

Split primes are those 1, 2 or 4 (mod 7)

No nontrivial roots of unity in E ⇒ |G(Z)| = 2nn! = 48
Mass formula gives Mass(K ) = 1

42 , so missing at least one
coset
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Nontrivial Double Coset

The element

µ2 =

 1 0 0
0 1 0
−1 −1 2

 ∈ G(Q2)

isn’t in G(Q)K
G(Q) ∩ µ2Kµ−1

2 has order 336
1

48 + 1
336 = 1

42 so finished
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Dimensions of Spaces

(Can be found efficiently using classical invariant theory)

a
0 1 2 3 4 5

0 2 0 1 0 3 0
1 0 0 0 1 1 2

b 2 1 0 2 1 5 2
3 0 1 1 4 3 6
4 3 1 5 3 8 7
5 0 2 2 6 7 10
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The Trivial Representation

cl(G) = 2 ⇒ 2-dimensional space of trivial weight forms
No central character so Tp,p,p acts trivially and Tp = Tp,p

Constant function has Tp-eigenvalue p2 + p + 1
Other eigenform:

p 2 11 23 29 37
ap −1 5 41 −25 −1

For p a prime above p we have Tp eigenvalue

λp = p2 + pp + p2.
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Nontrivial Weights

For (2, 0, 0) there is a unique form whose Tp eigenvalue is
p4/p2 + pp + p2.
For (2, 2, 0) there are two forms. One has Tp eigenvalue

pp
(

p
p

3
+ 1 + p

p

3)
. The other is more subtle: Tp acts as

p + 1
p2 ap where ap is the Hecke eigenvalue of a modular

form of weight 7 and level Γ1(7).
For (3, 1, 0) there is a unique form whose Hecke
eigenvalue of Tp is given by p + 1

pp3 ap where ap is the
same classical modular eigenvalue as before!
First geninunely 3-dimensional form turns up at weight
(3, 3, 0)
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Galois Representations

To an eigenform f , can associate a system of
representations

ρf : Gal(E/E) → GL3(Q`).

Endoscopic forms correspond to direct sums of
lower-dimensional representations
ρf conjecturally extends to Gal(Q/Q) → LG(Q`) (the
Langlands L-group).
This is false for U2!
Buzzard is working on finding a correct formulation
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Computational bottlenecks

Calculating “r -good matrices” (matrices m ∈ GLn(OE) with
mmt = r .id)
Finding large symmetric powers of matrices
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