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Correct If f is simplified to g, then g is “math-
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No as functions Q — Q: consider z = 1.

Yes in Q(x).

* It doesn’'t help that these are called ‘“rational
functions’'!
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What is simplification?

“How long is a piece of string” without the
R1-model.

Correct If f is simplified to g, then g is “math-
ematically equivalent” to f.

Useful for which we generally read ‘shorter’.
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vwhat's the problem?«

Expressions like /x have two meanings.

Algebraic That y such that y2 = .

Analytic A function (maybe C — C, maybe
not, maybe multivalued).

e \We take single-valued meanings in Abramowitz
& Stegun (see also Corless, Davenport,
Jeffrey & Watt).

If only “computer algebra’ were just that —
algebra.
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r= —2 gives 2 = —2

log(1l/x) = —log(x)

r = —1 gives imr = —im
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Almost nothing simple is true

Va2 =gz

r—= —2 gives 2 = -2
log(1l/x) = —log(x)

r = —1 gives imr = —im

arctanz + arctany = arctan (1”’:":%)

r =1y = 2 gives 2arctan 2 = arctan (

)

1 =7



Some HISTory

Moses (1971)

Moses, Fitch, Fateman: simplification of
algebraic expressions

Caviness, Norman: The difficulties of sim-
plifying transcendental expressions, the con-
stant problem.

1990’s Richardson: algorithms for testing
zero equivalence of elementary functions.
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e Fateman & Dingle (ISSAC 1994) " Branch
Cuts in Computer Algebra’” Introduced T he
Decomposition Method:
we want to simplify h= f — g to O.

(a) Calculate the branch cuts of the given
function:;

(b) Choose a sample point s in each of the
regions defined by the branches;

(c) Decide h(s);o numerically.

e Bradford & Davenport (ISSAC 2002) " Bet-
ter Simplification of Elementary Functions’.



IdentiTied a restricted class of Tunctions whose
cuts are semi-algebraic sets.

Proposed the use of Cylindrical Algebraic
Decomposition (CAD) for part (b). Ex-
amined in more detail the problem of (c).
Examined multivariate examples

Beaumont, Bradford & Davenport (ISSAC
2003) " Better Simplification of Elementary
Functions through Power Series”
Addressed problem of testing the formulae
on the branch cuts numerically.
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Clearly Sart(1 — 2) Sart(1 4 z) = Sqart(1 — 22),
so v1— 21+ z € Sart(1 — z2).
The branch cut for v/1 — z is along

{z|R(z) > 1ANS(z) =0} (1)
The branch cut for v/1 4+ z is along
{z|R(z) < =1 AS(2) =0} (2)

1 0



Also the branch cut for /1 — 22 is along
{z | R(z%) > 1 AS(z%) =0} (3)

Since (3) = (1)U(2), there are three connected
components: (1), (2) and their complement
(which is connected).

On the complement, the identity is true (e.g.
z = 0), as it is on each of the cuts (e.g. z =
+2).
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Clearly Sart(z — 1) Sart(z + 1) = Sart(z2 + 1),
so vz — 1v/z+ 1 € Sart(z2 —1).
The branch cut for vz — 1 is along

{z| IR(2)] < 1AI(z) =0}. (4)
The branch cut for v/z 4+ 1 is along
{z | R(z) < =1 AS(2) =0} (5)



Also the branch cut for \/z2 — 1 is along
{z | [R(2)| <1AS(2) =0}U{z | R(z) =0} (6)

This last disconnects the complex plane. On
®(z) > 0, the identity is true (e.g. z = 2).
R(z) < 0 is itself disconnected by (4), but on
each half the identity is false (e.g. z = —1 +1),
except {R(z) =0A(z) > 0}.

The behaviour on (4) is more mysterious. The
identity is false on (5), but true on (4)\(5). In
other words, the identity is false on the neg-
ative half-plane except on {z | —1 < R(z2) <
0AS(z) =0}.
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pirrerence: the brancn cuts split the plane

Not entirely: consider log(1l/z) = —log(z), which
is true everywhere except on the branch cut:
{z | R(z) < 0OANS(z) = 0}.

Worse: log(M(z))=10g(T (2)) (A4S 6.1.23(b)).
True except on

{z|3(z) =0AR(2z) <OA [R(z)]|even}.
Bet the last bit surprised you!

No, we don’'t have an algorithm for this one
yet!



?
arctan z 4+ arctan y= arctan (f’j’y

Y

False even for real x,y.

* But real arctan has no branch cuts
Except at infinity!

)



Consider log(1l/z) = —log(z) closely

Branch cut: B={z | R(z) < 0A&(z) = 0}.
On B, log(1/z) is upper-continuous, i.e.
1

lim lo = log —.
y—0t gaz—l—z’y T

But —log(z) is lower-continuous, i.e.
lim log(x 4+ iy) = — log(x).
y—0~
The branch cut is genuine, so they must differ
on it.
The functions adhere differently on the branch
cut.
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e If we track this, we can generally avoid hav-
ing to evaluate on lower-dimensional cells.



Adherence (Beaumont et al, 2005)

e | he value of a function on a branch cut
should be consistent with that on one side
or the other.

e If we track this, we can generally avoid hav-
ing to evaluate on lower-dimensional cells.

* Also, can prove incorrectness directly, as in
?
log 1= — log 2.



