Simplification in Computer

(based on work Ry Davenport
/Bradford/Be\&umbrt甲phisanbut) EPSRC GR/R84139/01

James H. Davenport
Department of Computer Science
University of Bath
Bath BA2 7AY England
J.H.Davenport@bath.ac.uk

November 10, 2007

What is simplification?

R

What is simplification?

"How long is a piece of string" without the \mathbf{R}^{1}-model.

What is simplification?

"How long is a piece of string" without the \mathbf{R}^{1}-model.

Correct If f is simplified to g, then g is "mathematically equivalent" to f.

$$
\frac{x^{2}-2 x+1}{x^{2}-1} \rightarrow \frac{x-1}{x+1} ?
$$

Q Q

Q

$$
\frac{x^{2}-2 x+1}{x^{2}-1} \rightarrow \frac{x-1}{x+1} ?
$$

No as functions $\mathbf{Q} \rightarrow \mathbf{Q}$: consider $x=1$.

Q

$$
\frac{x^{2}-2 x+1}{x^{2}-1} \rightarrow \frac{x-1}{x+1} ?
$$

No as functions $\mathbf{Q} \rightarrow \mathbf{Q}$: consider $x=1$.

Yes in $\mathbf{Q}(x)$.

$$
\frac{x^{2}-2 x+1}{x^{2}-1} \rightarrow \frac{x-1}{x+1} ?
$$

No as functions $\mathrm{Q} \rightarrow \mathrm{Q}$: consider $x=1$.

Yes in $\mathbf{Q}(x)$.

* It doesn't help that these are called "rational functions"!

What is simplification?

"How long is a piece of string" without the \mathbf{R}^{1}-model.

Correct If f is simplified to g, then g is "mathematically equivalent" to f.

What is simplification?

"How long is a piece of string" without the \mathbf{R}^{1}-model.

Correct If f is simplified to g, then g is "mathematically equivalent" to f.

Useful for which we generally read 'shorter'.

What's the problem?

Expressions like \sqrt{x} have two meanings.

C C

What's the problem?

Expressions like \sqrt{x} have two meanings.

Algebraic That y such that $y^{2}=x$.
C $\quad \mathrm{C}$

Expressions like \sqrt{x} have two meanings.

Algebraic That y such that $y^{2}=x$.
Analytic A function (maybe $\mathbf{C} \rightarrow \mathbf{C}$, maybe not, maybe multivalued).

- We take single-valued meanings in Abramowitz \& Stegun (see also Corless, Davenport, Jeffrey \& Watt).

Expressions like \sqrt{x} have two meanings.

Algebraic That y such that $y^{2}=x$.
Analytic A function (maybe $\mathbf{C} \rightarrow \mathbf{C}$, maybe not, maybe multivalued).

- We take single-valued meanings in Abramowitz \& Stegun (see also Corless, Davenport, Jeffrey \& Watt).

If only "computer algebra' were just that algebra.

Almost nothing simple is true

Almost nothing simple is true

- $\sqrt{x^{2}}=x$

$$
\text { * } x=-2 \text { gives } 2=-2
$$

Almost nothing simple is true

- $\sqrt{x^{2}}=x$
* $x=-2$ gives $2=-2$
- $\log (1 / x)=-\log (x)$
* $x=-1$ gives $i \pi=-i \pi$

Almost nothing simple is true

- $\sqrt{x^{2}}=x$
* $x=-2$ gives $2=-2$
- $\log (1 / x)=-\log (x)$
* $x=-1$ gives $i \pi=-i \pi$
- $\arctan x+\arctan y=\arctan \left(\frac{x+y}{1-x y}\right)$
* $x=y=2$ gives $2 \arctan 2=\arctan \left(\frac{-4}{3}\right)$.
- Moses (1971)
- Moses, Fitch, Fateman: simplification of algebraic expressions
- Caviness, Norman: The difficulties of simplifying transcendental expressions, the constant problem.
- 1990's Richardson: algorithms for testing zero equivalence of elementary functions.
- Fateman \& Dingle (ISSAC 1994) "Branch Cuts in Computer Algebra" Introduced The Decomposition Method:
we want to simplify $h=f-g$ to 0 .
(a) Calculate the branch cuts of the given function;
(b) Choose a sample point s in each of the regions defined by the branches;
(c) Decide $h(s) \stackrel{?}{=} 0$ numerically.
- Bradford \& Davenport (ISSAC 2002) "Better Simplification of Elementary Functions" .

Identified a restricted class of functions whose cuts are semi-algebraic sets.
Proposed the use of Cylindrical Algebraic Decomposition (CAD) for part (b). Examined in more detail the problem of (c). Examined multivariate examples

- Beaumont, Bradford \& Davenport (ISSAC 2003) "Better Simplification of Elementary Functions through Power Series" Addressed problem of testing the formulae on the branch cuts numerically.

$$
\sqrt{1-z} \sqrt{1+z} \stackrel{?}{=} \sqrt{1-z^{2}}
$$

Clearly $\operatorname{Sqrt}(1-z) \operatorname{Sqrt}(1+z)=\operatorname{Sqrt}\left(1-z^{2}\right)$, so $\sqrt{1-z} \sqrt{1+z} \in \operatorname{Sqrt}\left(1-z^{2}\right)$.
The branch cut for $\sqrt{1-z}$ is along

$$
\begin{equation*}
\{z \mid \Re(z)>1 \wedge \Im(z)=0\} \tag{1}
\end{equation*}
$$

The branch cut for $\sqrt{1+z}$ is along

$$
\begin{equation*}
\{z \mid \Re(z)<-1 \wedge \Im(z)=0\} \tag{2}
\end{equation*}
$$

Also the branch cut for $\sqrt{1-z^{2}}$ is along

$$
\begin{equation*}
\left\{z \mid \Re\left(z^{2}\right)>1 \wedge \Im\left(z^{2}\right)=0\right\} \tag{3}
\end{equation*}
$$

Since (3) $=(1) \cup(2)$, there are three connected components: (1), (2) and their complement (which is connected).

On the complement, the identity is true (e.g. $z=0$), as it is on each of the cuts (e.g. $z=$ ± 2).

$$
\sqrt{z-1} \sqrt{z+1} \stackrel{?}{=} \sqrt{z^{2}-1}
$$

Clearly $\operatorname{Sqrt}(z-1) \operatorname{Sqrt}(z+1)=\operatorname{Sqrt}\left(z^{2}+1\right)$, so $\sqrt{z-1} \sqrt{z+1} \in \operatorname{Sqrt}\left(z^{2}-1\right)$.
The branch cut for $\sqrt{z-1}$ is along

$$
\begin{equation*}
\{z||\Re(z)|<1 \wedge \Im(z)=0\} \tag{4}
\end{equation*}
$$

The branch cut for $\sqrt{z+1}$ is along

$$
\begin{equation*}
\{z \mid \Re(z)<-1 \wedge \Im(z)=0\} \tag{5}
\end{equation*}
$$

Also the branch cut for $\sqrt{z^{2}-1}$ is along

$$
\begin{equation*}
\{z||\Re(z)|<1 \wedge \Im(z)=0\} \cup\{z \mid \Re(z)=0\} \tag{6}
\end{equation*}
$$

This last disconnects the complex plane. On $\Re(z)>0$, the identity is true (e.g. $z=2$). $\Re(z) \leq 0$ is itself disconnected by (4), but on each half the identity is false (e.g. $z=-1 \pm i$), except $\{\Re(z)=0 \wedge \Im(z)>0\}$.

The behaviour on (4) is more mysterious. The identity is false on (5), but true on (4)
(5). In other words, the identity is false on the negative half-plane except on $\{z \mid-1<\Re(z)<$ $0 \wedge \Im(z)=0\}$.

Difference: 'the branch cuts split the plane'

Difference: 'the branch cuts split the plane'

Not entirely: consider $\log (1 / z)=-\log (z)$, which is true everywhere except on the branch cut: $\{z \mid \Re(z)<0 \wedge \Im(z)=0\}$.

Difference: 'the branch cuts split the plane'

Not entirely: consider $\log (1 / z)=-\log (z)$, which is true everywhere except on the branch cut: $\{z \mid \Re(z)<0 \wedge \Im(z)=0\}$.

Worse: $\log (\Gamma(\bar{z})) \stackrel{?}{\stackrel{l}{\log (\Gamma(z))}(A+S 6.1 .23(b)) .}$

Difference: 'the branch cuts split the plane'

Not entirely: consider $\log (1 / z)=-\log (z)$, which is true everywhere except on the branch cut:
$\{z \mid \Re(z)<0 \wedge \Im(z)=0\}$.
Worse: $\log (\Gamma(\bar{z})) \stackrel{?}{=} \overline{\log (\Gamma(z))}(A+S 6.1 .23(b))$. True except on

$$
\{z \mid \Im(z)=0 \wedge \Re(z)<0 \wedge\lceil\Re(z)\rceil \text { even }\}
$$

Difference: 'the branch cuts split the plane'
Not entirely: consider $\log (1 / z)=-\log (z)$, which is true everywhere except on the branch cut:
$\{z \mid \Re(z)<0 \wedge \Im(z)=0\}$.
Worse: $\log (\Gamma(\bar{z})) \stackrel{?}{=} \overline{\log (\Gamma(z))}(A+S 6.1 .23(b))$. True except on

$$
\{z \mid \Im(z)=0 \wedge \Re(z)<0 \wedge\lceil\Re(z)\rceil \text { even }\} .
$$

Bet the last bit surprised you!

Difference: 'the branch cuts split the plane'
Not entirely: consider $\log (1 / z)=-\log (z)$, which is true everywhere except on the branch cut:
$\{z \mid \Re(z)<0 \wedge \Im(z)=0\}$.
Worse: $\log (\Gamma(\bar{z})) \stackrel{?}{\stackrel{l}{\log (\Gamma(z))}(A+S 6.1 .23(b)) \text {. }}$ True except on

$$
\{z \mid \Im(z)=0 \wedge \Re(z)<0 \wedge\lceil\Re(z)\rceil \text { even }\} .
$$

Bet the last bit surprised you!

No, we don't have an algorithm for this one yet!

$$
\arctan x+\arctan y \stackrel{?}{=} \arctan \left(\frac{x+y}{1-x y}\right)
$$

False even for real x, y.

* But real arctan has no branch cuts

Except at infinity!

```
Consider }\operatorname{log}(1/z)=-\operatorname{log}(z)\mathrm{ closely
```

Branch cut: $B=\{z \mid \Re(z)<0 \wedge \Im(z)=0\}$. On $B, \log (1 / z)$ is upper-continuous, i.e.

$$
\lim _{y \rightarrow 0^{+}} \log \frac{1}{x+i y}=\log \frac{1}{x}
$$

But $-\log (z)$ is lower-continuous, i.e.

$$
\lim _{y \rightarrow 0^{-}} \log (x+i y)=-\log (x)
$$

The branch cut is genuine, so they must differ on it.
The functions adhere differently on the branch cut.

Adherence (Beaumont et al, 2005)

- The value of a function on a branch cut should be consistent with that on one side or the other.
- The value of a function on a branch cut should be consistent with that on one side or the other.
- If we track this, we can generally avoid having to evaluate on lower-dimensional cells.
- The value of a function on a branch cut should be consistent with that on one side or the other.
- If we track this, we can generally avoid having to evaluate on lower-dimensional cells.
* Also, can prove incorrectness directly, as in $\log \frac{1}{z} \stackrel{?}{=}-\log z$.

