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What is simplification?

\How long is a piece of string" without the

R1

-model.

Correct If f is simpli�ed to g, then g is \math-

ematically equivalent" to f .

Useful for which we generally read `shorter'.
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x2−2x+1
x2−1

→ x−1
x+1?

No as functions Q ! Q: consider x = 1.

Yes in Q(x).

* It doesn't help that these are called \rational

functions"!
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What’s the problem?

Expressions like
√
x have two meanings.

Algebraic That y such that y

2

= x.

Analytic A function (maybe C ! C, maybe

not, maybe multivalued).

� We take single-valued meanings in Abramowitz

& Stegun (see also Corless, Davenport,

Je�rey & Watt).

If only \computer algebra' were just that |

algebra.
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Almost nothing simple is true

� x

2

= x

* x = �2 gives 2 = �2

� log(1=x) = � log(x)

* x = �1 gives i� = �i�

� arctanx+ arctan y = arctan

� �

* x = y = 2 gives 2 arctan2 = arctan

� �

.
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Almost nothing simple is true

•
√
x2 = x

* x = −2 gives 2 = −2

• log(1/x) = − log(x)

* x = −1 gives iπ = −iπ

• arctanx+ arctan y = arctan
(
x+y
1−xy

)
* x = y = 2 gives 2 arctan 2 = arctan

(
−4
3

)
.
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Some History

• Moses (1971)

• Moses, Fitch, Fateman: simplification of
algebraic expressions

• Caviness, Norman: The difficulties of sim-
plifying transcendental expressions, the con-
stant problem.

• 1990’s Richardson: algorithms for testing
zero equivalence of elementary functions.
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• Fateman & Dingle (ISSAC 1994) ”Branch

Cuts in Computer Algebra” Introduced The

Decomposition Method:

we want to simplify h = f − g to 0.

(a) Calculate the branch cuts of the given

function;

(b) Choose a sample point s in each of the

regions defined by the branches;

(c) Decide h(s)
?
=0 numerically.

• Bradford & Davenport (ISSAC 2002) ”Bet-

ter Simplification of Elementary Functions”.



Identified a restricted class of functions whose

cuts are semi-algebraic sets.

Proposed the use of Cylindrical Algebraic

Decomposition (CAD) for part (b). Ex-

amined in more detail the problem of (c).

Examined multivariate examples

• Beaumont, Bradford & Davenport (ISSAC

2003) ”Better Simplification of Elementary

Functions through Power Series”

Addressed problem of testing the formulae

on the branch cuts numerically.



√
1− z

√
1 + z

?
=
√

1− z2

Clearly Sqrt(1− z) Sqrt(1 + z) = Sqrt(1− z2),

so
√

1− z
√

1 + z ∈ Sqrt(1− z2).

The branch cut for
√

1− z is along

{z | <(z) > 1 ∧ =(z) = 0}. (1)

The branch cut for
√

1 + z is along

{z | <(z) < −1 ∧ =(z) = 0}. (2)
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Also the branch cut for
√

1− z2 is along

{z | <(z2) > 1 ∧ =(z2) = 0} (3)

Since (3) = (1)∪(2), there are three connected

components: (1), (2) and their complement

(which is connected).

On the complement, the identity is true (e.g.

z = 0), as it is on each of the cuts (e.g. z =

±2).
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√
z − 1

√
z + 1

?
=
√
z2 − 1

Clearly Sqrt(z − 1) Sqrt(z + 1) = Sqrt(z2 + 1),

so
√
z − 1

√
z + 1 ∈ Sqrt(z2 − 1).

The branch cut for
√
z − 1 is along

{z | |<(z)| < 1 ∧ =(z) = 0}. (4)

The branch cut for
√
z + 1 is along

{z | <(z) < −1 ∧ =(z) = 0}. (5)
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Also the branch cut for
√
z2 − 1 is along

{z | |<(z)| < 1∧=(z) = 0}∪{z | <(z) = 0} (6)

This last disconnects the complex plane. On

<(z) > 0, the identity is true (e.g. z = 2).

<(z) ≤ 0 is itself disconnected by (4), but on

each half the identity is false (e.g. z = −1± i),

except {<(z) = 0 ∧ =(z) > 0}.

The behaviour on (4) is more mysterious. The

identity is false on (5), but true on (4)\(5). In

other words, the identity is false on the neg-

ative half-plane except on {z | −1 < <(z) <

0 ∧ =(z) = 0}.
22



Difference: ‘the branch cuts split the plane’

Not entirely: consider log(1=z) = � log(z), which

is true everywhere except on the branch cut:

fz j <(z) < 0 ^ =(z) = 0g.

Worse: log(�(z))

?

=log(�(z)) (A+S 6.1.23(b)).

True except on

fz j =(z) = 0 ^ <(z) < 0 ^ d<(z)eeveng:

Bet the last bit surprised you!

No, we don't have an algorithm for this one

yet.
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arctanx+ arctan y
?
= arctan

(
x+y
1−xy

)

False even for real x, y.

* But real arctan has no branch cuts

Except at infinity!
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Consider log(1/z) = − log(z) closely

Branch cut: B = {z | <(z) < 0 ∧ =(z) = 0}.
On B, log(1/z) is upper-continuous, i.e.

lim
y→0+

log
1

x+ iy
= log

1

x
.

But − log(z) is lower-continuous, i.e.

lim
y→0−

log(x+ iy) = − log(x).

The branch cut is genuine, so they must differ

on it.

The functions adhere differently on the branch

cut.
30



Adherence (Beaumont et al, 2005)

� The value of a function on a branch cut

should be consistent with that on one side

or the other.

� If we track this, we can generally avoid hav-

ing to evaluate on lower-dimensional cells.

� Also, can prove incorrectness directly, as in

log

?

=� log z.
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