p-adics in Sage

Jean-Pierre Flori ANSSI, France

Sage Days 53, Oxford September 24, 2013
(1) p-adics in Sage
(2) p-adics in FLINT
(3) p-adics in Mathemagix
4) p-adics in PARI
(5) Benchmarks
(6) Precision

Section 1

p-adics in Sage

p-adics in Sage

- Representing p -adic numbers require an infinite amount of data...
- ... which our computers do not currently provide.
- Sage provides:
(1) Different representation of p-adics integers.
(2) One representation of p-adic fields.
(3) Unramified and Eisenstein extensions thereof.
(9) General extensions currently being worked on by Julian Rüth.

Precision tracking

- Currently, three different ways to represent p-adics in Sage:
(1) fixed modulus (only for integral element),
(2) capped absolute (only for integral element),
(3) capped relative (both for p-adic ring and field).
- These implementations basically represent p-adics using integers with bounded precision for the unit part.
- Another representation using power series is possible and can for example be used to implement lazy p-adics.
- Currently, there is only one way to deal with the precision of each type of non-basic p-adic object.
- Both these points are being addressed by Xavier Caruso and David Roe.

Implementation details

- p-adics numbers:
- Fixed-modulus elements share a common precision and are represented using one mpz_t.
- Capped-absolute elements track their own precision and are represented using one mpz_t.
- Capped-relative elements track their own precision and are represented using one mpz_t for the unit part and an additional integer for the valuation.
- q-adics numbers:
- Through NTL's ZZ_pX class.
- Further details for precision tracking similar to those for p-adic numbers.

Functionalities

- All basic functionalities for p -adic and q -adic numbers.
- And much more.
- Demo!

Current and future developments

- Refactoring of the p-adic code to use templates similar to what is done for polynomials by David Roe and Julian Rüth.
- This makes the code easier to maintain and make it possible to use different low-level implementations much more easily.
- This is trac ticket 12555 and is positively reviewed; hopefully to be included in Sage 6.0.
- Much more flexible precision models by Xavier Caruso and David Roe.
- Experimental code available on CETHop's project website.
- General extension of p-adics numbers by Julian Rüth.

Section 2

p-adics in FLINT

FLINT: Fast Library for Number Theory

- C library on top of GMP/MPIR, MPFR (with support for NTL).
- FLINT 1 (2007/xx - 2010/12) originally developed by Hart, Harvey and Novocin.
- FLINT 2 (2011/01 -) is a completele rewrite by Bill Hart, Frederik Johansson and Sebastian Pancratz.
- About 130k lines of C code.
- Used by Sage since 2007.
- Used by Singular since 2011/12, code by Martin Lee; not used in Sage, see trac ticket 13331.

p-adics in FLINT

- padic module in FLINT 2 since version 2.2 (released 2011/06/04), mostly by Sebastiab Pancratz.
- padic_poly, padic_matrix and qadic modules on Pancratz's github since a few years, to be included into version 2.4.
- About 14 k lines of C code.
- Backward incompatible changes between versions 2.3 and 2.4 (more on that later).

p-adics in Sage using FLINT

- Unramified p-adics implementation using the new template interface.
- See trac ticket 14304 and https://github.com/saraedum/sage-renamed/tree/Zq.
- This relies on the fmpz_mod_poly module.
- No implementation using the padic, padic_poly and qadic modules yet?

Other applications

- Point counting using deformation theory available on Sebastian Pancratz's github.
- Point counting à la Satoh, ..., Harley using a custom qadic_dense module available on Jean-Pierre Flori's github.
- Both of these are based on version 2.3, so have to be rebased on top of the new padic structure..

Design decisions

Decision.

- Each p-adic operation treats the input as exact data and requires the desired output precision as a separate argument.
Rationale.
- A number is just a number.
- The intrinsic difficulty in p -adic arithmetic stems from the precision loss, which depends on the particular operation.
- Note that it would be straightforward to implement various precision models on top of this.

Design decisions

An element $x \neq 0$ is typically stored as $x=p u$ with $v=\operatorname{ord}_{p}(x) \in \mathbb{Z}$ and $u \in \mathbb{Z}$ with $p \nmid u$.
In 2.3 and before.
typedef struct \{
fmpz u ;
long v ;
\} padic_struct ;
After 2.3.
typedef struct \{
fmpz u;
slong v;
slong N;
\} padic_struct;

Design decisions

Additional information stored in a context object.
In 2.3 and before.
typedef struct \{
fmpz_t p;
long N;
double pinv;
fmpz *pow;
long min;
long max;
enum padic_print_mode mode;
\} padic_ctx_struct;
From 2.3 onward the precision is not stored anymore.

Design decisions

Remarks.

- Improved maintainability by having one data type; no special case depending on the size of p or p^{N};
- One could consider a different implementation performing basic arithmetic to base p^{k} with k s.t. such that p^{k} fits in a word. This would allow replacing $\bmod p^{N}$ operations by $\bmod p^{k}$ operations (with a precomputed word-sized inverse) in many algorithms.

Functions for \mathbb{Q}_{p}

- Addition, subtraction, negation
- Multiplication, powers
- Inversion
- Inversion (with precomputed lifting structure)
- Division
- Square root
- Exponential
- Logarithm
- Teichmüller lift

Addition

Signature

```
void padic_add(z, x, y, ctx)
```


Contract

Assumes that x and y are reduced modulo p^{N} and returns z in reduced form, too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and at most one subtraction.

Multiplication

Signature

void padic_mul(z, x, y, ctx)
Contract
Makes no assumptions on x and y, returns z reduced modulo p^{N}.

Inversion

```
Signature
void padic_inv(z, x, ctx)
```


Contract

Makes no assumptions on x.

Algorithm

Hensel lifting on $g(X)=x X-1$, starting from an inverse in \mathbb{F}_{p} and using the update formula $z=z+z(1-x z)$.

Square root

Signature

int padic_sqrt(z, x, ctx)

Contract

Makes no assumptions on x. Returns whether x is actually a square and if so computes its square root.

Algorithm

- Hensel lifting to compute an inverse square root to half precision.
- The final step performs the needed inversion as well.

Teichmüller lift

```
Signature
void padic_teichmuller(z, x, ctx)
```


Contract

Assumes only that $\operatorname{ord}_{p}(x)=0$.

Algorithm

Hensel lifting, avoiding inversions.

Exponential

Signature

int padic_exp(z, x, ctx)

Contract

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, multiplying by the common factorial in denominators, hence requiring only one inversion.

- Rectangular splitting.
- Balanced splitting.

Logarithm

Signature

int padic_log(z, x, ctx)

Contract

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

- Rectangular splitting.
- Balanced splitting (quasi-linear in N when p is fixed).
- à la SST.

Polynomials over \mathbb{Q}_{p}

We represent a non-zero polynomial $f(X) \in \mathbb{Q}_{p}[X]$ as

$$
f(X)=p^{v}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)
$$

where $a_{0}, \ldots, a_{n} \in \mathbb{Z}$ and, for at least one i, p does not divide a_{i}.

Functions for $\mathbb{Q}_{p}[X]$

- Conversions to polynomials over \mathbb{Z} and \mathbb{Q}
- Coefficient manipulation
- Addition, subtraction, negation
- Scalar multiplication
- Multiplication
- Powers
- Series inversion
- Derivative
- Evaluation
- Composition

Unramified extensions \mathbb{Q}_{q}

We represent an unramified extension of \mathbb{Q}_{p} as

$$
\mathbb{Q}_{q}=\mathbb{Q}_{p}[X] /(f(X))
$$

where $f(X) \bmod p$ is separable, storing $f(X)$ in a data structure for sparse polynomials.
This allows for the reduction of a degree n polynomial modulo $f(X)$ in linear time $O(n)$ (but slow Frobenius substitutions...).

Functions for \mathbb{Q}_{q}

- Addition, subtraction, negation
- Multiplication
- Powers
- Inversion
- Exponential
- Logarithm
- Frobenius
- Teichmüller lift
- Trace
- Norm

Exponential

```
Signature
int qadic_exp( \(z, x, c t x)\)
```


Contract

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, performing an inversion at each step.

- Rectangular splitting.
- Balanced splitting.

Logarithm

```
Signature
int qadic_log(z, x, ctx)
```


Contract

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

- Rectangular splitting.
- Balanced splitting.

Frobenius

Signature

void qadic_frobenius(z, x, k, ctx)

Contract

Computes $z=\Sigma^{k}(x)$.

Algorithm

- Compute $\Sigma^{k}(X)$ using Hensel lifting.
- Perform polynomal composition modulo p^{N} and $f(X)$.
- Generalize to use rectangular splitting.

Trace

Signature

void qadic_trace(z, $x, ~ c t x)$

Contract

No assumptions are made on x.

Algorithm

- Compute the traces of X^{i} iteratively.
- Compute the trace of x.

Norm

Signature

void qadic_norm(z, x, ctx)

Contract

No assumptions are made on x.

Algorithm

- Using an analytical formula.
- Using resultants.

Future features?

- Specialize code for finite fields.
- Modular reduction for non-sparse modulus.
- Other types of extensions.
- Specific implementations for $p=2$.
- Wrap into Sage using the new template interface.

Section 3

p-adics in Mathemagix

Mathemagix

- Computer algebra and analysis system coded in C++.
- Main developers: Joris van der Hoeven, Gégoire Lecerf, Bernard Mourrain, and others.
- lines of code for all modules.
- 120k lines of code for the three modules (basix, numerix, algebramix) needed for p-adics.
- Planned to be integrated into Sage, see branch u/jpflori/mmx for xperimentations.

p-adics in Mathemagix

- p-adics are represented as power series.
- Both naive and relaxed implementation available.
- Possibility to group power series terms into blocks.
- Choice between the different implementations mostly done through templating.

Advantages over zealous implementations:

- Increase precision as needed, no need to double it at each iteration.
- Solve recursive equations, avoiding costly inversion of Jacobians.
- A minimalistic wrapper was developed during Sage Days 52 by Jérémy Berthomieux, Xavier Caruso, and Jean-Pierre Flori.
- Unfortunately, Cython does not support templated functions (yet?), which makes the wrapper code quite ugly and hard to extend.
- And the wrapper code seems buggy!
- Demo!

Section 4

p-adics in PARI

- C library geared toward number theory.
- Currently maintained by Karim Belabas and Bill Allombert.
- 175 k lines of code.
- Offers stable (2.5.x) and development (2.6.x) branches.
- One of the main pieces of Sage.
- Sage currently ships the stable version of PARI.

p-adics in PARI

- PARI exposes a t_PADIC type.
- A t_PADIC object contains:
(1) precision and valuation,
(2) unit part,
(3) powers of p.
- Usual basic functionalities.
- sqrt, sqrtn, exp, log, gamma, AGM.
- Machinery for Hensel lifting on p-adic numbers and unramified extensions.
- Elliptic curves over p-adic numbers.
- Very fast implementation of point counting à la Satoh on elliptic curves in small characteristic.

Section 5

Benchmarks

Benchmarks for \mathbb{Q}_{p}

We present some timings for arithmetic in $\mathbb{Q}_{p} \bmod p^{N}$ where $p=17$, $N=2^{i}, i=0, \ldots, 10$, comparing the three systems Magma (V2.19-2), Sage (version 5.12.beta4, pulled from github), FLINT (pulled from github), and PARI/GP (version 2.5.4) on a machine with Intel Core $i 7-2620 \mathrm{M}$ CPU running at 2.70 GHz .
To avoid worrying about taking the same random sequences of elements, we instead fix elements $a=3^{3 N}, b=5^{2 N}$ (and variations thereof) modulo p^{N}.
We consider the following operations:

- Addition
- Multiplication
- Inversion
- Square root
- Teichmüller lift
- Exponential
- Logarithm

Addition

Multiplication

Inversion

Square root

Teichmüller lift

Exponential

Logarithm

Benchmarks for \mathbb{Q}_{q}

We present some timings for arithmetic in $\mathbb{Q}_{q} \bmod p^{N}$ where $p=17$, $N=2^{i}, i=0, \ldots, 10$, comparing the three systems Magma (V2.19-2), Sage (current github, 5.12.beta4) and FLINT (current github) on a machine with Intel Core i7-2620M CPU running at 2.70 GHz .
To avoid worrying about taking the same random sequences of elements, we instead fix elements as before.
We consider the following operations:

- Exponential
- Logarithm
- Frobenius
- Trace
- Norm

Exponential

Logarithm

Frobenius

Trace

Norm

Section 6

Precision

Current limitations

- A p-adic object is represented by a unique object storing both:
(1) the approximation data,
(2) the precision information.
- You only have one way to deal with precision of non-basic p-adic objects.

A new model for precision

- Xavier Caruso and David Roe have been working on this.
- Approximation and precision are two completely separated objects, wrapped into an inexact p-adic object.
- As a side-effect, you also get lazy p-adics for free.
- Experimental precision package available from CETHop's website (plus trac ticket 6667).
- Demo!

