
p-adics in Sage

Jean-Pierre Flori
ANSSI, France

Sage Days 53, Oxford
September 24, 2013

1 / 60



1 p-adics in Sage

2 p-adics in FLINT

3 p-adics in Mathemagix

4 p-adics in PARI

5 Benchmarks

6 Precision

2 / 60



Section 1

p-adics in Sage

3 / 60



p-adics in Sage

Representing p-adic numbers require an infinite amount of data. . .

. . . which our computers do not currently provide.

Sage provides:
1 Different representation of p-adics integers.
2 One representation of p-adic fields.
3 Unramified and Eisenstein extensions thereof.
4 General extensions currently being worked on by Julian Rüth.

4 / 60



Precision tracking

Currently, three different ways to represent p-adics in Sage:
1 fixed modulus (only for integral element),
2 capped absolute (only for integral element),
3 capped relative (both for p-adic ring and field).

These implementations basically represent p-adics using integers with
bounded precision for the unit part.

Another representation using power series is possible and can for
example be used to implement lazy p-adics.

Currently, there is only one way to deal with the precision of each
type of non-basic p-adic object.

Both these points are being addressed by Xavier Caruso and David
Roe.

5 / 60



Implementation details

p-adics numbers:

Fixed-modulus elements share a common precision and are represented
using one mpz_t.
Capped-absolute elements track their own precision and are represented
using one mpz_t.
Capped-relative elements track their own precision and are represented
using one mpz_t for the unit part and an additional integer for the
valuation.

q-adics numbers:

Through NTL’s ZZ_pX class.
Further details for precision tracking similar to those for p-adic
numbers.

6 / 60



Functionalities

All basic functionalities for p-adic and q-adic numbers.

And much more.

Demo!

7 / 60



Current and future developments

Refactoring of the p-adic code to use templates similar to what is
done for polynomials by David Roe and Julian Rüth.

This makes the code easier to maintain and make it possible to use
different low-level implementations much more easily.

This is trac ticket 12555 and is positively reviewed; hopefully to be
included in Sage 6.0.

Much more flexible precision models by Xavier Caruso and David Roe.

Experimental code available on CETHop’s project website.

General extension of p-adics numbers by Julian Rüth.

8 / 60



Section 2

p-adics in FLINT

9 / 60



FLINT: Fast Library for Number Theory

C library on top of GMP/MPIR, MPFR (with support for NTL).

FLINT 1 (2007/xx – 2010/12) originally developed by Hart, Harvey
and Novocin.

FLINT 2 (2011/01 –) is a completele rewrite by Bill Hart, Frederik
Johansson and Sebastian Pancratz.

About 130k lines of C code.

Used by Sage since 2007.

Used by Singular since 2011/12, code by Martin Lee; not used in
Sage, see trac ticket 13331.

10 / 60



p-adics in FLINT

padic module in FLINT 2 since version 2.2 (released 2011/06/04),
mostly by Sebastiab Pancratz.

padic_poly, padic_matrix and qadic modules on Pancratz’s
github since a few years, to be included into version 2.4.

About 14k lines of C code.

Backward incompatible changes between versions 2.3 and 2.4 (more
on that later).

11 / 60



p-adics in Sage using FLINT

Unramified p-adics implementation using the new template interface.

See trac ticket 14304 and
https://github.com/saraedum/sage-renamed/tree/Zq.

This relies on the fmpz_mod_poly module.

No implementation using the padic, padic_poly and qadic

modules yet?

12 / 60

https://github.com/saraedum/sage-renamed/tree/Zq


Other applications

Point counting using deformation theory available on Sebastian
Pancratz’s github.

Point counting à la Satoh, . . . , Harley using a custom qadic_dense

module available on Jean-Pierre Flori’s github.

Both of these are based on version 2.3, so have to be rebased on top
of the new padic structure..

13 / 60



Design decisions

Decision.

Each p-adic operation treats the input as exact data and requires the
desired output precision as a separate argument.

Rationale.

A number is just a number.

The intrinsic difficulty in p-adic arithmetic stems from the precision
loss, which depends on the particular operation.

Note that it would be straightforward to implement various precision
models on top of this.

14 / 60



Design decisions

An element x 6= 0 is typically stored as x = pu with v = ordp(x) ∈ Z and
u ∈ Z with p - u.
In 2.3 and before.

typedef struct {

fmpz u ;

long v ;

} padic_struct ;

After 2.3.

typedef struct {

fmpz u;

slong v;

slong N;

} padic_struct;

15 / 60



Design decisions

Additional information stored in a context object.
In 2.3 and before.

typedef struct {

fmpz_t p;

long N;

double pinv;

fmpz *pow;

long min;

long max;

enum padic_print_mode mode;

} padic_ctx_struct;

From 2.3 onward the precision is not stored anymore.

16 / 60



Design decisions

Remarks.

Improved maintainability by having one data type; no special case
depending on the size of p or pN ;

One could consider a different implementation performing basic
arithmetic to base pk with k s.t. such that pk fits in a word. This
would allow replacing mod pN operations by mod pk operations (with
a precomputed word-sized inverse) in many algorithms.

17 / 60



Functions for Qp

Addition, subtraction, negation

Multiplication, powers

Inversion

Inversion (with precomputed lifting structure)

Division

Square root

Exponential

Logarithm

Teichmüller lift

18 / 60



Addition

Signature

void padic_add(z, x, y, ctx)

Contract

Assumes that x and y are reduced modulo pN and returns z in reduced
form, too.

Algorithm

Avoids expensive modulo operation, replacing this by one comparison and
at most one subtraction.

19 / 60



Multiplication

Signature

void padic_mul(z, x, y, ctx)

Contract

Makes no assumptions on x and y, returns z reduced modulo pN .

20 / 60



Inversion

Signature

void padic_inv(z, x, ctx)

Contract

Makes no assumptions on x.

Algorithm

Hensel lifting on g(X) = xX − 1, starting from an inverse in Fp and using
the update formula z = z + z(1− xz).

21 / 60



Square root

Signature

int padic_sqrt(z, x, ctx)

Contract

Makes no assumptions on x. Returns whether x is actually a square and if
so computes its square root.

Algorithm

Hensel lifting to compute an inverse square root to half precision.

The final step performs the needed inversion as well.

22 / 60



Teichmüller lift

Signature

void padic_teichmuller(z, x, ctx)

Contract

Assumes only that ordp(x) = 0.

Algorithm

Hensel lifting, avoiding inversions.

23 / 60



Exponential

Signature

int padic_exp(z, x, ctx)

Contract

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, multiplying by the common factorial in
denominators, hence requiring only one inversion.

Rectangular splitting.

Balanced splitting.

24 / 60



Logarithm

Signature

int padic_log(z, x, ctx)

Contract

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

Rectangular splitting.

Balanced splitting (quasi-linear in N when p is fixed).

à la SST.

25 / 60



Polynomials over Qp

We represent a non-zero polynomial f(X) ∈ Qp[X] as

f(X) = pv(a0 + a1X + · · ·+ anX
n)

where a0, . . . , an ∈ Z and, for at least one i , p does not divide ai.

26 / 60



Functions for Qp[X]

Conversions to polynomials over Z and Q
Coefficient manipulation

Addition, subtraction, negation

Scalar multiplication

Multiplication

Powers

Series inversion

Derivative

Evaluation

Composition

27 / 60



Unramified extensions Qq

We represent an unramified extension of Qp as

Qq = Qp[X]/(f(X))

where f(X) mod p is separable, storing f(X) in a data structure for
sparse polynomials.
This allows for the reduction of a degree n polynomial modulo f(X) in
linear time O(n) (but slow Frobenius substitutions...).

28 / 60



Functions for Qq

Addition, subtraction, negation

Multiplication

Powers

Inversion

Exponential

Logarithm

Frobenius

Teichmüller lift

Trace

Norm

29 / 60



Exponential

Signature

int qadic_exp(z, x, ctx)

Contract

Return whether the series converges, and if so computes the exponential.

Algorithm

Evaluate the truncated series, performing an inversion at each step.

Rectangular splitting.

Balanced splitting.

30 / 60



Logarithm

Signature

int qadic_log(z, x, ctx)

Contract

Return whether the series converges, and if so computes the logarithm.

Algorithm

Evaluate the truncated series, performing an inversion for each summand.

Rectangular splitting.

Balanced splitting.

31 / 60



Frobenius

Signature

void qadic_frobenius(z, x, k, ctx)

Contract

Computes z = Σk(x).

Algorithm

Compute Σk(X) using Hensel lifting.

Perform polynomal composition modulo pN and f(X).

Generalize to use rectangular splitting.

32 / 60



Trace

Signature

void qadic_trace(z, x, ctx)

Contract

No assumptions are made on x.

Algorithm

Compute the traces of Xi iteratively.

Compute the trace of x.

33 / 60



Norm

Signature

void qadic_norm(z, x, ctx)

Contract

No assumptions are made on x.

Algorithm

Using an analytical formula.

Using resultants.

34 / 60



Future features?

Specialize code for finite fields.

Modular reduction for non-sparse modulus.

Other types of extensions.

Specific implementations for p = 2.

Wrap into Sage using the new template interface.

35 / 60



Section 3

p-adics in Mathemagix

36 / 60



Mathemagix

Computer algebra and analysis system coded in C++.

Main developers: Joris van der Hoeven, Gégoire Lecerf, Bernard
Mourrain, and others.

lines of code for all modules.

120k lines of code for the three modules (basix, numerix,
algebramix) needed for p-adics.

Planned to be integrated into Sage, see branch u/jpflori/mmx for
xperimentations.

37 / 60



p-adics in Mathemagix

p-adics are represented as power series.

Both naive and relaxed implementation available.

Possibility to group power series terms into blocks.

Choice between the different implementations mostly done through
templating.

Advantages over zealous implementations:

Increase precision as needed, no need to double it at each iteration.

Solve recursive equations, avoiding costly inversion of Jacobians.

38 / 60



A minimalistic wrapper was developed during Sage Days 52 by
Jérémy Berthomieux, Xavier Caruso, and Jean-Pierre Flori.

Unfortunately, Cython does not support templated functions (yet?),
which makes the wrapper code quite ugly and hard to extend.

And the wrapper code seems buggy!

Demo!

39 / 60



Section 4

p-adics in PARI

40 / 60



PARI

C library geared toward number theory.

Currently maintained by Karim Belabas and Bill Allombert.

175k lines of code.

Offers stable (2.5.x) and development (2.6.x) branches.

One of the main pieces of Sage.

Sage currently ships the stable version of PARI.

41 / 60



p-adics in PARI

PARI exposes a t_PADIC type.

A t_PADIC object contains:
1 precision and valuation,
2 unit part,
3 powers of p.

Usual basic functionalities.

sqrt, sqrtn, exp, log, gamma, AGM.

Machinery for Hensel lifting on p-adic numbers and unramified
extensions.

Elliptic curves over p-adic numbers.

Very fast implementation of point counting à la Satoh on elliptic
curves in small characteristic.

42 / 60



Section 5

Benchmarks

43 / 60



Benchmarks for Qp

We present some timings for arithmetic in Qp mod pN where p = 17,
N = 2i, i = 0, ..., 10, comparing the three systems Magma (V2.19-2),
Sage (version 5.12.beta4, pulled from github), FLINT (pulled from
github), and PARI/GP (version 2.5.4) on a machine with Intel Core
i7-2620M CPU running at 2.70GHz.
To avoid worrying about taking the same random sequences of elements,
we instead fix elements a = 33N , b = 52N (and variations thereof) modulo
pN .
We consider the following operations:

Addition

Multiplication

Inversion

Square root

Teichmüller lift

Exponential

Logarithm
44 / 60



Addition

0 2 4 6 8 10

102

103

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

45 / 60



Multiplication

0 2 4 6 8 10

102

103

104

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

46 / 60



Inversion

0 2 4 6 8 10

102

103

104

105

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

47 / 60



Square root

0 2 4 6 8 10

103

104

105

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

48 / 60



Teichmüller lift

0 2 4 6 8 10
101

102

103

104

105

106

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

49 / 60



Exponential

0 2 4 6 8 10

101

102

103

104

105

106

107

108

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

50 / 60



Logarithm

0 2 4 6 8 10
101

102

103

104

105

106

107

108

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

PARI/GP

51 / 60



Benchmarks for Qq

We present some timings for arithmetic in Qq mod pN where p = 17,
N = 2i, i = 0, ..., 10, comparing the three systems Magma (V2.19-2),
Sage (current github, 5.12.beta4) and FLINT (current github) on a
machine with Intel Core i7-2620M CPU running at 2.70GHz.
To avoid worrying about taking the same random sequences of elements,
we instead fix elements as before.
We consider the following operations:

Exponential

Logarithm

Frobenius

Trace

Norm

52 / 60



Exponential

0 2 4 6 8 10
101

103

105

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

53 / 60



Logarithm

0 2 4 6 8 10

102

103

104

105

106

107

108

109

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

54 / 60



Frobenius

0 2 4 6 8 10

105

106

107

108

109

1010

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

55 / 60



Trace

0 2 4 6 8 10

104

105

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

56 / 60



Norm

0 2 4 6 8 10

102

103

104

105

106

107

i

T
im

e
(n

s.
)

Magma
Sage

FLINT

57 / 60



Section 6

Precision

58 / 60



Current limitations

A p-adic object is represented by a unique object storing both:
1 the approximation data,
2 the precision information.

You only have one way to deal with precision of non-basic p-adic
objects.

59 / 60



A new model for precision

Xavier Caruso and David Roe have been working on this.

Approximation and precision are two completely separated objects,
wrapped into an inexact p-adic object.

As a side-effect, you also get lazy p-adics for free.

Experimental precision package available from CETHop’s website
(plus trac ticket 6667).

Demo!

60 / 60


	p-adics in Sage
	p-adics in FLINT
	p-adics in Mathemagix
	p-adics in PARI
	Benchmarks
	Precision

