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Generalities of zeta functions

Zeta functions

For X an algebraic variety of dimension n over Fq, its zeta function is

Z (X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
∈ ZJT K

This is a rational function of T .

Now assume X is smooth proper. Then

Z (X ,T ) =
2n∏
i=0

Pi (X ,T )(−1)
i+1

=
P1(X ,T ) · · ·P2n−1(X ,T )

P0(X ,T ) · · ·P2n(X ,T )

for some Pi (X ,T ) ∈ 1 + TZ[T ] with C-roots of norm q−i/2. Moreover,

P2n−i (X ,T−1) = ±q∗T ∗Pi (X ,T ).

If X lifts to characteristic 0, then deg Pi is the i-th Betti number of the lift.
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Generalities of zeta functions

The zeta function problem

Given X in an explicit form (i.e., defining equations), one would like to
compute Z (X ,T ). In principle this is a finite computation once one
bounds the degree of the rational function, but in most cases the obvious
computation is infeasible!

A better approach is to interpret Pi (X ,T ) as the (reciprocal)
characteristic polynomial of a linear transformation on some vector space.
One such interpretation is provided by étale cohomology, but this is
unsuitable for numerical computations.

By contrast, p-adic analogues of étale cohomology translate much more
directly into algorithms. For instance, the first proof of rationality (by
Dwork) can be made algorithmic (Lauder–Wan).
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Generalities of zeta functions

Sufficient p-adic precision

Write q = pa with p prime.

Suppose deg Pi is known for some i . Thanks to the bound on roots, for
some explicitly computable N, we may determine Pi exactly from its
coefficients modulo pN .

That is, we may compute Pi (X ,T ) by computing it as a p-adic polynomial
to sufficient precision, or by identifying it as the reciprocal characteristic
polynomial of a p-adic matrix computed to sufficient precision.
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Generalities of zeta functions

The Lefschetz hyperplane theorem

In the examples we will consider, X will be not just proper but also
projective. In this case, for H a hyperplane section,

Pi (X ,T ) = Pi (H,T ) (i = 0, . . . , n − 1).

In practice, this will mean that we need only compute Pn(X ,T ).
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Generalities of zeta functions

A precision refinement

If Pn(X ,T ) has degree d , then it is determined by the coefficients of T i

for i = 0, . . . , bd/2c. The coefficient of T bd/2c has absolute value at most(
d

bd/2c

)
q(n/2)bd/2c;

if pN exceeds twice this bound, then Pn(X ,T ) is determined by its
reduction modulo pN .

However, this is not best possible! In fact, Pn(X ,T ) is determined by its
reduction modulo pN provided that

pN >
2d

i
qni/2 (i = 0, . . . , bd/2c).

This follows from the Newton identities and the fact that the i-th power
sum of the reciprocal roots of Pn(X ,T ) has norm at most dqni/2.
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Generalities of zeta functions

Zeta functions and the Hodge filtration

Suppose that X admits a smooth projective lift to characteristic 0 with
Hodge numbers hi ,j . The values hi ,n−i then imply some p-adic divisibility
for coefficients of Pn(X ,T ): the Newton polygon of Pn(X ,T ) lies above
the Hodge polygon. For example, if X is a quartic K3 surface in P3, then
the coefficient of T i is divisible by pi−1.

If one is computing Pn(X ,T ) as the characteristic polynomial of a matrix
A over Zq coming from p-adic cohomology, the Hodge numbers give lower
bounds on the elementary divisors of A. This can be harnessed to reduce
sufficient precision, e.g., for a quartic K3 surface over Fp, from p11 to p2

(say for p > 17).
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Some examples of p-adic algorithms
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Some examples of p-adic algorithms

Extreme generality: the Lauder-Wan method

Dwork’s proof of the rationality of Z (X ,T ) reduces to the case of an
affine hypersurface, for which one writes down a trace formula involving a
compact operator on an infinite-dimensional p-adic vector space.

By careful bounding, Lauder and Wan extracted from this an algorithm for
computing Z (X ,T ). If X is of degree d and fixed dimension over Fq with
q = pa, this runs in time poly(p, d , a).

Unfortunately, the implied exponents and constants seem to make this
algorithm infeasible. Some special cases can be made to work (e.g.,
Artin-Schreier curves).

Harvey is working on a variant of Lauder–Wan modeled on Hasse-Witt
matrices.
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Some examples of p-adic algorithms

Extreme specificity: Elliptic curves

For ordinary elliptic curves, Satoh described an algorithm for computing
Z (X ,T ) using the Deuring-Serre-Tate canonical lift. This runs in time
poly(p)a3+o(1) and is quite feasible for small p.

When p = 2, one can do better using Mestre’s AGM iteration, replacing a3

with a2.

However, neither of these generalizes well even to genus 2 curves.

Kiran S. Kedlaya (UCSD) Zeta functions of toric hypersurfaces 12 / 32



Some examples of p-adic algorithms

Less specificity: curves

For hyperelliptic curves of genus g (with p > 2 and having a rational
Weierstrass point), Kedlaya described an algorithm for computing Z (X ,T )
by realizing P1(X ,T ) as the characteristic polynomial of Frobenius on
Monsky-Washnitzer cohomology of the affine curve obtained by removing
the Weierstrass points. This runs in time (pg4a3)1+ε and is feasible.

This can be generalized (with different exponents): hyperelliptic curves
with p = 2 (Denef-Vercauteren) or having no rational Weierstrass point
(Harrison), superelliptic curves (Gaudry–Gürel), Ca,b-curves
(Denef–Vercauteren), nondegenerate curves
(Castryck–Denef–Vercauteren), all curves (Tuitman).

An alternate approach, which may be more practical in the general case,
uses the cup product duality (Besser–de Jeu–Escriva).
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Some examples of p-adic algorithms

Some improvements for hyperelliptic curves

Harvey improved the dependence on p for hyperelliptic curves to p1/2+o(1).
This uses a modified description of the Frobenius action which we will see
again later, plus a method for accelerating matrix recurrences
(Chudnovskys, Bostan–Gaudry–Schost).

For a hyperelliptic curve over Q, Harvey described a method for amortizing
the computation of zeta functions over Fp for all p ≤ x , to get average
polynomial time (i.e., time poly(log(p), a, g) per prime). This incorporates
an idea of Gerbicz from the context of computing Wilson quotients (i.e.,
(p − 1)! mod p2) using balanced remainder trees.
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Some examples of p-adic algorithms

Higher dimensions: projective hypersurfaces

For smooth projective hypersurfaces, Abbott–Kedlaya–Roe described an
algorithm for computing Z (X ,T ) by working in the affine complement; we
will see this trick again later. Unfortunately, the dependence on p goes like
pn for n = dim(X ). The analogue of Castryck–Denef–Vercauteren behaves
similarly.

Some alternatives that alleviate the dependence on p are Lauder’s
deformation method and fibration method. However, these seem to be
feasible (so far) only for sparse polynomials.

Also available (and maybe feasible?) for sparse polynomials is
Sperber–Voight, based on Dwork cohomology.

Hereafter, we describe a variant of AKR which has good (namely linear)
dependence on p, can handle dense polynomials, and is feasible (shown by
example!). One tradeoff is that we restrict the class of projective
hypersurfaces slightly, but as a bonus we pick up many more examples.
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Nondegenerate toric hypersurfaces

Lattices and differentials

Let R be a ring. Let L be a lattice of rank n. Let L∨ := HomZ(L,Z)
denote the dual lattice.

Let R[L] denote the monoid algebra. Concretely, if we fix a basis
e1, . . . , en of L, we obtain an isomorphism

R[L] ∼= R[x±1 , . . . , x
±
n ], [ei ] 7→ xi .

Each λ ∈ L∨ defines a derivation ∂λ on R[L] via the formula

∂λ([v]) = λ(v)[v] (v ∈ L);

these satisfy ∂λ1+λ2 = ∂λ1 + ∂λ2 . With a basis as above, for
e∨1 , . . . , e

∨
n ∈ L∨ the dual basis,

∂e∨i = xi
∂

∂xi
.
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Nondegenerate toric hypersurfaces

Polytopes and projective toric varieties

Let ∆ be a convex lattice polytope of full dimension in LR := L⊗Z R, i.e.,
the convex hull of a finite subset of L not contained in any hyperplane.
The cone over this polytope is then a fan defining a (polarized) projective
toric variety over R. In simple cases, this can be computed as

X := Proj P, P :=
∞⊕
d=0

Pd , Pd := R[d∆ ∩ L]

but in bad cases (e.g., for ∆ = Conv(0, e1, e2, e1 + e2 + 3e3)) one must
take P to be Cox’s homogeneous coordinate ring.

For example, for ∆ the simplex with vertices 0, e1, . . . , en, we get
projective space with its usual O(1). We similarly get weighted projective
spaces, products, toric blowups, etc. Replacing ∆ by d∆ preserves X but
replaces the polarization by its d-th power.

Kiran S. Kedlaya (UCSD) Zeta functions of toric hypersurfaces 18 / 32



Nondegenerate toric hypersurfaces

Nondegeneracy

We say f ∈ Pd is nondegenerate if the hypersurface

Zf := Proj P/(f )

cut out by f has transversal intersection with each torus in the natural
stratification of X . In particular, this is required for the zero-dimensional
strata, so f must have Newton polytope d∆.

It is equivalent to require that the toric Jacobian ideal

If = (f , δλ(f ) : λ ∈ L∨)

is irrelevant, that is, the toric Jacobian ring Jf := P/If is module-finite
over R. This condition is generic for “nice” P.

Note: if f is nondegenerate, then Zf is “no more singular than X ”.
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Nondegenerate toric hypersurfaces

Some examples of nondegenerate hypersurfaces

n Vertices of ∆ Resulting hypersurface

2 0, de1, de2 Smooth plane curve of genus
(d−1

2

)
2 0, (2g + 1)e1, e2 Odd hyperelliptic curve of genus g

2 0, ae1, be2 Ca,b-curve

2
0, (g + 1)e1, 2e2,
(g + 1)e1 + 2e2

Even hyperelliptic curve of genus g

3 0, 4e1, 4e2, 4e3 Quartic K3 surface

4 0, 5e1, . . . , 5e5 Quintic Calabi-Yau threefold
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Controlled reduction in p-adic cohomology

Monsky-Washnitzer cohomology

From now on, work over R = Zq and take f ∈ P1 nondegenerate. (If
f ∈ Pd for d > 0, we may replace ∆ with d∆ and then proceed.) Put
Uf := X \ Zf ; this is an affine scheme with coordinate ring

S =
∞⊕

m=0

f −mPm.

The weak completion S† of S consists of infinite series
∑∞

m=0 gmf −m with
gm ∈ Pm such that for some a, b > 0 (depending on the series),

vp(gm) ≥ am − b (m ≥ 0).

The Monsky-Washnitzer cohomology of UFq is the cohomology of the
(continuous) de Rham complex ΩS†[p−1]/Qq

.
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Controlled reduction in p-adic cohomology

Action of Frobenius

Define a (semilinear) endomorphism σ of S† as the absolute Frobenius lift
on R, the substitution [v] 7→ [v]p on monomials, and

gmf −m 7→
∞∑
i=0

σ(gm)

(
−m

i

)
(σ(f )− f p)i f −p(m+i).

The induced (linear) action of σa on MW cohomology computes Z (Zf ,T ).
More precisely, for

Hn := Ωn/d(Ωn−1),

we have

Z (Zf ,T ) =
1

(1− T )(1− qT ) · · · (1− qn−1T )
Pf (T )(−1)

n

Pf (T ) = det(1− q−1Tσa,Hn ⊗Zq Qq).
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Controlled reduction in p-adic cohomology

Griffiths-Dwork reduction

To compute the action of σa on the finite-dimensional Qq-vector space
Hn ⊗Zq Qq, we choose a basis, apply σa to each basis element, truncate
the infinite sum somewhere, then reduce the result in cohomology. One
way to do this is the Griffiths-Dwork reduction: for

ω = dlog[e1] ∧ · · · ∧ dlog[en],

for gm ∈ Pm, λ ∈ L∨ we have

gmf

f m+1
ω ≡ gm

f m
ω

gm∂λ(f )

f m+1
ω ≡ 1

m

∂λ(gm)

f m
ω (m > 0).

Using a theorem of Macaulay, we lower the pole order to n and then finish
with explicit linear algebra. This recovers the AKR algorithm.

Unfortunately, this involves dense polynomials of degree pn, and thus an
unavoidable factor of pn in the runtime. But there is another way...
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Controlled reduction in p-adic cohomology

A word on precision

Since the reduction process involves denominators, truncating σ modulo
pN does not guarantee correct computation of the matrix of action
modulo pN .

However, the loss of precision is bounded above by n log(pN), so the
necessary working precision is not much larger than the sufficient final
precision. We will hereafter ignore the distinction between the two. (It is
particularly easy to analyze the situation when p > n.)
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Controlled reduction in p-adic cohomology

A sparse representation of Frobenius

Note that modulo pN ,

σ
(gm

f m

)
≡ σ(gm)

N−1∑
i=0

(
−m

i

)
(σ(f )− f p)i f −p(m+i)

= σ(gm)
N−1∑
i=0

(
−m

i

)
f −p(m+i)

i∑
j=0

(−1)i−j
(

i

j

)
σ(f )j f p(i−j)

= σ(gm)
N−1∑
j=0

(
−m

j

)
σ(f )j f −p(m+j)

N−1∑
i=j

(
m + i − 1

m + j − 1

)

=
N−1∑
j=0

(
−m

j

)(
m + N − 1

N − j − 1

)
σ(gmf j)f −p(m+j).

The last expression is no longer the truncation of a p-adically convergent
series, but no matter; it involves only p-th power monomials!
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Controlled reduction in p-adic cohomology

Controlled reduction

By the nondegeneracy hypothesis, we can construct linear maps
π0, . . . , πn : Pn+1 → Pn such that

Pn+1(gn+1) = π0(gn+1)f +
n∑

i=1

πi (gn+1)∂e∗i (f ).

Then for any m, j ≥ 0 and any monomials µ ∈ P1, ν ∈ Pm,

gnµ
j+1ν

f m+n+j+1
ω ≡ (m + n + j)−1(Rµ,ν(gn) + jSµ(gn))

µjν

f m+n+j
ω

for

Rµ,ν(x) := (m + n)π0(µx) +
n∑

h=1

(∂e∗h + e∗h(ν))(πh(µx))

Sµ(x) := π0(µx) +
n∑

h=1

e∗h(µ)πh(µx).
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Controlled reduction in p-adic cohomology

More on controlled reduction

We thus can strip out µp by multiplying together p matrices of size

#(n∆ ∩ L) ∼ nn Vol(∆).

With a slightly more involved process, we can reduce the matrix size to
n! Vol(∆), saving a factor of (nn/n!) ∼ en.

In case P is generated in degree 1, we can use controlled reduction to
completely simplify the expressions occuring in the sparse Frobenius
expansion.

Otherwise, the only issue is caused by monomials of the form σ(gm) for
m ∈ {1, . . . , n}. This can be resolved in various ways, e.g., by writing a
small power of gm as a product of degree 1 monomials.

In any case, one must do some residual linear algebra at the end to reduce
the matrix to the correct size (roughly a factor of n). For instance, for a
quartic K3 surface, one must reduce the matrix size from 64 to 21.
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Controlled reduction in p-adic cohomology

A bit of complexity analysis

Unless logp q is large, the dominant factor is the rounds of controlled
reduction. The number of such rounds is

#((n + N)∆ ∩ L) ∼ (n + N)n Vol(∆)

Each round involves multiplying p matrices of size n! Vol(∆), so with
straightforward matrix arithmetic we have O(p(n + N)n(n!)3 Vol(∆)4)
arithmetic operations. Note that the dependence on p is linear! (Warning:
one must also factor in the p-adic precision.)

One can easily adapt for square-root dependence in p or average
polynomial time dependence in log p, but we have not attempted this.
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Controlled reduction in p-adic cohomology

A numerical example

This example computed by Edgar Costa (NYU) using C++/NTL.

Take n := 3, ∆ := Conv(0, 4e1, 4e2, 4e3). Write x0, x1, x2, x3 for
[0], [e1], [e2], [e3] and put

f := 25163x4
0 + 9405x3

0x1 + 85x2
0x2

1 + 30034x0x3
1 + 21740x4

1

+ 14747x3
0x2 + 35394x2

0x1x2 + 13683x0x2
1x2 + 12720x3

1x2

+ 36331x2
0x2

2 + 23023x0x1x2
2 + 25667x2

1x2
2 + 7066x0x3

2 + 6479x1x3
2

+ 8778x4
2 + 40922x3

0x3 + 38119x2
0x1x3 + 48775x0x2

1x3 + 9720x3
1x3

+ 20633x2
0x2x3 + 41354x0x1x2x3 + 31769x2

1x2x3 + 32904x0x2
2x3

+ 49443x1x2
2x3 + 24957x3

2x3 + 37766x2
0x2

3 + 8622x0x1x2
3 + 3377x2

1x2
3

+ 15688x0x2x2
3 + 10170x1x2x2

3 + 19668x2
2x2

3 + 2486x0x3
3 + 13807x1x3

3

+ 15264x2x3
3 + 27566x4

3 .

Then Zf is a nondegenerate quartic K3 surface in P3
Q.
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Controlled reduction in p-adic cohomology

A numerical example (continued)

Take p := 49999. In 5h45m on a single-core 2.6GHz Intel Xeon (Sandy
Bridge), one computes

P2(Zf ,T ) = 1 + a1T + a2pT 2 + · · ·+ a10p9T 10

− a10p10T 11 − · · · − a2p18T 19 − a1p19T 20 + p21

with

(a1, . . . , a10) =(33264,−81893,−32490, 86146, 23017,

− 55214,−22632,−2392, 43164, 47726).

This has roots in C as predicted by the Weil conjectures (see Sage
notebook).
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Controlled reduction in p-adic cohomology

What next?

It would be worth trying to build a Sage implementation which would
allow for arbitrary polytopes (as long as they are generated in degree 1).
This would allow experiments in many new examples!

To get reasonable results, it might be necessary to build the matrix
multiplication part of controlled reduction as a compiled black box.
However, one should be able to leave the rest in interpreted Sage.
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