Classical Mirror Constructions II
 The Batyrev-Borisov Construction

Ursula Whitcher
whitchua@uwec.edu

University of Wisconsin-Eau Claire
August 2013

Outline

Reflexive Polytopes

Hypersurfaces in Toric Varieties

K3 Surfaces

Symmetric Subfamilies

References

The Batyrev-Borisov Strategy

We can describe mirror families of Calabi-Yau manifolds using combinatorial objects called reflexive polytopes.

Lattice Polygons

Let N be a lattice isomorphic to \mathbb{Z}^{2}.

A lattice polygon is a polygon in the plane $N_{\mathbb{R}}$ which has vertices in the lattice.

Fano Polygons

We say a lattice polygon is Fano if it has only one lattice point, the origin, in its interior.

Describing a Fano Polygon

- List the vertices

Describing a Fano Polygon

- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

Describing a Fano Polygon

- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

- List the equations of the edges

Describing a Fano Polygon

- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

- List the equations of the edges

$$
\begin{aligned}
-x-y & =-1 \\
2 x-y & =-1 \\
-x+2 y & =-1
\end{aligned}
$$

A Dual Lattice

The dual lattice M of N is given by $\operatorname{Hom}(N, \mathbb{Z})$; it is also isomorphic to \mathbb{Z}^{2}. We write the pairing of $v \in N$ and $w \in M$ as $\langle v, w\rangle$. After choosing a basis, we may also use dot product notation:

$$
\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right)=n_{1} m_{1}+n_{2} m_{2}
$$

The pairing extends to a real-valued pairing on elements of $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$.

Polar Polygons

Edge equations define new polygons
Let Δ be a lattice polygon in $N_{\mathbb{R}}$ which contains $(0,0)$. The polar polygon Δ° is the polygon in $M_{\mathbb{R}}$ given by:

$$
\left\{\left(m_{1}, m_{2}\right):\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right) \geq-1 \text { for all }\left(n_{1}, n_{2}\right) \in \Delta\right\}
$$

Polar Polygons

Edge equations define new polygons
Let Δ be a lattice polygon in $N_{\mathbb{R}}$ which contains $(0,0)$. The polar polygon Δ° is the polygon in $M_{\mathbb{R}}$ given by:

$$
\left\{\left(m_{1}, m_{2}\right):\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right) \geq-1 \text { for all }\left(n_{1}, n_{2}\right) \in \Delta\right\}
$$

$$
\begin{aligned}
(x, y) \cdot(-1,-1) & =-1 \\
(x, y) \cdot(2,-1) & =-1 \\
(x, y) \cdot(-1,2) & =-1
\end{aligned}
$$

Polar Polygons

Edge equations define new polygons
Let Δ be a lattice polygon in $N_{\mathbb{R}}$ which contains (0,0). The polar polygon Δ° is the polygon in $M_{\mathbb{R}}$ given by:

$$
\left\{\left(m_{1}, m_{2}\right):\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right) \geq-1 \text { for all }\left(n_{1}, n_{2}\right) \in \Delta\right\}
$$

$$
\begin{aligned}
(x, y) \cdot(-1,-1) & =-1 \\
(x, y) \cdot(2,-1) & =-1 \\
(x, y) \cdot(-1,2) & =-1
\end{aligned}
$$

Mirror Pairs

If Δ is a Fano polygon, then:

- Δ° is a lattice polygon
- In fact, Δ° is another Fano polygon
- $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.

We say that . . .

- Δ is a reflexive polygon.
- Δ and Δ° are a mirror pair.

A Polygon Duality

Mirror pair of triangles

Figure: 3 boundary lattice points

Figure: 9 boundary lattice points

$$
3+9=12
$$

Classifying Fano Polygons

- We can classify Fano polygons up to a change of coordinates that acts bijectively on lattice points
- There are 16 isomorphism classes of Fano polygons

Mirror Pairs of Polygons

Other Dimensions

Definition

Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{q}\right\}$ be a set of points in \mathbb{R}^{k}. The polytope with vertices $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{q}\right\}$ is the convex hull of these points.

Polar Polytopes

Let $N \cong \mathbf{Z}^{n}$ be a lattice. A lattice polytope is a polytope in $N_{\mathbb{R}}$ with vertices in N.
As before, we have a dual lattice M and a pairing $\langle v, w\rangle$.
Definition
Let Δ be a lattice polytope in $N_{\mathbb{R}}$ which contains $(0, \ldots, 0)$. The polar polytope Δ° is the polytope in $M_{\mathbb{R}}$ given by:

$$
\begin{gathered}
\left\{\left(m_{1}, \ldots, m_{k}\right):\left\langle\left(n_{1}, \ldots, n_{k}\right),\left(m_{1}, \ldots, m_{k}\right)\right\rangle \geq-1\right. \\
\text { for all } \left.\left(n_{1}, \ldots, n_{k}\right) \in \Delta\right\}
\end{gathered}
$$

Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

- If Δ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- Δ and Δ° are a mirror pair.

Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

- If Δ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- Δ and Δ° are a mirror pair.

Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

- If Δ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- Δ and Δ° are a mirror pair.

Fano vs. Reflexive

- Every reflexive polytope is Fano
- In dimensions $n \geq 3$, not every Fano polytope is reflexive

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	
2	
3	
4	
5	

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	
3	
4	
5	

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	
4	
5	

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	4,319
4	
5	

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	4,319
4	$473,800,776$
5	

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	4,319
4	$473,800,776$
5	$? ?$

Mirror Polytopes Yield Mirror Spaces

Cones

A cone in N is a subset of the real vector space $N_{\mathbb{R}}=N \otimes \mathbb{R}$ generated by nonnegative \mathbb{R}-linear combinations of a set of vectors $\left\{v_{1}, \ldots, v_{m}\right\} \subset N$. We assume that cones are strongly convex, that is, they contain no line through the origin.

Figure: Cox, Little, and Schenk

Fans

A fan Σ consists of a finite collection of cones such that:

- Each face of a cone in the fan is also in the fan
- Any pair of cones in the fan intersects in a common face.

Figure: Cox, Little, and Schenk

Simplicial fans

We say a fan Σ is simplicial if the generators of each cone in Σ are linearly independent over \mathbb{R}.

Fans from polytopes

We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of $\diamond \subset N$.

2. Refine R by using other lattice points in \diamond as generators of one-dimensional cones.
3. Take the normal fan S to $\diamond^{\circ} \subset M$.

Toric varieties as quotients

- Let Σ be a fan in \mathbb{R}^{n}.
- Let $\left\{v_{1}, \ldots, v_{q}\right\}$ be generators for the one-dimensional cones of Σ.
- Σ defines an n-dimensional toric variety V_{Σ}.
- V_{Σ} is the quotient of a subset $\mathbb{C}^{q}-Z(\Sigma)$ of \mathbb{C}^{q} by a subgroup of $\left(\mathbb{C}^{*}\right)^{q}$.
- Each one-dimensional cone corresponds to a coordinate z_{i} on V_{Σ}.

Construction details: $Z(\Sigma)$

- Let \mathcal{S} denote any subset of $\Sigma(1)$ that does not span a cone of Σ.
- Let $\mathcal{V}(\mathcal{S}) \subseteq \mathbb{C}^{q}$ be the linear subspace defined by setting $z_{j}=0$ if the corresponding cone is in \mathcal{S}.
- $Z(\Sigma)=\cup_{\mathcal{S}} \mathcal{V}(\mathcal{S})$.

Construction details: $\operatorname{ker}(\phi)$

- $\left(\mathbb{C}^{*}\right)^{q}$ acts on $\mathbb{C}^{q}-Z(\Sigma)$ by coordinatewise multiplication.
- Write $v_{j}=\left(v_{j 1}, \ldots, v_{j n}\right)$
- Let $\phi:\left(\mathbb{C}^{*}\right)^{q} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$ be given by

$$
\phi\left(t_{1}, \ldots, t_{q}\right) \mapsto\left(\prod_{j=1}^{q} t_{j}^{v_{j 1}}, \ldots, \prod_{j=1}^{q} t_{j}^{v_{j n}}\right)
$$

The toric variety V_{Σ} associated with the fan Σ is given by

$$
V_{\Sigma}=\left(\mathbb{C}^{q}-Z(\Sigma)\right) / \operatorname{Ker}(\phi)
$$

A Small Example

Figure: 1D Polytope \diamond

Let R be the fan obtained by taking cones over the faces of \diamond. $Z(\Sigma)$ consists of points of the form (0,0).

$$
\begin{gathered}
V_{R}=\left(\mathbb{C}^{2}-Z(\Sigma)\right) / \sim \\
\left(z_{1}, z_{2}\right) \sim\left(\lambda z_{1}, \lambda z_{2}\right)
\end{gathered}
$$

where $\lambda \in \mathbb{C}^{*}$. Thus, $V_{R}=\mathbb{P}^{1}$.

Another Example

Let R be the fan obtained by taking cones over the faces of $\diamond . Z(\Sigma)$ consists of points of the form $\left(0,0, z_{3}, z_{4}\right)$ or $\left(z_{1}, z_{2}, 0,0\right)$.

Figure: Polygon \diamond

$$
\begin{gathered}
V_{R}=\left(\mathbb{C}^{4}-Z(\Sigma)\right) / \sim \\
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \sim\left(\lambda_{1} z_{1}, \lambda_{1} z_{2}, z_{3}, z_{4}\right) \\
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \sim\left(z_{1}, z_{2}, \lambda_{2} z_{3}, \lambda_{2} z_{4}\right)
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$. Thus, $V_{R}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Anticanonical Hypersurfaces

For each lattice point m in \diamond°, choose a parameter α_{m}. Use this information to define a polynomial:

$$
p_{\alpha}=\sum_{m \in M \cap \diamond^{\circ}} \alpha_{m} \prod_{j=1}^{q} z_{j}^{\left\langle v_{j}, m\right\rangle+1}
$$

Calabi-Yau Varieties

- If we use the fan R over the faces of \diamond (or, equivalently, the normal fan to \diamond°), p_{α} defines a Calabi-Yau variety.
- If we take a maximal simplicial refinement of R (using all the lattice points of \diamond), and $k \leq 4$, then p defines a smooth Calabi-Yau manifold V_{α}.
- Reversing the roles of \diamond and \diamond° yields paired families of hypersurfaces.
- In particular, we can use pairs of 4-dimensional reflexive polytopes to define paired families of Calabi-Yau threefolds.

Toric Divisors

Each nonzero lattice point v_{j} in \diamond defines a toric divisor, $z_{j}=0$. We can intersect these divisors with V_{α} to yield elements of $H^{1,1}\left(V_{\alpha}\right)$.

- Not all of the toric divisors are independent.
- For general α, a divisor corresponding to the interior lattice point of a facet will not intersect V_{α}.
- The intersection of a toric divisor with V_{α} may "split" into several components.

Counting Kähler Moduli

For $k \geq 4$,

$$
h^{1,1}\left(V_{\alpha}\right)=\ell(\diamond)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta})
$$

- $\ell()=$ number of lattice points
- $\ell^{*}()=$ number of lattice points in the relative interior of a polytope or face
- The Γ are codimension 1 faces of \diamond
- The Θ are codimension 2 faces of \diamond
- $\hat{\Theta}$ is the face of \diamond dual to Θ

Counting Complex Moduli

We know each lattice point in \diamond° corresponds to a monomial in p_{α}. For $k \geq 4$,

$$
h^{d-1,1}\left(V_{\alpha}\right)=\ell\left(\diamond^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right)
$$

- $\ell()=$ number of lattice points
- $\ell^{*}()=$ number of lattice points in the relative interior of a polytope or face
- The Γ° are codimension 1 faces of \diamond°
- The Θ° are codimension 2 faces of \diamond°
- $\hat{\Theta}^{\circ}$ is the face of \diamond dual to Θ°

Comparing V and V°

For $k \geq 4$,

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =\ell(\diamond)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta}) \\
h^{d-1,1}\left(V_{\alpha}\right) & =\ell\left(\diamond^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right)
\end{aligned}
$$

Comparing V and V°

For $k \geq 4$,

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =\ell(\diamond)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta}) \\
h^{d-1,1}\left(V_{\alpha}\right) & =\ell\left(\diamond^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) \\
h^{1,1}\left(V_{\alpha}^{\circ}\right) & =\ell\left(\diamond^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) \\
h^{d-1,1}\left(V_{\alpha}^{\circ}\right) & =\ell(\diamond)-k-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta})
\end{aligned}
$$

Mirror Symmetry from Mirror Polytopes

We have mirror families of Calabi-Yau varieties V_{α} and V_{α}° of dimension $d=k-1$.

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =h^{d-1,1}\left(V_{\alpha}^{\circ}\right) \\
h^{d-1,1}\left(V_{\alpha}\right) & =h^{1,1}\left(V_{\alpha}^{\circ}\right)
\end{aligned}
$$

An Example

Four-dimensional analogue:

- \diamond has vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.
- \diamond° has vertices $(-1,-1,-1,-1),(4,-1,-1,-1)$,
$(-1,4,-1,-1),(-1,-1,4,-1)$, and $(-1,-1,-1,4)$.

An Example

Four-dimensional analogue:

- \diamond has vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.
- \diamond° has vertices $(-1,-1,-1,-1),(4,-1,-1,-1)$,
$(-1,4,-1,-1),(-1,-1,4,-1)$, and $(-1,-1,-1,4)$.

$$
\begin{aligned}
h^{1,1}\left(V_{\alpha}\right) & =\ell(\diamond)-n-1-\sum_{\Gamma} \ell^{*}(\Gamma)+\sum_{\Theta} \ell^{*}(\Theta) \ell^{*}(\hat{\Theta}) \\
& =6-4-1-0-0=1 .
\end{aligned}
$$

Example (Continued)

$-\diamond$ has vertices $(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$.

- \diamond° has vertices $(-1,-1,-1,-1),(4,-1,-1,-1)$, $(-1,4,-1,-1),(-1,-1,4,-1)$, and $(-1,-1,-1,4)$.

$$
h^{1,1}\left(V_{\alpha}\right)=1
$$

$$
\begin{aligned}
h^{3-1,1}\left(V_{\alpha}\right) & =\ell\left(\diamond^{\circ}\right)-n-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) \\
& =126-4-1-20-0=101 .
\end{aligned}
$$

The Hodge Diamond

Calabi-Yau Threefolds

Extrapolations

By looking more carefully at the structure of a reflexive polytope, one can study...

- Fibrations of Calabi-Yau varieties
- Degenerations of Calabi-Yau varieties
- Calabi-Yau complete intersections

Dolgachev's K3 Mirror Prescription

- Let X be a K3 surface.

$$
H^{2}(X, \mathbb{Z}) \cong U \oplus U \oplus U \oplus E_{8} \oplus E_{8}
$$

- If X_{α} is a family of K3 surfaces polarized by a lattice L, then the mirror family X_{α}° should be polarized by a lattice \hat{L} such that

$$
L^{\perp}=\hat{L} \oplus n U
$$

- In particular, $\operatorname{rank}(L)+\operatorname{rank}(\hat{L})=20$.

Using Toric Divisors

Following Falk Rohsiepe, we observe ...

- We can intersect toric divisors with X_{α} to create a sublattice of $\operatorname{Pic}\left(X_{\alpha}\right)$
- We can compute the lattice pairings using purely combinatorial information about lattice points

Examining the Data

Set

$$
\rho(\diamond)=\ell\left(\diamond^{\circ}\right)-k-1-\sum_{\Gamma^{\circ}} \ell^{*}\left(\Gamma^{\circ}\right)+\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right) .
$$

\diamond	\diamond°	$\rho(\diamond)$	$\rho\left(\diamond^{\circ}\right)$
0	4311	1	19
1	4281	4	18
2	4317	1	19
3	4283	2	18
4	4286	2	18
5	4296	2	18
8	3313	9	17

A Toric Correction Term

Set

$$
\delta(\diamond)=\sum_{\Theta^{\circ}} \ell^{*}\left(\Theta^{\circ}\right) \ell^{*}\left(\hat{\Theta}^{\circ}\right)
$$

\diamond	\diamond°	$\rho(\diamond)$	$\rho\left(\diamond^{\circ}\right)$	$\delta(\diamond)$
0	4311	1	19	0
1	4281	4	18	2
2	4317	1	19	0
3	4283	2	18	0
4	4286	2	18	0
5	4296	2	18	0
8	3313	9	17	6

Rohsiepe's Formulation

- Let \diamond and \diamond° be a mirror pair of 3-dimensional reflexive polytopes, and let X_{α} and X_{α}° be the corresponding families of K3 surfaces.
- Write $i: X_{\alpha} \rightarrow W$ be the inclusion in the ambient toric variety, and let D_{j} be the toric divisors.
- Let L be the sublattice of $\operatorname{Pic}\left(X_{\alpha}\right)$ generated by $i^{*}\left(D_{j}\right)$
- Let \hat{L} be the sublattice of $\operatorname{Pic}\left(X_{\alpha}^{\circ}\right)$ generated by all of the components of the intersections $D_{j} \cap X_{\alpha}^{\circ}$

$$
L^{\perp}=\hat{L} \oplus U
$$

Some Picard rank 19 families

- Hosono, Lian, Oguiso, Yau:

$$
x+1 / x+y+1 / y+z+1 / z-\Psi=0
$$

- Verrill:

$$
(1+x+x y+x y z)(1+z+z y+z y x)=(\lambda+4)(x y z)
$$

- Narumiya-Shiga:

$$
\begin{array}{r}
Y_{0}+Y_{1}+Y_{2}+Y_{3}-4 t Y_{4} \\
Y_{0} Y_{1} Y_{2} Y_{3}-Y_{4}^{4}
\end{array}
$$

Toric realizations of the rank 19 families

The polar polytopes \diamond° for [HLOY04], [V96], and [NS01].

$$
f(t)=\left(\sum_{x \in \operatorname{vertices}\left(\diamond^{0}\right)} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}\right)+t \prod_{k=1}^{q} z_{k}
$$

What do these polytopes have in common?

What do these polytopes have in common?

- The only lattice points of these polytopes are the vertices and the origin.

What do these polytopes have in common?

- The only lattice points of these polytopes are the vertices and the origin.
- The group G of orientation-preserving symmetries of the polytope acts transitively on the vertices.

Another symmetric polytope

Figure: The skew cube

$$
f(t)=\left(\sum_{x \in \operatorname{vertices}\left(\diamond^{\circ}\right)} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}\right)+t \prod_{k=1}^{q} z_{k} .
$$

Dual rotations

Figure: \diamond

Figure: \diamond°

We may view a rotation as acting either on \diamond (inducing automorphisms on X_{t}) or on \diamond° (permuting the monomials of $f(t))$.

Symplectic Group Actions

Let G be a finite group of automorphisms of a K3 surface. For $g \in G$,

$$
g^{*}(\omega)=\rho \omega
$$

where ρ is a root of unity.
Definition
We say G acts symplectically if

$$
g^{*}(\omega)=\omega
$$

for all $g \in G$.

A subgroup of the Picard group

Definition

$$
S_{G}=\left(\left(H^{2}(X, \mathbb{Z})^{G}\right)^{\perp}\right.
$$

Theorem ([N80a])
S_{G} is a primitive, negative definite sublattice of $\operatorname{Pic}(X)$.

The rank of S_{G}

Lemma

- If X admits a symplectic action by the permutation group $G=\mathcal{S}_{4}$, then $\operatorname{Pic}(X)$ admits a primitive sublattice S_{G} which has rank 17.
- If X admits a symplectic action by the alternating group $G=\mathcal{A}_{4}$, then $\operatorname{Pic}(X)$ admits a primitive sublattice S_{G} which has rank 16.

Why is the Picard rank 19?

Figure: \diamond

We can use the orbits of G on \diamond to identify divisors in $\left(H^{2}\left(X_{t}, \mathbb{Z}\right)\right)^{G}$.

Why is the Picard rank 19?

Figure: \diamond

We can use the orbits of G on \diamond to identify divisors in $\left(H^{2}\left(X_{t}, \mathbb{Z}\right)\right)^{G}$.

- For the families of [HLOY04] and [V96], and the family defined by the skew cube, we conclude that $17+2=19$.
- For the family of [NS01], we conclude that $16+3=19$.

Collaborators

- Dagan Karp (Harvey Mudd College)
- Jacob Lewis (Universität Wien)
- Daniel Moore (HMC '11)
- Dmitri Skjorshammer (HMC '11)
- Ursula Whitcher (UWEC)

K3 surfaces from elliptic curves

Let E_{1} and E_{2} be elliptic curves, and let $A=E_{1} \times E_{2}$.

- The Kummer surface $\operatorname{Km}(A)$ is the minimal resolution of $A /\{ \pm 1\}$.
- The Shioda-Inose surface $S I(A)$ is the minimal resolution of $K m(A) / \beta$, where β is an appropriately chosen involution.

Picard-Fuchs equations

- A period is the integral of a differential form with respect to a specified homology class.
- Periods of holomorphic forms encode the complex structure of varieties.
- The Picard-Fuchs differential equation of a family of varieties is a differential equation that describes the way the value of a period changes as we move through the family.
- Solutions to Picard-Fuchs equations for holomorphic forms on Calabi-Yau varieties define the mirror map.

Picard-Fuchs equations for rank 19 families

Let M be a free abelian group of rank 19, and suppose
$M \hookrightarrow \operatorname{Pic}\left(X_{t}\right)$.

- The Picard-Fuchs equation is a rank 3 ordinary differential equation.
- The coefficients of the Picard-Fuchs equation are rational functions.
- The equation is Fuchsian (the singularities of the rational functions are controlled).

Symmetric Squares

- Let $L(y)$ be a homogeneous linear differential equation with coefficients in $\mathbb{C}(t)$.
- There exists a homogeneous linear differential equation $M(y)=0$ with coefficients in $\mathbb{C}(t)$, such that \ldots
- The solution space of $M(y)$ is the \mathbb{C}-span of

$$
\left\{\nu_{1} \nu_{2} \mid L\left(\nu_{1}\right)=0 \text { and } L\left(\nu_{2}\right)=0\right\} .
$$

Definition
$M(y)$ is the symmetric square of L.

Symmetric Square Formula

The symmetric square of the differential equation

$$
a_{2} \frac{\partial^{2} A}{\partial t^{2}}+a_{1} \frac{\partial A}{\partial t}+a_{0} A=0
$$

is

$$
\begin{aligned}
a_{2}^{2} \frac{\partial^{3} A}{\partial t^{3}}+3 a_{1} a_{2} \frac{\partial^{2} A}{\partial t^{2}}+\left(4 a_{0} a_{2}+\right. & \left.2 a_{1}^{2}+a_{2} a_{1}^{\prime}-a_{1} a_{2}^{\prime}\right) \frac{\partial A}{\partial t}+ \\
& \left(4 a_{0} a_{1}+2 a_{0}^{\prime} a_{2}-2 a_{0} a_{2}^{\prime}\right) A=0
\end{aligned}
$$

where primes denote derivatives with respect to t.

Picard-Fuchs equations and symmetric squares

Theorem
[D00, Theorem 5] The Picard-Fuchs equation of a family of rank-19 lattice-polarized K3 surfaces can be written as the symmetric square of a second-order homogeneous linear Fuchsian differential equation.

Quasismooth and regular hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in V_{Σ}. Suppose that X is described by a polynomial f in homogeneous coordinates.

Definition
If the derivatives $\partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is quasismooth.

Quasismooth and regular hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in V_{Σ}. Suppose that X is described by a polynomial f in homogeneous coordinates.

Definition
If the derivatives $\partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is quasismooth.

Definition
If the products $z_{i} \partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is regular and f is nondegenerate.

The Skew Octahedron

- Let \diamond be the reflexive octahedron shown above.
- \diamond contains 19 lattice points.
- Let R be the fan obtained by taking cones over the faces of \diamond. Then R defines a toric variety
$V_{R} \cong\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
- Consider the family of K3 surfaces X_{t} defined by $f(t)=\left(\sum_{x \in \operatorname{vertices}\left(\diamond^{\circ}\right)} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}\right)+t \prod_{k=1}^{q} z_{k}$.
- X_{t} are generally quasismooth but not regular.

The Picard-Fuchs equation

Theorem ([KLMSW10])
Let $A=\int \operatorname{Res}\left(\frac{\Omega_{0}}{f}\right)$. Then A is the period of a holomorphic form on X_{t}, and A satisfies the Picard-Fuchs equation

$$
\frac{\partial^{3} A}{\partial t^{3}}+\frac{6\left(t^{2}-32\right)}{t\left(t^{2}-64\right)} \frac{\partial^{2} A}{\partial t^{2}}+\frac{7 t^{2}-64}{t^{2}\left(t^{2}-64\right)} \frac{\partial A}{\partial t}+\frac{1}{t\left(t^{2}-64\right)} A=0 .
$$

As expected, the differential equation is third-order and Fuchsian.

Symmetric square root

The symmetric square root of our Picard-Fuchs equation is:

$$
\frac{\partial^{2} A}{\partial t^{2}}+\frac{\left(2 t^{2}-64\right)}{t\left(t^{2}-64\right)} \frac{\partial A}{\partial t}+\frac{1}{4\left(t^{2}-64\right)} A=0
$$

Semiample hypersurfaces

- Let R be a fan over the faces of a reflexive polytope
- Let Σ be a refinement of R
- We have a proper birational morphism $\pi: V_{\Sigma} \rightarrow V_{R}$
- Let Y be an ample divisor in V_{R}, and suppose $X=\pi^{*}(Y)$

Then X is semiample:

Definition

We say that a Cartier divisor D is semiample if D is generated by global sections and the intersection number $D^{n}>0$.

The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X :

$$
\text { Res : } H^{3}\left(V_{\Sigma}-X\right) \rightarrow H^{2}(X) .
$$

Anvar Mavlyutov showed that Res is well-defined for quasismooth, semiample hypersurfaces in simplicial toric varieties.

Two ideals

Definition
The Jacobian ideal $J(f)$ is the ideal of $\mathbb{C}\left[z_{1}, \ldots, z_{q}\right]$ generated by the partial derivatives $\partial f / \partial z_{i}, i=1 \ldots q$.
Definition
[BC94] The ideal $J_{1}(f)$ is the ideal quotient

$$
\left\langle z_{1} \partial f / \partial z_{1}, \ldots, z_{q} \partial f / \partial z_{q}\right\rangle: z_{1} \cdots z_{q} .
$$

The induced residue map

Let Ω_{0} be a holomorphic 3-form on V_{Σ}. We may represent elements of $H^{3}\left(V_{\Sigma}-X\right)$ by forms $\frac{P \Omega_{0}}{f^{k}}$, where P is a polynomial in $\mathbb{C}\left[z_{1}, \ldots, z_{q}\right]$.

Mavlyutov described two induced residue maps on semiample hypersurfaces:

- Res $: \mathbb{C}\left[z_{1}, \ldots, z_{q}\right] / J \rightarrow H^{2}(X)$ is well-defined for quasismooth hypersurfaces
- $\operatorname{Res}_{J_{1}}: \mathbb{C}\left[z_{1}, \ldots, z_{q}\right] / J_{1} \rightarrow H^{2}(X)$ is well-defined for regular hypersurfaces.

Whither injectivity?

Res J is injective for smooth hypersurfaces in \mathbb{P}^{3}, but this does not hold in general.

Theorem
[M00] If X is a regular, semiample hypersurface, then the residue map $\operatorname{Res}_{\jmath_{1}}$ is injective.

The Griffiths-Dwork technique Plan

We want to compute the Picard-Fuchs equation for a one-parameter family of K3 hypersurfaces X_{t}.

- Look for $\mathbb{C}(t)$-linear relationships between derivatives of periods of the holomorphic form
- Use Res」 to convert to a polynomial algebra problem in $\mathbb{C}(t)\left[z_{1}, \ldots, z_{q}\right] / J(f)$

The Griffiths-Dwork technique

Procedure
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

The Griffiths-Dwork technique

Procedure
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

2. Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^{j}}{d t^{j}}\left(\frac{\Omega}{f^{k}(t)}\right)\right)$ can be linearly independent

The Griffiths-Dwork technique

Procedure
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

2. Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^{j}}{d t^{j}}\left(\frac{\Omega}{f^{k}(t)}\right)\right)$ can be linearly independent
3. Use the reduction of pole order formula to compare classes of the form $\operatorname{Res}\left(\frac{P \Omega}{f^{k+1}(t)}\right)$ to classes of the form $\operatorname{Res}\left(\frac{Q \Omega}{f^{k}(t)}\right)$

The Griffiths-Dwork technique

Implementation

Reduction of pole order

$$
\frac{\Omega_{0}}{f^{k+1}} \sum_{i} P_{i} \frac{\partial f}{\partial x_{i}}=\frac{1}{k} \frac{\Omega_{0}}{f^{k}} \sum_{i} \frac{\partial P_{i}}{\partial x_{i}}+\text { exact terms }
$$

We use Groebner basis techniques to rewrite polynomials in terms of $J(f)$.

The Griffiths-Dwork technique

Advantages and disadvantages

Advantages
We can work with arbitrary polynomial parametrizations of hypersurfaces.

Disadvantages
We need powerful computer algebra systems to work with $J(f)$ and $\mathbb{C}(t)\left[z_{1}, \ldots, z_{q}\right] / J(f)$.

Modular Groups and Modular Curves

- Consider a modular group $\Gamma \subset P S L_{2}(\mathbb{R})$.
- 「 acts on the upper half-plane \mathbb{H} by linear fractional transformations:

$$
z \mapsto \frac{a z+b}{c z+d}
$$

- $\overline{\mathbb{H} / \Gamma}$ is a Riemann surface called a modular curve.
- The function field of a genus 0 modular curve is generated by a transcendental function called a hauptmodul.

Some modular groups

Congruence subgroups

$$
\Gamma_{0}(n)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}_{2}(\mathbb{Z}) \right\rvert\, c \cong 0(\bmod n)\right.
$$

Atkin-Lehner map

$$
w_{h}=\left(\begin{array}{cc}
0 & \frac{-1}{\sqrt{h}} \\
\sqrt{h} & 0
\end{array}\right) \in P S L_{2}(\mathbb{R})
$$

$\Gamma_{0}(n)+h$ is generated by $\Gamma_{0}(n)$ and w_{h}.

Mirror Moonshine

Mirror Moonshine for a one-parameter family of K3 surfaces arises when there exists a genus 0 modular group Γ such that . . .

- The Picard-Fuchs equation gives the base of the family the structure of a modular curve $\overline{\mathbb{H}} / \Gamma$, or a finite cover of the modular curve.
- The hauptmodul for Γ can be expressed as a rational function of the mirror map.
- The holomorphic solution to the Picard-Fuchs equation is a Γ-modular form of weight 2 .

Mirror Moonshine from geometry

Example	$[\mathrm{HLOY} 04]$	$[\mathrm{V} 96]$
Shioda-Inose structure	E_{1}, E_{2} are 6-isogenous	E_{1}, E_{2} are 3-isogenous
$\operatorname{Pic}(X)^{\perp}$	$H \oplus\langle 12\rangle$	$H \oplus\langle 6\rangle$
Γ	$\Gamma_{0}(6)+6$	$\Gamma_{0}(6)+3 \subset \Gamma_{0}(3)+3$

Geometry of the skew octahedron family

- X_{t} is a family of Kummer surfaces
- Each surface can be realized as $K m\left(E_{t} \times E_{t}\right)$
- The generic transcendental lattice is $2 H \oplus\langle 4\rangle$

The modular group

We use our symmetric square root and the table of [LW06] to show that:

$$
\begin{aligned}
\Gamma & =\Gamma_{0}(4 \mid 2) \\
& =\left\{\left.\left(\begin{array}{cc}
a & b / 2 \\
4 c & d
\end{array}\right) \in P S L_{2}(\mathbb{R}) \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}
\end{aligned}
$$

$\Gamma_{0}(4 \mid 2)$ is conjugate in $P S L_{2}(\mathbb{R})$ to $\Gamma_{0}(2) \subset P S L_{2}(\mathbb{Z})=\Gamma_{0}(1)+1$.

囯 Batyrev，V．and Cox，D．On the Hodge structure of projective hypersurfaces in toric varieties．Duke Mathematical Journal 75， 1994.

Doran，C．Picard－Fuchs uniformization and modularity of the mirror map．Communications in Mathematical Physics 212 （2000），no．3，625－647．

雷 Hosono，S．，Lian，B．H．，Oguiso，K．，and Yau，S．－T． Autoequivalences of derived category of a $K 3$ surface and monodromy transformations．Journal of Algebraic Geometry 13，no．3， 2004.

睩 Karp，D．，Lewis，J．，Moore，D．，Skjorshammer，D．，and Whitcher，U．＂On a family of K3 surfaces with \mathcal{S}_{4} symmetry＂． Arithmetic and geometry of K3 surfaces and Calabi－Yau threefolds，Fields Institute Communications．

目 Lian，B．H．and Wiczer，J．L．Genus Zero Modular Functions， 2006.
http：／／people．brandeis．edu／～lian／Schiff．pdf
嗇 Mavlyutov，A．Semiample hypersurfaces in toric varieties． Duke Mathematical Journal 101 （2000），no．1，85－116．

围 Narumiya，N．and Shiga，H．The mirror map for a family of K3 surfaces induced from the simplest 3－dimensional reflexive polytope．Proceedings on Moonshine and related topics，AMS 2001.

國 Nikulin，V．Finite automorphism groups of Kähler K3 surfaces． Transactions of the Moscow Mathematical Society 38， 1980.

冨 SAGE Mathematics Software，Version 3．4， http：／／www．sagemath．org／

Verrill, H. Root lattices and pencils of varieties. Journal of Mathematics of Kyoto University 36, no. 2, 1996.

