
Classical Mirror Constructions II

Classical Mirror Constructions II
The Batyrev-Borisov Construction

Ursula Whitcher
whitchua@uwec.edu

University of Wisconsin–Eau Claire

August 2013



Classical Mirror Constructions II

Outline

Reflexive Polytopes

Hypersurfaces in Toric Varieties

K3 Surfaces

Symmetric Subfamilies

References



Classical Mirror Constructions II

Reflexive Polytopes

The Batyrev-Borisov Strategy

We can describe mirror families of Calabi-Yau manifolds using
combinatorial objects called reflexive polytopes.
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Reflexive Polytopes

Lattice Polygons

Let N be a lattice isomorphic to Z2.

A lattice polygon is a polygon in the plane NR which has vertices
in the lattice.
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Reflexive Polytopes

Fano Polygons
We say a lattice polygon is Fano if it has only one lattice point,
the origin, in its interior.

Figure: A reflexive triangle
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Reflexive Polytopes

Describing a Fano Polygon

I List the vertices

{(0, 1), (1, 0), (−1,−1)}

I List the equations of the
edges

−x − y = −1

2x − y = −1

−x + 2y = −1
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Reflexive Polytopes

A Dual Lattice

The dual lattice M of N is given by Hom(N,Z); it is also
isomorphic to Z2. We write the pairing of v ∈ N and w ∈ M as
〈v ,w〉. After choosing a basis, we may also use dot product
notation:

(n1, n2) · (m1,m2) = n1m1 + n2m2

The pairing extends to a real-valued pairing on elements of NR and
MR.
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Reflexive Polytopes

Polar Polygons
Edge equations define new polygons

Let ∆ be a lattice polygon in NR which contains (0, 0). The polar
polygon ∆◦ is the polygon in MR given by:

{(m1,m2) : (n1, n2) · (m1,m2) ≥ −1 for all (n1, n2) ∈ ∆}

(x , y) · (−1,−1) = −1

(x , y) · (2,−1) = −1

(x , y) · (−1, 2) = −1

Figure: Our triangle’s polar polygon
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Reflexive Polytopes

Mirror Pairs

If ∆ is a Fano polygon, then:

I ∆◦ is a lattice polygon

I In fact, ∆◦ is another Fano polygon

I (∆◦)◦ = ∆.

We say that . . .

I ∆ is a reflexive polygon.

I ∆ and ∆◦ are a mirror pair.
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Reflexive Polytopes

A Polygon Duality

Mirror pair of triangles

Figure: 3 boundary lattice points Figure: 9 boundary lattice points

3 + 9 = 12
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Reflexive Polytopes

Classifying Fano Polygons

I We can classify Fano polygons up to a change of coordinates
that acts bijectively on lattice points

I There are 16 isomorphism classes of Fano polygons
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Reflexive Polytopes

Mirror Pairs of Polygons

Figure: F. Rohsiepe, “Elliptic Toric K3 Surfaces and Gauge Algebras”
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Reflexive Polytopes

Other Dimensions

Definition
Let {~v1, ~v2, . . . , ~vq} be a set of points in Rk . The polytope with
vertices {~v1, ~v2, . . . , ~vq} is the convex hull of these points.
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Reflexive Polytopes

Polar Polytopes

Let N ∼= Zn be a lattice. A lattice polytope is a polytope in NR
with vertices in N.
As before, we have a dual lattice M and a pairing 〈v ,w〉.
Definition
Let ∆ be a lattice polytope in NR which contains (0, . . . , 0). The
polar polytope ∆◦ is the polytope in MR given by:

{(m1, . . . ,mk) : 〈(n1, . . . , nk), (m1, . . . ,mk)〉 ≥ −1

for all (n1, . . . , nk) ∈ ∆}
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Reflexive Polytopes

Reflexive Polytopes

Definition
A lattice polytope ∆ is reflexive if ∆◦ is also a lattice polytope.

I If ∆ is reflexive, (∆◦)◦ = ∆.
I ∆ and ∆◦ are a mirror pair.

0 1 2−1−2 0 1 2−1−2
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Reflexive Polytopes

Fano vs. Reflexive

I Every reflexive polytope is Fano

I In dimensions n ≥ 3, not every Fano polytope is reflexive
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Reflexive Polytopes

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .
. .

Dimension Reflexive Polytopes
1

1

2

16

3

4,319

4

473,800,776

5

??
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Reflexive Polytopes

Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .
. .
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Hypersurfaces in Toric Varieties

Mirror Polytopes Yield Mirror Spaces

polytope ←→ polar polytopey y
toric variety ←→ polar toric varietyy y

hypersurface family←→mirror hypersurface family
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Hypersurfaces in Toric Varieties

Cones

A cone in N is a subset of the real vector space NR = N ⊗ R
generated by nonnegative R-linear combinations of a set of vectors
{v1, . . . , vm} ⊂ N. We assume that cones are strongly convex, that
is, they contain no line through the origin.

Figure: Cox, Little, and Schenk
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Hypersurfaces in Toric Varieties

Fans

A fan Σ consists of a finite collection of cones such that:

I Each face of a cone in the fan is also in the fan

I Any pair of cones in the fan intersects in a common face.

Figure: Cox, Little, and Schenk
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Hypersurfaces in Toric Varieties

Simplicial fans

We say a fan Σ is simplicial if the generators of each cone in Σ are
linearly independent over R.
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Hypersurfaces in Toric Varieties

Fans from polytopes
We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of � ⊂ N.

2. Refine R by using other lattice points in � as generators of
one-dimensional cones.

3. Take the normal fan S to �◦ ⊂ M.
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Hypersurfaces in Toric Varieties

Toric varieties as quotients

I Let Σ be a fan in Rn.

I Let {v1, . . . , vq} be generators for the one-dimensional cones
of Σ.

I Σ defines an n-dimensional toric variety VΣ.

I VΣ is the quotient of a subset Cq − Z (Σ) of Cq by a
subgroup of (C∗)q.

I Each one-dimensional cone corresponds to a coordinate zi on
VΣ.
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Hypersurfaces in Toric Varieties

Construction details: Z (Σ)

I Let S denote any subset of Σ(1) that does not span a cone of
Σ.

I Let V(S) ⊆ Cq be the linear subspace defined by setting
zj = 0 if the corresponding cone is in S.

I Z (Σ) = ∪SV(S).
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Hypersurfaces in Toric Varieties

Construction details: ker(φ)

I (C∗)q acts on Cq − Z (Σ) by coordinatewise multiplication.

I Write vj = (vj1, . . . , vjn)

I Let φ : (C∗)q → (C∗)n be given by

φ(t1, . . . , tq) 7→

 q∏
j=1

t
vj1
j , . . . ,

q∏
j=1

t
vjn
j


The toric variety VΣ associated with the fan Σ is given by

VΣ = (Cq − Z (Σ))/Ker(φ).
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Hypersurfaces in Toric Varieties

A Small Example

0 1 2−1−2

Figure: 1D Polytope �

Let R be the fan obtained by
taking cones over the faces of �.
Z (Σ) consists of points of the
form (0, 0).

VR = (C2 − Z (Σ))/ ∼

(z1, z2) ∼ (λz1, λz2)

where λ ∈ C∗. Thus, VR = P1.
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Hypersurfaces in Toric Varieties

Another Example

Figure: Polygon �

Let R be the fan obtained by taking cones over
the faces of �. Z (Σ) consists of points of the
form (0, 0, z3, z4) or (z1, z2, 0, 0).

VR = (C4 − Z (Σ))/ ∼

(z1, z2, z3, z4) ∼ (λ1z1, λ1z2, z3, z4)

(z1, z2, z3, z4) ∼ (z1, z2, λ2z3, λ2z4)

where λ1, λ2 ∈ C∗. Thus, VR = P1 × P1.
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Hypersurfaces in Toric Varieties

Anticanonical Hypersurfaces

For each lattice point m in �◦, choose a parameter αm. Use this
information to define a polynomial:

pα =
∑

m ∈ M∩�◦
αm

q∏
j=1

z
〈vj ,m〉+1
j



Classical Mirror Constructions II

Hypersurfaces in Toric Varieties

Calabi-Yau Varieties

I If we use the fan R over the faces of � (or, equivalently, the
normal fan to �◦), pα defines a Calabi-Yau variety.

I If we take a maximal simplicial refinement of R (using all the
lattice points of �), and k ≤ 4, then p defines a smooth
Calabi-Yau manifold Vα.

I Reversing the roles of � and �◦ yields paired families of
hypersurfaces.

I In particular, we can use pairs of 4-dimensional reflexive
polytopes to define paired families of Calabi-Yau threefolds.
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Hypersurfaces in Toric Varieties

Toric Divisors

Each nonzero lattice point vj in � defines a toric divisor, zj = 0.
We can intersect these divisors with Vα to yield elements of
H1,1(Vα).

I Not all of the toric divisors are independent.

I For general α, a divisor corresponding to the interior lattice
point of a facet will not intersect Vα.

I The intersection of a toric divisor with Vα may “split” into
several components.
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Hypersurfaces in Toric Varieties

Counting Kähler Moduli

For k ≥ 4,

h1,1(Vα) = `(�)− k − 1−
∑

Γ

`∗(Γ) +
∑

Θ

`∗(Θ)`∗(Θ̂)

I `() = number of lattice points

I `∗() = number of lattice points in the relative interior of a
polytope or face

I The Γ are codimension 1 faces of �
I The Θ are codimension 2 faces of �
I Θ̂ is the face of � dual to Θ
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Hypersurfaces in Toric Varieties

Counting Complex Moduli

We know each lattice point in �◦ corresponds to a monomial in pα.
For k ≥ 4,

hd−1,1(Vα) = `(�◦)− k − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦)

I `() = number of lattice points

I `∗() = number of lattice points in the relative interior of a
polytope or face

I The Γ◦ are codimension 1 faces of �◦
I The Θ◦ are codimension 2 faces of �◦
I Θ̂◦ is the face of � dual to Θ◦
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Hypersurfaces in Toric Varieties

Comparing V and V ◦

For k ≥ 4,

h1,1(Vα) = `(�)− k − 1−
∑

Γ

`∗(Γ) +
∑

Θ

`∗(Θ)`∗(Θ̂)

hd−1,1(Vα) = `(�◦)− k − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦)

h1,1(V ◦α) = `(�◦)− k − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦)

hd−1,1(V ◦α) = `(�)− k − 1−
∑

Γ

`∗(Γ) +
∑

Θ

`∗(Θ)`∗(Θ̂)
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Hypersurfaces in Toric Varieties

Mirror Symmetry from Mirror Polytopes

We have mirror families of Calabi-Yau varieties Vα and V ◦α of
dimension d = k − 1.

h1,1(Vα) = hd−1,1(V ◦α)

hd−1,1(Vα) = h1,1(V ◦α)
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Hypersurfaces in Toric Varieties

An Example

Four-dimensional analogue:
I � has vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

and (−1,−1,−1,−1).
I �◦ has vertices (−1,−1,−1,−1), (4,−1,−1,−1),

(−1, 4,−1,−1), (−1,−1, 4,−1), and (−1,−1,−1, 4).

h1,1(Vα) = `(�)− n − 1−
∑

Γ

`∗(Γ) +
∑

Θ

`∗(Θ)`∗(Θ̂)

= 6− 4− 1− 0− 0 = 1.
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Hypersurfaces in Toric Varieties

Example (Continued)

I � has vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
and (−1,−1,−1,−1).

I �◦ has vertices (−1,−1,−1,−1), (4,−1,−1,−1),
(−1, 4,−1,−1), (−1,−1, 4,−1), and (−1,−1,−1, 4).

h1,1(Vα) = 1

h3−1,1(Vα) = `(�◦)− n − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦)

= 126− 4− 1− 20− 0 = 101.
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Hypersurfaces in Toric Varieties

The Hodge Diamond
Calabi-Yau Threefolds

Vα

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

V ◦α

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1
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Hypersurfaces in Toric Varieties

Extrapolations

By looking more carefully at the structure of a reflexive polytope,
one can study . . .

I Fibrations of Calabi-Yau varieties

I Degenerations of Calabi-Yau varieties

I Calabi-Yau complete intersections
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K3 Surfaces

Dolgachev’s K3 Mirror Prescription

I Let X be a K3 surface.

H2(X ,Z) ∼= U ⊕ U ⊕ U ⊕ E8 ⊕ E8

I If Xα is a family of K3 surfaces polarized by a lattice L, then
the mirror family X ◦α should be polarized by a lattice L̂ such
that

L⊥ = L̂⊕ nU

I In particular, rank(L) + rank(L̂) = 20.
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K3 Surfaces

Using Toric Divisors

Following Falk Rohsiepe, we observe . . .

I We can intersect toric divisors with Xα to create a sublattice
of Pic(Xα)

I We can compute the lattice pairings using purely
combinatorial information about lattice points
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K3 Surfaces

Examining the Data

Set

ρ(�) = `(�◦)− k − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦).

� �◦ ρ(�) ρ(�◦)
0 4311 1 19
1 4281 4 18
2 4317 1 19
3 4283 2 18
4 4286 2 18
5 4296 2 18
8 3313 9 17
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K3 Surfaces

A Toric Correction Term

Set
δ(�) =

∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦).

� �◦ ρ(�) ρ(�◦) δ(�)
0 4311 1 19 0
1 4281 4 18 2
2 4317 1 19 0
3 4283 2 18 0
4 4286 2 18 0
5 4296 2 18 0
8 3313 9 17 6
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K3 Surfaces

Rohsiepe’s Formulation

I Let � and �◦ be a mirror pair of 3-dimensional reflexive
polytopes, and let Xα and X ◦α be the corresponding families of
K3 surfaces.

I Write i : Xα →W be the inclusion in the ambient toric
variety, and let Dj be the toric divisors.

I Let L be the sublattice of Pic(Xα) generated by i∗(Dj)

I Let L̂ be the sublattice of Pic(X ◦α) generated by all of the
components of the intersections Dj ∩ X ◦α

I

L⊥ = L̂⊕ U
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Symmetric Subfamilies

Some Picard rank 19 families

I Hosono, Lian, Oguiso, Yau:

x + 1/x + y + 1/y + z + 1/z −Ψ = 0

I Verrill:

(1 + x + xy + xyz)(1 + z + zy + zyx) = (λ+ 4)(xyz)

I Narumiya-Shiga:

Y0 + Y1 + Y2 + Y3 − 4tY4

Y0Y1Y2Y3 − Y 4
4
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Symmetric Subfamilies

Toric realizations of the rank 19 families

The polar polytopes �◦ for [HLOY04], [V96], and [NS01].

f (t) =

 ∑
x ∈ vertices(�◦)

q∏
k=1

z
〈vk ,x〉+1
k

+ t

q∏
k=1

zk .
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Symmetric Subfamilies

What do these polytopes have in common?

I The only lattice points of these polytopes are the vertices and
the origin.

I The group G of orientation-preserving symmetries of the
polytope acts transitively on the vertices.
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What do these polytopes have in common?

I The only lattice points of these polytopes are the vertices and
the origin.

I The group G of orientation-preserving symmetries of the
polytope acts transitively on the vertices.
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Symmetric Subfamilies

Another symmetric polytope

Figure: The skew cube

f (t) =

 ∑
x ∈ vertices(�◦)

q∏
k=1

z
〈vk ,x〉+1
k

+ t

q∏
k=1

zk .
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Symmetric Subfamilies

Dual rotations

Figure: � Figure: �◦

We may view a rotation as acting either on � (inducing
automorphisms on Xt) or on �◦ (permuting the monomials of
f (t)).
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Symmetric Subfamilies

Symplectic Group Actions

Let G be a finite group of automorphisms of a K3 surface. For
g ∈ G ,

g∗(ω) = ρω

where ρ is a root of unity.

Definition
We say G acts symplectically if

g∗(ω) = ω

for all g ∈ G .
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Symmetric Subfamilies

A subgroup of the Picard group

Definition

SG = ((H2(X ,Z)G )⊥

Theorem ([N80a])

SG is a primitive, negative definite sublattice of Pic(X ).
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Symmetric Subfamilies

The rank of SG

Lemma

I If X admits a symplectic action by the permutation group
G = S4, then Pic(X ) admits a primitive sublattice SG which
has rank 17.

I If X admits a symplectic action by the alternating group
G = A4, then Pic(X ) admits a primitive sublattice SG which
has rank 16.
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Symmetric Subfamilies

Why is the Picard rank 19?

Figure: �

We can use the orbits of G on � to identify divisors in
(H2(Xt ,Z))G .

I For the families of [HLOY04] and [V96], and the family
defined by the skew cube, we conclude that 17 + 2 = 19.

I For the family of [NS01], we conclude that 16 + 3 = 19.
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Symmetric Subfamilies

Why is the Picard rank 19?

Figure: �

We can use the orbits of G on � to identify divisors in
(H2(Xt ,Z))G .

I For the families of [HLOY04] and [V96], and the family
defined by the skew cube, we conclude that 17 + 2 = 19.

I For the family of [NS01], we conclude that 16 + 3 = 19.
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Symmetric Subfamilies

Collaborators

I Dagan Karp (Harvey Mudd College)

I Jacob Lewis (Universität Wien)

I Daniel Moore (HMC ’11)

I Dmitri Skjorshammer (HMC ’11)

I Ursula Whitcher (UWEC)
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Symmetric Subfamilies

K3 surfaces from elliptic curves

Let E1 and E2 be elliptic curves, and let A = E1 × E2.

I The Kummer surface Km(A) is the minimal resolution of
A/{±1}.

I The Shioda-Inose surface SI (A) is the minimal resolution of
Km(A)/β, where β is an appropriately chosen involution.
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Symmetric Subfamilies

Picard-Fuchs equations

I A period is the integral of a differential form with respect to a
specified homology class.

I Periods of holomorphic forms encode the complex structure of
varieties.

I The Picard-Fuchs differential equation of a family of varieties
is a differential equation that describes the way the value of a
period changes as we move through the family.

I Solutions to Picard-Fuchs equations for holomorphic forms on
Calabi-Yau varieties define the mirror map.
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Symmetric Subfamilies

Picard-Fuchs equations for rank 19 families

Let M be a free abelian group of rank 19, and suppose
M ↪→ Pic(Xt).

I The Picard-Fuchs equation is a rank 3 ordinary differential
equation.

I The coefficients of the Picard-Fuchs equation are rational
functions.

I The equation is Fuchsian (the singularities of the rational
functions are controlled).
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Symmetric Subfamilies

Symmetric Squares

I Let L(y) be a homogeneous linear differential equation with
coefficients in C(t).

I There exists a homogeneous linear differential equation
M(y) = 0 with coefficients in C(t), such that . . .

I The solution space of M(y) is the C-span of

{ν1ν2 | L(ν1) = 0 and L(ν2) = 0} .

Definition
M(y) is the symmetric square of L.
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Symmetric Subfamilies

Symmetric Square Formula

The symmetric square of the differential equation

a2
∂2A

∂t2
+ a1

∂A

∂t
+ a0A = 0

is

a2
2

∂3A

∂t3
+ 3a1a2

∂2A

∂t2
+ (4a0a2 + 2a2

1 + a2a′1 − a1a′2)
∂A

∂t
+

(4a0a1 + 2a′0a2 − 2a0a′2)A = 0

where primes denote derivatives with respect to t.
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Symmetric Subfamilies

Picard-Fuchs equations and symmetric squares

Theorem
[D00, Theorem 5] The Picard-Fuchs equation of a family of
rank-19 lattice-polarized K3 surfaces can be written as the
symmetric square of a second-order homogeneous linear Fuchsian
differential equation.
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Symmetric Subfamilies

Quasismooth and regular hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in VΣ.
Suppose that X is described by a polynomial f in homogeneous
coordinates.

Definition
If the derivatives ∂f /∂zi , i = 1 . . . q do not vanish simultaneously
on X , we say X is quasismooth.

Definition
If the products zi ∂f /∂zi , i = 1 . . . q do not vanish simultaneously
on X , we say X is regular and f is nondegenerate.
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Symmetric Subfamilies

The Skew Octahedron

I Let � be the reflexive octahedron shown above.

I � contains 19 lattice points.

I Let R be the fan obtained by taking cones over the faces of �.
Then R defines a toric variety
VR
∼= (P1 × P1 × P1)/(Z2 × Z2 × Z2).

I Consider the family of K3 surfaces Xt defined by

f (t) =
(∑

x ∈ vertices(�◦)

∏q
k=1 z

〈vk ,x〉+1
k

)
+ t

∏q
k=1 zk .

I Xt are generally quasismooth but not regular.
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Symmetric Subfamilies

The Picard-Fuchs equation

Theorem ([KLMSW10])

Let A =
∫
Res

(
Ω0
f

)
. Then A is the period of a holomorphic form

on Xt , and A satisfies the Picard-Fuchs equation

∂3A

∂t3
+

6(t2 − 32)

t(t2 − 64)

∂2A

∂t2
+

7t2 − 64

t2(t2 − 64)

∂A

∂t
+

1

t(t2 − 64)
A = 0.

As expected, the differential equation is third-order and Fuchsian.
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Symmetric Subfamilies

Symmetric square root

The symmetric square root of our Picard-Fuchs equation is:

∂2A

∂t2
+

(2t2 − 64)

t(t2 − 64)

∂A

∂t
+

1

4(t2 − 64)
A = 0.
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Symmetric Subfamilies

Semiample hypersurfaces

I Let R be a fan over the faces of a reflexive polytope

I Let Σ be a refinement of R

I We have a proper birational morphism π : VΣ → VR

I Let Y be an ample divisor in VR , and suppose X = π∗(Y )

Then X is semiample:

Definition
We say that a Cartier divisor D is semiample if D is generated by
global sections and the intersection number Dn > 0.
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Symmetric Subfamilies

The residue map

We will use a residue map to describe the cohomology of a K3
hypersurface X :

Res : H3(VΣ − X )→ H2(X ).

Anvar Mavlyutov showed that Res is well-defined for quasismooth,
semiample hypersurfaces in simplicial toric varieties.
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Symmetric Subfamilies

Two ideals

Definition
The Jacobian ideal J(f ) is the ideal of C[z1, . . . , zq] generated by
the partial derivatives ∂f /∂zi , i = 1 . . . q.

Definition
[BC94] The ideal J1(f ) is the ideal quotient

〈z1∂f /∂z1, . . . , zq∂f /∂zq〉 : z1 · · · zq.
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Symmetric Subfamilies

The induced residue map

Let Ω0 be a holomorphic 3-form on VΣ. We may represent
elements of H3(VΣ − X ) by forms PΩ0

f k
, where P is a polynomial in

C[z1, . . . , zq].

Mavlyutov described two induced residue maps on semiample
hypersurfaces:

I ResJ : C[z1, . . . , zq]/J → H2(X ) is well-defined for
quasismooth hypersurfaces

I ResJ1 : C[z1, . . . , zq]/J1 → H2(X ) is well-defined for regular
hypersurfaces.
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Symmetric Subfamilies

Whither injectivity?

ResJ is injective for smooth hypersurfaces in P3, but this does not
hold in general.

Theorem
[M00] If X is a regular, semiample hypersurface, then the residue
map ResJ1 is injective.
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Symmetric Subfamilies

The Griffiths-Dwork technique
Plan

We want to compute the Picard-Fuchs equation for a
one-parameter family of K3 hypersurfaces Xt .

I Look for C(t)-linear relationships between derivatives of
periods of the holomorphic form

I Use ResJ to convert to a polynomial algebra problem in
C(t)[z1, . . . , zq]/J(f )
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Symmetric Subfamilies

The Griffiths-Dwork technique
Procedure

1.

d

dt

∫
Res

(
PΩ

f k(t)

)
=

∫
Res

(
d

dt

(
PΩ

f k(t)

))
= −k

∫
Res

(
f ′(t)PΩ

f k+1(t)

)

2. Since H∗(Xt ,C) is a finite-dimensional vector space, only

finitely many of the classes Res
(

d j

dt j

(
Ω

f k (t)

))
can be linearly

independent

3. Use the reduction of pole order formula to compare classes of

the form Res
(

PΩ
f k+1(t)

)
to classes of the form Res

(
QΩ
f k (t)

)
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The Griffiths-Dwork technique
Procedure

1.

d

dt

∫
Res

(
PΩ

f k(t)

)
=

∫
Res

(
d

dt

(
PΩ

f k(t)

))
= −k

∫
Res

(
f ′(t)PΩ

f k+1(t)

)

2. Since H∗(Xt ,C) is a finite-dimensional vector space, only

finitely many of the classes Res
(

d j

dt j

(
Ω

f k (t)

))
can be linearly

independent

3. Use the reduction of pole order formula to compare classes of

the form Res
(

PΩ
f k+1(t)

)
to classes of the form Res

(
QΩ
f k (t)

)



Classical Mirror Constructions II

Symmetric Subfamilies

The Griffiths-Dwork technique
Implementation

Reduction of pole order

Ω0

f k+1

∑
i

Pi
∂f

∂xi
=

1

k

Ω0

f k

∑
i

∂Pi

∂xi
+ exact terms

We use Groebner basis techniques to rewrite polynomials in terms
of J(f ).
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Symmetric Subfamilies

The Griffiths-Dwork technique
Advantages and disadvantages

Advantages

We can work with arbitrary polynomial parametrizations of
hypersurfaces.

Disadvantages

We need powerful computer algebra systems to work with J(f ) and
C(t)[z1, . . . , zq]/J(f ).



Classical Mirror Constructions II

Symmetric Subfamilies

Modular Groups and Modular Curves

I Consider a modular group Γ ⊂ PSL2(R).

I Γ acts on the upper half-plane H by linear fractional
transformations:

z 7→ az + b

cz + d

I H/Γ is a Riemann surface called a modular curve.

I The function field of a genus 0 modular curve is generated by
a transcendental function called a hauptmodul.
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Symmetric Subfamilies

Some modular groups

Congruence subgroups

Γ0(n) =

{(
a b
c d

)
∈ PSL2(Z)

∣∣∣∣ c ∼= 0 (mod n)

Atkin-Lehner map

wh =

(
0 −1√

h√
h 0

)
∈ PSL2(R)

Γ0(n) + h is generated by Γ0(n) and wh.



Classical Mirror Constructions II

Symmetric Subfamilies

Mirror Moonshine

Mirror Moonshine for a one-parameter family of K3 surfaces arises
when there exists a genus 0 modular group Γ such that . . .

I The Picard-Fuchs equation gives the base of the family the
structure of a modular curve H/Γ, or a finite cover of the
modular curve.

I The hauptmodul for Γ can be expressed as a rational function
of the mirror map.

I The holomorphic solution to the Picard-Fuchs equation is a
Γ-modular form of weight 2.
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Symmetric Subfamilies

Mirror Moonshine from geometry

Example [HLOY04] [V96]

Shioda-Inose SI (E1 × E2) SI (E1 × E2)
structure E1, E2 are 6-isogenous E1, E2 are 3-isogenous

Pic(X )⊥ H ⊕ 〈12〉 H ⊕ 〈6〉
Γ Γ0(6) + 6 Γ0(6) + 3 ⊂ Γ0(3) + 3
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Geometry of the skew octahedron family

I Xt is a family of Kummer surfaces

I Each surface can be realized as Km(Et × Et)

I The generic transcendental lattice is 2H ⊕ 〈4〉
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Symmetric Subfamilies

The modular group

We use our symmetric square root and the table of [LW06] to show
that:

Γ = Γ0(4|2)

=

{(
a b/2

4c d

)
∈ PSL2(R)

∣∣∣∣ a, b, c , d ∈ Z
}

Γ0(4|2) is conjugate in PSL2(R) to Γ0(2) ⊂ PSL2(Z) = Γ0(1) + 1.
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