9/23/13 Tutorial-Coercions_and_actions -- Sage

Tutorial-Coercions_and_actions

Implementing arithmetic operations in Sage

Coercions and actions
© Simon King (September 2013)

Friedrich-Schiller-Universitdt Jena
simon.king@uni-jena.de

The aim of this tutorial is to show what needs to be implemented in order to enable arithmetic operations
between new and existing algebraic structures in Sage.

Table of contents

Arithmetics within one parent

Conversions and coercions between two parents

Pushout construction: Automatic creation of new parents (a teaser)
Actions

=

In this tutorial, we are implementing the set of m by » matrices over a given commutative ring, subject to the
usual multiplication rules of matrices. Our implementation is very slow and naive, and it will of course not replace
the existing implementation of matrix spaces. Our toy implementation only aims to demonstrate how one can
implement

Multiplication within an algebra (square matrices)

Mixing "new" and "old" matrices in arithmetics

Multiplication of rectangular matrices

Action by, e.g., permutation groups (and similarly action on, say, polynomials)

PR

Note that the existing implementation of matrix spaces in Sage does not implement coercion in the same way as
demonstrated here.

1. Arithmetics within one parent

This is not a talk about Sage's category framework, but we will need "categorial notions" in various places.

Def:

localhost:8081/home/admin/18/print 1/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

A Parent is an object of a sub-category of the category of sets. In particular, it contains elements.

Sage provides convenient base classes for a number of algebraic parent structures and their elements, and they
should be used.

In addition, Sage provides a "category framework", and one should indicate the category which a parent
belongs to---in addition to using algebraic base classes!

Matrix spaces are modules, and they are algebras if the matrices are square. Hence, we build our matrix spaces
on top of a base class sage.modules.module.Module, and refine the class using the category framework in the
case of square matrices.

It may seem strange that we build non-square matrices on top of a base class for ring elements, but the base
class of module elements strictly disallows n nternal multiplication (which I think is a bug).

The following tentative class definitions will be refined later.

from sage.modules.module import Module
from sage.structure.parent import Parent
class MyMatrixSpace(Module):
def init (self, B, m, n=None):
the base ring must be commutative
if B not in CommutativeRings():
raise ValueError, "commutative ring required"
if n is None:
n=m
self.m =m
self.n =n
Module. init should accept an argument "category"
and pass it through,
but it currently doesn't <BUG!>
Anyway, Module. 1init does not more than calling
Parent. init , so, the following is OK:
1f m==n:
if m==1:
Parent. init (self, base=B,
category=CommutativeAlgebras(B))
else:
Parent. init (self, base=B,
category=Algebras(B))
else:
Parent. 1init (self, base=B, category=Modules(B))
def nrows(self):
return self.m
def ncols(self):
return self.n

localhost:8081/home/admin/18/print 2/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

def repr (self):
NOTE: Single underscore
return "Our space of %sx%s matrices over %s"%
(self.m,self.n,self.base())
def cmp_ (self, other):
c = cmp(self. <class , other. class)

if c:

return c
c = cmp(self.nrows(), other.nrows())
if c:

return c
c = cmp(self.ncols(), other.ncols())
if c:

return c

return cmp(self.base(), other.base())

Sometimes our matrix spaces are just modules and not algebras. However, Sage's base class
<ModuleElements> raises an error if an mternal multiplication is attempted. Hence, we start with <RingElement>
and square matrices, and cope with the absence of internal multiplication for non-square matrices later. First, we
only take care of the data structure and the string representation:

from sage.rings.ring element import RingElement
class MyMatrix(RingElement):
def init (self, parent, data):
self.data = [list(r) for r in data]
RingElement. 1init (self, parent)
def repr (self):
return os.linesep.join([repr(r) for r in self.data])
def iter (self):
for r in self.data:
yield r
def getitem (self, key):
try:
return self.data[key]
except TypeError:
if len(key)==2:
if isinstance(key[0], slice):
return [row[key[1l]] for row in
self.datal[key[0]]]
return self.data[key[0]][key[1]]
raise ValueError, "invalid indices"

The first lesson of this lecture is: Using the category framework to create elements is easy!

localhost:8081/home/admin/18/print 3/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

1. Assign a class to an attribute "Element" of the parent (or of the parent's class)
2. The parent will then provide an attribute "element class".
3. The default way of creating elements will immmediately work, and yields instances of the "element class".

MyMatrixSpace.Element = MyMatrix
MS = MyMatrixSpace(QQ, 2)

MS.element class; MS.element class==MyMatrix;
issubclass(MS.element class, MyMatrix)

<class ' main .MyMatrixSpace with category.element class'>
False
True

M1 = MS([[1,2],([3,4]])

M1; isinstance(M1l, MS.element class); Ml.parent() is MS

[1, 2]
[3, 4]
True
True

Slicing works (we will use it in the multiplication code below):

M1[:,1]
[2, 4]

M1[O, :]
[1, 2]

We now come to the arithmetic methods. You certainly know about Python's "magical" double underscore
methods. Usually, the base classes in Sage have default implementations. Here is the default multiplication code
for ring elements (I have removed the long doc string from the output):

from sage.misc.sageinspect import sage getsourcelines

sources = sage getsourcelines(RingElement. mul)[0O]
pretty print(''.join([sources[Q]]+sources[-10:]))

localhost:8081/home/admin/18/print 4/18

9/23/13 Tutorial-Coercions_and_actions -- Sage
def __mul__(left, right):
if have_same_parent(left, right):
if (<RefPyObject *>left).ob_refcnt < inplact
return (<RingElement>left)._imul_(<RingE
else:
return (<RingElement>left)._mul_(<RingEl
if PyInt_CheckExact(right):
return (<ModuleElement>left)._mul_long(PyInt
elif PyInt_CheckExact(left):
return (<ModuleElement>right)._mul_long(PyIr
return coercion_model.bin_op(left, right, mul)

The second lesson of this lecture is: Do not override mul (nor add , sub , call)unless you
are ready to bear the consequences of what you are doing, since the default implementations are essential for
Sage's coercion framework!

Generally, you should provide the following single underscore methods:

1. repr --- for string representation
2. mul , add , sub --- for multiplication, addition, subtraction within one parent (_sub _is optional)
3. rmul / Imul --- for multiplication by base ring elements from the left/right

Sage's coercion model guarantees that

1. both arguments of mul , add and sub belong to the same parent
2. the second argument of rmul and lmul belongs to the base ring

class MyMatrix(MyMatrix): # Yes, Python allows it. I don't want
to copy-and-paste the whole code!
def add (self, other):
we can assume that self and other have the same
parent!
P = self.parent()
return P([[a+b for a,b in zip(rl,r2)] for rl,r2 in
zip(self,other)])
def mul (self, other):
we can assume that self and other have the same
parent!
P = self.parent()

localhost:8081/home/admin/18/print 5/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

if P.nrows()!=P.ncols():
raise ValueError, "can't multiply within non-square
matrix spaces”
return P([[add([a*b for a,b in zip(self[m],
other[:,k])])
for k in range(P.ncols())]
for m in range(P.nrows())1])

Recreate the matrix space and define some elements:

MyMatrixSpace.Element = MyMatrix

MS = MyMatrixSpace(QQ,2)
M1 = MS([[1,2],[3,4]])
M2 = MS([[0,1],[2,1]1])

Addition works, due to _add :

M1 + M2
(1, 3]
[5, 5]

Square matrix multiplication m _mul works as well:

M1*M2
[4, 3]
[8, 7]

Verify this multiplication with Sage's matrices:

ml
m2
ml*m2

[4 3]
[8 7]

matrix([[1,2],[3,4]])
matrix([[0,1],[2,1]])

Multiplication by base ring elements does not work, yet.

M1*2
Traceback (click to the left of this block for traceback)

TypeError: unsupported operand parent(s) for '*': 'Our space of
matrices over Rational Field' and 'Integer Ring'

localhost:8081/home/admin/18/print 6/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

We fix it by providing lul and rmul .

class MyMatrix(MyMatrix):
def 1lmul (self, c):
return self.parent()([[c*a for a in row] for row in
self])
def rmul (self, c):
return self.parent()([[a*c for a in row] for row in
self])

MyMatrixSpace.Element = MyMatrix
MS = MyMatrixSpace(QQ,2)

M1 = MS([[1,2],[3,4]1])
M2 = MS([[0,1],[2,1]])
M1*2

[2, 4]

[6, 8]
3*M2

[0, 3]

[6, 3]

2. Conversions and coercions between two parents

Conversion

Generally, a conversion is a procedure that turns given data into an element of a parent.

Normally, one wants to convert elements of the base ring mto diagonal matrices. This is not implemented, yet:

MS(1)
Traceback (click to the left of this block for traceback)

TypeError: 'int' object is not iterable

We could fix this by making MyMatrix. it accept a base ring element as input argument. However, the
preferred way is to implement a method _element_constructor for the parent.

The third lesson of'this lecture is: Do not override the default call method, but implement
_element_constructor !!

localhost:8081/home/admin/18/print 7/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

class MyMatrixSpace(MyMatrixSpace):
def element constructor (self, data):
B = self.base()
z = B.zero()
if data is None:
data = z
if data in B:
return self.element class(self, [[z]*k+[data]+[z]*
(self.n-k-1) for k in range(self.m)])
return self.element class(self, data)

MS = MyMatrixSpace(QQ,2)

Conversions of lists of lists still work:

M1 = MS([[1,2],[3,4]])

M2 = MS([[0,1],[2,1]])

M1; isinstance(M1l, MS.element class)
[1, 2]
[3, 4]
True

In addition, we can convert elements of the base ring mtor diagonal matrices:

MS(2)
[2, O]
[0, 2]

We can also convert the usual Sage matrices mto our matrix space (this is because MyMatrix. it expects
arguments that are iterables of iterables):

SageMatQQ = matrix(QQ, [[1,2],[3,4]1)
MS (SageMatQQ)

[1, 2]
[3, 4]

Coercions

Of course, it would be a very bad idea to automatically apply an arbitrary conversions when doing arithmetic.
Sage would by default not apply the conversion of SageMatQQ into MS for doing arithmetic.

Hence, currently the addition of M1 and SageMatQQ fails, even though it would "mathematically reasonably"

localhost:8081/home/admin/18/print 8/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

work:

M1+SageMatQQ
Traceback (click to the left of this block for traceback)

TypeError: unsupported operand parent(s) for '+': 'Our space of
matrices over Rational Field' and 'Full MatrixSpace of 2 by 2 d
matrices over Rational Field'

>

Why would this addition be "mathematically reasonable"? This is related with the notion of a coercion.
Def:
Let Py, P,, P; be parents.
1. A coercion ¢ from P; to Py is a morphism in the meet C of'the categories of P; and Ps:
¢ € Hom¢ (Py, Ps)

2. There is at most one coercion from one parent to another, and if it exists, then it coincides with
conversion.

3. The identity morphism is a coercion.

4. If ¢ is a coercion from P; to P» and 1 is a coercion from P, to Ps, then o ¢ is a (the!) coercion
from P; to P3

Coercions will implicitly be used in arithmetic operations!
Warning/Example:

If P; is an additive group and P> is a ring, and P; coerces into P, by a morphism in the category of
additive groups, then this coercion will also be used to multiply elements of P; with elements of P, (the
result lives in Py)!

By now, Sage knows that there is a conversion from Sage matrices into our matrix space, but it doesn't know
that it is a coercion:

MS.convert map from(SageMatQQ.parent())

Conversion map:

From: Full MatrixSpace of 2 by 2 dense matrices over Rational
Field

To: Our space of 2x2 matrices over Rational Field

MS.has coerce map from(SageMatQQ.parent())

localhost:8081/home/admin/18/print 9/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

False

In contrast, Sage knows that the base ring of MS coerces into MS. This is automatically done for any parent
that is initialised in the category of algebras over a base ring: We see the category framework at work.

MS.coerce map from(ZZ)

Composite map:
From: Integer Ring
To: Our space of 2x2 matrices over Rational Field
Defn: Natural morphism:
From: Integer Ring
To: Rational Field
then
Generic morphism:
From: Rational Field
To: Our space of 2x2 matrices over Rational Field

Hence, we can already add an integer to a square matrix: The mteger is implicitly converted into a diagonal
matrix.

1+M1
[2, 2]
[3, 5]

In order to make Sage aware of a coercion, one can implement a coerce map from () method. Ifit returns
True, then an existing conversion is used as coercion. If it returns a map, then this map is used for coercion.

class MyMatrixSpace(MyMatrixSpace):
def coerce map from (self, P):
Coercion from the base ring has already been taken
care of.
We want coercion from other matrix spaces of
compatible parameters.
Use duck-typing!
try:
return self.m==P.nrows() and self.n==P.ncols() and
self.base().has coerce map from(P.base())
except AttributeError:
return False

MS = MyMatrixSpace(QQ,2)
M1 = MS([[1,2],[3,4]11])
M2 = MS([[0,1],[2,1]])

localhost:8081/home/admin/18/print 10/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

Now, Sage detects coercions from "usual" matrix spaces into "our" matrix space.

MSSage = MatrixSpace(ZZ,2)
MS.coerce map from(MSSage)
Conversion map:
From: Full MatrixSpace of 2 by 2 dense matrices over Integer
To: Our space of 2x2 matrices over Rational Field

M1 * MSSage(2) # Note that the result is using "our"
implementation

[2, 4]

[6, 8]
MSSage(1l) + M1
[2, 2]

[3, 5]

3. Pushout construction: Automatic creation of new parents (a teaser)

The material of this section is treated in more detail in the thematic tutorial on "coercions and categories".

Many parents in Sage can tell how they are constructed:

FSage, R = MSSage.construction()
FSage, R

(MatrixFunctor, Integer Ring)
FSage(R) == MSSage
True

Here, we see a so-called construction functor. This is a covariant functor F : C; — C 5, so that applying F
to any coercion map ¢ € Homg, (P, Q) yields a coercion map from F (P) to F(Q) . Examples include:

* the construction of a matrix space

* the construction of a polynomial ring

* the construction of a fraction field

* the construction of the algebraic closure.

FP,R = QQ['x"'].construction(); FP,R; FP.domain(), FP.codomain()
(Poly[x], Rational Field)
(Category of rings, Category of rings)

FF,R = QQ.construction(); FF,R; FF.domain(), FF.codomain()

(FractionField, Integer Ring)
(Category of integral domains, Category of fields)

localhost:8081/home/admin/18/print 11/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

FC,R = QQbar.construction(); FC,R; FC.domain(), FC.codomain()

(AlgebraicClosureFunctor, Rational Field)
(Category of rings, Category of rings)

Often, there is a coercion from R to F (R) , for any object R of C ; . Here is an exception of this rule:

MatrixSpace(ZZ,2,3).has coerce map from(ZZ)
False

Every construction functor has a "rank":

FC.rank, FF.rank, FP.rank, FSage.rank
(3, 5, 9, 10)

Iftwo parents P;, P, are obtained from a common "ancestor" by two sequences of construction functors, then
Sage will try to "shuffle" the two construction sequences, applying first a functor with lower rank. The result is
called the pushout of P; and P, , and is a reasonable candidate for performing arithmetic operations mvolving
elements fromboth P; and P, :

FSage(FF(ZZ))
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

FSage(FP(ZZ))

Full MatrixSpace of 2 by 2 dense matrices over Univariate Polyn
Ring in x over Integer Ring
14

from sage.categories.pushout import pushout
pushout (FSage(FF(ZZ)), FSage(FP(ZZ))) # FF has lower rank than
FP and is applied first in the pushout

Full MatrixSpace of 2 by 2 dense matrices over Univariate Polyn

Ring in x over Rational Field
>

When two different functors of the same rank clash when shuffling, Sage will raise an error, unless it is asserted
that one can apply the functors in any order, or Sage is told how to merge the two functors into one.

Here, we create a new matrix construction functor, imposing the rule that Sage's matrix functors will henceforth
merge into our matrix functors:

from sage.categories.pushout import MatrixFunctor
class MyMatrixFunctor(MatrixFunctor):
def apply functor(self, R):
return MyMatrixSpace(R,self.nrows,self.ncols)
def merge(self, other):

localhost:8081/home/admin/18/print 12/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

if not isinstance(other, MatrixFunctor):
return

if other.nrows!=self.nrows or other.ncols!=self.ncols:
return

return self

class MyMatrixSpace(MyMatrixSpace):
def construction(self):
return MyMatrixFunctor(self.m,self.n), self.base()

MS = MyMatrixSpace(QQ,2)
M1 = MS([[1,2],[3,4]1])
M2 = MS([[0,1]1,[2,111)

MyF, R = MS.construction()
MyF(R) == MS

True

Now, if Sage can not find a coercion from one parent into another, then it constructs a pushout and coerces into
it:

MSPolySage = MatrixSpace(ZZ['x'],2)
MS.has coerce map from(MSPolySage),
MSPolySage.has coerce map from(MS)

(False, False)

pushout (MS, MSPolySage) # this is because merging prefers
our implementation!

Our space of 2x2 matrices over Univariate Polynomial Ring in x
Rational Field

MSPolySage('x")

[x 0]
[0 x]

MSPolySage('x') + MS(1/2)

[x + 1/2, 0]
[0, x + 1/2]

4. Actions

"Act-on" and "acted-upon'" actions

localhost:8081/home/admin/18/print 13/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

One way of implementing an action of anything on an element is: Implement a method _acted upon of'the
element.

RingElement. acted upon ??

File: /home/king/Sage/prerelease/sage-5.12.betab/devel/sage/sage/structure/element.pyx
Source Code (starting at line 716):
cpdef acted upon (self, x, bint self on left):

Use this method to implement self acted on by x.

Return None or raise a CoercionException if no
such action is defined here.

return None

Similarly, an action of the element on anything can be defined by a method act on of'the element.

We implement a left action of a permutation group on our matrices, by permuting rows.

class MyMatrix(MyMatrix):
def acted upon (self, x, self on left):
if self on left:
return None
Here, we mainly use that permutations are callable
return self.parent()([self.data[x(i)] for i in
range(self.parent().nrows())])

Refresh our matrix space definition, and let permutations act:

MyMatrixSpace.Element = MyMatrix

MS MyMatrixSpace(QQ,4)

M1 = MS(1)

M2 = MS([[1,2,3,4], [5,6,7,8], [8,7,6,5], [4,3,2,1]1])

M1
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, O]
(6, 0, 0, 1]

P = Permutation([1,3,2,4])

localhost:8081/home/admin/18/print 14/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

*@#/) 1!

Someone has killed Sage's category framework for permutations, by overloading mul ! You should not do
that!

P * M1
Traceback (click to the left of this block for traceback)

TypeError: object of type
'‘MyMatrixSpace with category.element class' has no len()

P. mul 2?7

File: /home/king/Sage/prerelease/sage-5.12.betab/local/lib/python2.7/site-
packages/sage/combinat/permutation.py

Source Code (starting at line 1244):
def mul (self, rp):

TESTS::
sage: p213 = Permutation([2,1,3])
sage: p312 = Permutation([3,1,2])

sage: PermutationOptions(mult='12r")

sage: p213*p312

[1, 3, 2]

sage: PermutationOptions(mult='r2l")

sage: p213*p312

[3, 2, 1]

sage: PermutationOptions(mult='12r")
if self.parent().global options['mult'] == '12r':

return self. left to right multiply on right(rp)
else:

return self. left to right multiply on left(rp)

So, we better work with an element of the symmetric group, which complies with Sage's coercion framework:

p = SymmetricGroup(4)([(3,2)]); p
(2,3)

Now, multiplication from the left works, but (on purpose) not from the right:

p*M1

localhost:8081/home/admin/18/print 15/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

[1, 06, 0, 0]

[0, 1, 0, 0]

(6, 0, 0, 1]

[0, 6, 1, 0]
M1*p

Traceback (click to the left of this block for traceback)

TypeError: unsupported operand parent(s) for '*': 'Our space of
matrices over Rational Field' and 'Symmetric group of order 4!

permutation group'

Sage assumes that the action of the symmetric group on our matrix space will always use acted upon :

A = MS.get action(p.parent(), self on left=False); A; type(A)

Left action by Symmetric group of order 4! as a permutation gro

Our space of 4x4 matrices over Rational Field
<type 'sage.structure.coerce actions.ActedUponAction'>

Defining arbitrary actions of parents

Sometimes acted upon / act on on the level of elements is not good enough. It is also possible to let the

parent take care of creating an action.

Of course, there is a base class for actions. To create a new type of actions, implement a call method (not

__call) that take two elements and returns the result of the action of these elements.

from sage.categories.action import Action
class MyMatrixAction(Action):
def init (self, P1,P2):
Action. init (self, P1, P2, is left=True,
op=operator.mul)
self.P = MyMatrixSpace(pushout(Pl.base(),P2.base()),
Pl.nrows(), P2.ncols())
self.range = Pl.ncols()
def repr name (self):
helps for string representation
return "multiplication action of our matrices”
def call (self, left,right):
return self.P([[add([a*b for a,b in zip(left[m],

[right[i, k] for

i in range(self.range)])

1)

for k in range(self.P.ncols())]

localhost:8081/home/admin/18/print

16/18

9/23/13 Tutorial-Coercions_and_actions -- Sage

for m in
range(self.P.nrows())1)

A parent canuse _get action to indicate the action being used:

class MyMatrixSpace(MyMatrixSpace):
def get action (self, P, op, self on left):
if op!=operator.mul:
return Module. get action (self, P, op,
self on left)
try:
duck type matrix spaces:
Pcol = P.ncols()
Prow = P.nrows()
except AttributeError:
return Module. get action (self, P, op,
self on left)
if self on left:
if self.ncols()!=Prow:
return Module. get action (self, P, op,
self on left)
else:
return MyMatrixAction(self,P)
else:
if Pcol!=self.nrows():
return Module. get action (self, P, op,
self on left)
else:
return MyMatrixAction(P, self)

MS1 = MyMatrixSpace(QQ,2,4); MS2 = MyMatrixSpace(QQ,4,2)

MS1.get action(MS2)

Left multiplication action of our matrices by Our space of 2x4
matrices over Rational Field on Our space of 4x2 matrices over
Rational Field

Now, we define matrices both in our and n Sage's implementation, and see that by our definition of a
multiplication action, we can multiply the rectangular matrices, even if different implementations are involved:

M1 = MS1([[1,2,3,4]1,([5,6,7,8]]1); M2 = MS2([[1,2],[3,4],[5,6],

[7,8]1])
ml = matrix(QQ, [[1,2,3,4],[5,6,7,8]]); m2 = matrix(QQ, [[1,2],

localhost:8081/home/admin/18/print 17/18

9/23/13

[3,4]1,[5,6],[7,8]])

ml*m2 # Check our result against Sage's result

m1*M2 # Sage's matrix times our matrix

M1*m2 # our matrix times Sage's matrix

M1*M2
[50, 60]
[114, 140]
[50 60]
[114 140]
[50, 60]
[114, 140]
[50, 60]
[114, 140]

And verify if the old stuff still works:

2*M1

[2, 4, 6, 8]

[10, 12, 14,
M2*3

[3, 6]

[9, 12]

[15, 18]

[21, 24]
p*M2

[1, 2]

[3, 4]

[7, 8]

[5, 6]

localhost:8081/home/admin/18/print

Tutorial-Coercions_and_actions -- Sage

18/18

