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Inftfroduction

® We can use Discrete Morse theory, originally
developed by Forman, to compute homology.

® We generate discrete Morse functions by a

generalization of the coreductions approach
of Mrozek and Batko.

® We give an efficient way to compute the
boundary in the reduced complex.

Thursday, September 26, 13



Chain Complex Definition

A principal ideal domain R
Finite sets of cells Si., £ =0,1,--- .d
Chain modules Ci., k=0,1,--- ,d

Boundary maps 0,k =0,1,--- ,d

Cr = R(Sk)
satisfying: Ok+1 : Ci1 = Cie

0% =0
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Purely algebraic Homology Algorithm

1) Apply Smith Normal Form to each boundary
matrix.

2) Read off the invariant factors.

3) Count up # of Os, 1s, and higher divisors, and
number of cells, and do some arithmetic

4) This yields the homology groups in terms of
their invariant factor decompositions




Homology Generators Algorithm

And if I want the generators?

We'll need the multipliers from the SNF:
A = UDV

Essential idea: Compute the invariant factors AND

the multipliers for each boundary matrix and then
fiddle around with them.




Problem.

It seems that fast SNF algorithms will
not give multipliers.

Moreover, we experience cubic
run times.

This leaves us looking for ways to somehow reduce
the problem before having to do the matrix algebra.




Faster methods

Marian Mrozek and Bogdan Batko. Coreduction Homology Algorithm. Discrete and

Computational Geometry. 41(1) (2009) 96-118

Marian Mrozek realized that if you excise a vertex

from each connected component, the homology only

changes on the Oth level (i.e. the Betti # decreases
by the number of connected components)

Additionally, there are simple
reductions this enables us fto do
afterwards.
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Free coface collapse:
© CHE D © © CTHEE D ©

Ex B
= [l ==

Whenever a cell has precisely one other cell in
its boundary, we may excise the pair without
altering the homology.




This was very effective, but not perfect.
One can make obstructions to this
approach.

In particular, you are gobbling up an
acyclic subcomplex, but if there is

deeper homology you must leave things
behind.

A simple example is the
torus:
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The idea now is: wouldnt it be nice if
we didnt have to stop?
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Homology of the Torus

And we have excised 1 O-cell, 2 1-
cells, and 1 2-cell cell.

This Is promising, since:

HAT*\ .=, 2




The Correct Generalization

This doesnt always work,
however.

One possible solution seemed to be to put a
new boundary operator on the “special” cells
we removed.

It turns out the correct
generalization is Robin Formans
"discrete Morse theory”.




Discrete Morse Function

Forman expressed his theory in terms of
a ‘discrete Morse function” in direct
analogy fo classical Morse theory.

The discrete Morse function gives rise to a
"discrete gradient vector field”. It is easier to
ignore the discrete Morse function at first
pass and axiomatize the discrete gradient
vector field directly.




Discrete Gradient Vector Field
(AKQ Decomposition)

@ Captures information in
a discrete Morse
function up to
equivalence

@ Essentially, a
partitioning into three
classes called Aces,
Kings, and Queens.

@ Kings and Queens are
paired up 1-1
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Discrete Gradient Vector Field
(AKQ Decomposition)

@ Captures information in
a discrete Morse
function up to example:

equivalence

@ Essentially, a
partitioning into three @ e
classes called Aces,

Kings, and Queens.

legend: Ace King

@ Kings and Queens are Queen

paired up 1-1
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Rules on AKQ
Decomposition

@ A queen cell must be in the boundary of its
associated King cell, so that dim K = dim Q + 1

@ The incidence number between King and Queen
pairs must be a unit -- that is, multiplicatively
invertible in the ring

@ Also, there is an acyclicity condition we will
discuss.
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Comments on Notation

@ An "Ace-King-Queen Decomposition” is just another
way of expressing the discrete gradient vector field

@ “Aces” are Critical Cells

@ “King-Queen” pairs give the “arrows” of the
discrete gradient vector field

@ Why make these "Ace/King/Queen” names at all?
So we have some short nouns to indicate what role
a given cell has with respect fo a Discrete Morse
Function.
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Discrete Morse functions
compared to AKQ decomposition

2 4 i
I
ll - 22
0 © " @ 1 ) O

with discrete Morse
function, acyclicity is
guaranteed by
assumptions about
how the numbers fit

in an AKQ
decomposition, we
Just assume
acyclicity directly




Acyclicity Assumption

@ There is a partial order induced on the
Queens by the generating relationship of

(Q',0K) # 0 and Q = K* implies Q' < Q
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Acyclicity Examples:

Not an AKQ o

decomposition... violates

acyclicity condition!

However, this is okay:

O




How do we generate AKQ
decompositions from scratch?

One method is an extension of the
coreduction technique of Mrozek and Batko.

In this method, a reduced complex was found by
first excising one vertex from each connected
component of the original complex, and then

performing free coface collapses until they were

exhausted. The vertices are then replaced.

This procedure is linear time.




Coreduction Based AKQ Decomposition Algorithm

n<-0
Loop until complex is empty

If there is a free coface collapse pair (K, Q)
K is now a King, Q is now a Queen, K* := Q.
v(K) := v(Q) := n, and n <- n+l.
Excise K and Q from the complex.

If there is no free coface collapse,

Choose a cell A such that dA = 0.
A 1S now an Ace.
V(A) := n, and n <- n+l.
Excise A from the complex.
End Loop




Illustration of the coreduc’ribn based
decomposition algorithm at work
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The Morse Complex

@ The point of making the decomposition is to obtain
a reduced, simpler complex with isomorphic
homology groups.

@ The Morse complex is a chain complex with chain
groups My = R(Ag)

@ But what is the boundary operator A ?
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That is, we keep only the aces:

1 dim

O O O dim

and we need to
know the boundary
here
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Formans Formula:
Connecting Orbit Viewpoint

@ Consider the set of all V-paths from one
critical cell to another of one less dimension

@ For each path, determine the multiplicity
@ Sum the multiplicity over all possible paths
@ This yields the incidence numbers

@ But... is this a tractable procedure?
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Another solufion:
Deformation Viewpoint

@ Deform chains under a flow given by discrete
gradient vector field

@ More generally, consider equivalence classes
of chains modulo the boundaries of “King”
cells.

@ These equivalence classes have a canonical
representative which can be used to
determine the Morse Boundary operator!
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The key to the Morse Boundary problem:
Canonicalization

Definition: A king chain is formal
combination of king cells.

Definition: A canonical chain is a formal combination
of ace and king cells.

Lemma. Consider the equivalence classes
of chains modulo the boundaries of king
chains. In each such class, there is a
unique canonical representative. We call
this representative the canonicalization
of any chain in that class.




How do we canonicalize a chain in
practice?

Canonicalization Algorithm

Loop until ¢ is canonical
Choose a maximal queen Q in ¢

Let K = Q*
(@, ¢)
C{ g Q. 0K) 0K.
End Loop

Note: By choosing the maximal queen, we
never process the same queen twice, via
acyclicity assumption!




Notation:

Given a chain ¢, the unique king chain k
such that ¢ + dk is canonical is called 7(¢)

Hence o :=id+ 0o~ canonicalizes.

We also define 3 :=id +~v00 which we call
completion (it canonicalizes the boundary

of a chain).

There are chain maps | and j between the
original complex and the Morse complex
naturally induced from inclusion and
projection.




And now the Morse boundary:
A= 90 o, 0el

Lets use this formula to
compute Ab
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Lets use this formula to
compute Ab

First compute 90b

Now canonicalize.

a o o 1
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Lets use this formula to
compute Ab

First compute 90b

Now canonicalize.

a o O
-1+41=0
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Lets use this formula to
compute Ab

First compute 90b

Now canonicalize.
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Chain Equivalences

@ We know the Morse complex has isomorphic
homology groups because there are chain
equivalences to and fro:

¢:(C,0) — (M,A)
Y (M,A) = (C,0)

@ We can directly exhibit these chain
equivalences using our language of
canonicalization and completion:

(" Ol
where = Boj
A:=¢godot
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Practical uses of chain
equivalences:

@ We can not only compute homology using the
reduced Morse complex, but we can lift
homology generators via a chain equivalence.

@ It is possible to solve the “preboundary”
equation dc =10 for c given b via an
Iterative approach:

Fe =GR 0 I o8p
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Experimental Results

@ Several Implementations:
® CHOMP-CR

@ CHOMP-DMT

@ CHOMP-CR+DMT

@ REDHOM-CR

@ REDHOM-CR+DMT
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Computer Experiments
with CHOMP version

Dimension Size CR Time DMT Time
A 8.5 x 1076 | 9.82 sec 2.54 sec
£ 40.8 x 1076 560 sec 15.59 seg¢
5 3.8 x 1076 91.6 sec 1.98 sec
5 5.8 x 1076 458 sec 4.11 sec
6 3.0°x 107% " '42.5"cen 3.26 sec
6 7.2 x 1076 2346 sec 8.51 sec

Randomly Generated Cubical Complexes
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Cubical Complexes for Selected Spaces

TxSY| (SY) | S'xK | TxT

dim H 6 0 0

size in millions 0.07 0.10 0.40 2.36

Hg Z, 7, 7, 7,

H, 77 0| Z*+7Zs 74

H, 77 0| Z+7Zs 7°

H, 7 7 74

H, 7,
Linbox::Smith 130 3050 > 600 | > 600
RedHom::Shave+Linbox::Smith 0.5 0.1 2.2 | > 600
ChomP 1.3 1.7 10 D0
RedHom::CR 0.03 0.04 0.26 2.9
ChomP::DMT 0.06 0.15 1.6 5.9
ChomP::CR+DMT 0.04 0.16 1.7 3
RedHom::CR+DMT 0.02 0.08 0.5 1.1
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Cahn-Hillard Equation

P0001 | P0O0O50 | PO100
dim 3 3 3
size in millions 795.50 | 73.36 71.64
H, 7" 7 7
H, 76554 | 52962 | ;1057

H, 77
Linbox::Smith > 600 | > 600 | > 600
RedHom::Shave+Linbox::Smith || > 600 | > 600 | > 600
ChomP 400 360 310
RedHom::CR 36 34 33
ChomP::DMT 110 110 100
ChomP::CR+DMT 45 43 42
RedHom:CR+DMT 26 29 24
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Random Cubical Sets

d4s8150 | d4s12{50 | d4s16150 | d4s20f50

dim 4 4 4 4

size in millions 0.07 0.34 1.04 2.48

H, 7° 7 7 7-

o, 72 717 730 751

H, 7174 71389 75510 715401

H, 72 715 771 7179
Linbox::Smith 120 > 600 > 600 > 600
RedHom::Shave+Linbox::Smith 4 > 600 > 600 > 600
ChomP 1 8.3 41 170
RedHom::CR 0.08 1.4 15 140
ChomP::DMT 0.05 0.38 1.8 5.3
ChomP::CR+DMT 0.03 0.16 0.56 1.4
RedHom::CR+DMT 0.03 0.16 0.58 2.9
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Simplicial Complexes

random set | Bjorner set Ok

dim 4 2 5

size in millions 4.8 1.9 4.3

Hy 7. 7, 7.

H, 7.3 0 0

H, /e Z 0

Hs 0

Hy 7,

ChomP 830 310 | 2100
RedHom::CR+DMT 65 11 100
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