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Arithmetic Mirror Symmetry?

Figure: Xenia de la
Ossa
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Rodriguez Villegas

» Theoretical physicists have made conjectures about the
number of points on certain varieties over finite fields.

» The motivation comes from mirror symmetry.



Building a Model

Locally, space-time should look like

M371 x V.

v

Mj 1 is four-dimensional space-time

v

V is a d-dimensional complex manifold

v

Physicists require d = 3 (6 real dimensions)
V is a Calabi-Yau manifold

v



A-Model or B-Model?

Choosing Complex Variables

» z—a+ibw=c+id

» z—=a+ibw=c—id



Mirror Symmetry

Physicists say . . .

» Calabi-Yau manifolds appear in pairs (V, V°).

» The universes described by M3 1 x V and Mz 1 x V° have the
same observable physics.



Mirror Symmetry for Mathematicians

The physicists' prediction led to mathematical discoveries!

Mathematicians say . . .

» Calabi-Yau manifolds appear in paired families (V,, V7).

» The families V,, and VJ have dual geometric properties.
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» Start with all smooth quartics in P3
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Greene-Plesser Mirror for Quartics in P3

v

Start with all smooth quartics in P3

v

Consider the Dwork (or Fermat) pencil

Xe i x*+ vyt + 2wt — dixyzw

The pencil admits an action of G = (Z/(4))? (multiply
coordinates by 4th roots of unity)

v

v

Resolve singularities in the quotient X;/G to obtain Y;
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Greene-Plesser Mirror for Quartics in P3

» Start with all smooth quartics in P3
» Consider the Dwork (or Fermat) pencil
Xe i x*+ vyt + 2wt — dixyzw
» The pencil admits an action of G = (Z/(4))? (multiply
coordinates by 4th roots of unity)
» Resolve singularities in the quotient X;/G to obtain Y;
> Y, is the mirror family to smooth quartics in P3

» Smooth quartics in P3 have many complex deformation
parameters; Y; has 1



The residue map

We will use a residue map to describe the cohomology of a K3
hypersurface X:

Res : H3(P3 — X) — H?(X).



The residue map

We will use a residue map to describe the cohomology of a K3
hypersurface X:

Res : H3(P3 — X) — H?(X).

Let Qo be a holomorphic 3-form on P3. We may represent
elements of H3(P3 — X) by forms 52, where m is a homogeneous
polynomial in C[z, ..., z3] of degree 0, 4, or 8, and

k = (deg m)/4 + 1. Then:




The Griffiths-Dwork technique

Procedure

Suppose we have a pencil of K3 hypersurfaces X; in P3.

1.
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The Griffiths-Dwork technique

Procedure

Suppose we have a pencil of K3 hypersurfaces X; in P3.

1.
¢ () (4 25)

2. Since H*(X;, C) is a finite-dimensional vector space, only

finitely many of the classes Res (j—j (%)) can be linearly
independent

3. Use the reduction of pole order formula to compare classes of

the form Res (%) to classes of the form Res (&%)




Picard-Fuchs Equations for the Holomorphic Form

The Picard-Fuchs differential equation satisfied by the period of
the holomorphic form is:

d3 d? d
((t4 - 1)@ + 6t3@ + 7t2a + t) /w =0.

If we set A\ = t* and 0 = )\%, we obtain a generalized
hypergeometric equation:

(000 — 1/4)(0 — 1/2) — A(0 + 1/4)?) /w ~o.



Hypergeometric Functions

Definition
Let A, B € N. A hypergeometric function is a function on C of the
form:

AFB(CK;B‘Z): AFB(Oél,...,OéA;ﬁl,...,IBB‘Z)

o0

()i (@a)k
Z (ﬂl)k'“(ﬂB)kk!Z ’

k=0

where o« € QA are numerator parameters, 5 € QB are denominator
parameters, and the Pochhammer notation is defined by

M(x+ k)
r(x)

(X)k=x(x+1)---(x+k—-1)=



Solving the Picard-Fuchs Equation

The solution to the Picard-Fuchs equation for the holomorphic
form is a generalized hypergeometric function:

113, | 4
3F2<472741171’t )



Fermat Monomials

Let's consider the Fermat quartic pencil X;, as described by
polynomials f;.

» We may represent a homogeneous monomial x?y?z°w by
the 4-tuple (a, b, ¢, d).

» We can classify a monomial m using the action of
G = (Z/(4))? and the Griffiths-Dwork derivative

%fRes (%?)



Classifying Monomials

Up to permutations of the variables, we have three types of
equivalence classes:

> 1 class:
(0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3)
> 3 classes:
(0,0,2,2),(1,1,3,3),(2,2,0,0),(3,3,1,1)
> 12 classes:

(0,1,1,2),(1,2,2,3),(2,3,3,0),(3,0,0,1)



More Picard-Fuchs Equations

Each type of monomial equivalence class yields a Picard-Fuchs
equation of a different sort.

> 1 class: 3rd-order differential equation

> 3 classes: 2nd-order differential equation

> 12 classes: 1st-order differential equation



The Congruent Zeta Function

> Let X/Fq be an algebraic variety over the finite field of
g = p°® elements.

> Let No(X) = #X(Fgs) be the number of Fgs-rational points
on X.

Definition
The Zeta function of X is

Z(X[Fq, T) 1= exp (Z NS(X>T_:> c QT



Dwork and the Weil Conjectures

v

Z(X/Fq, T) is rational
We can factor Z(X/Fq, T) using polynomials with integer
coefficients:

v

Hf:l P2j—1(T)

Z(X/Bp T) = o p7y

v

dimcX = n
Po(t)=1—T and Pp,(T)=1—p"T
For 1 <j <2n—1, degP;(T) = b;, where b; = dim H/(X).

v

v



The Fermat quartic pencil

Let X; be the Fermat quartic pencil. Xenia de la Ossa and
Shabnam Kadir (building on results of Dwork) showed:

1
(1=T)1—=pT)(L—p>T)Q:(T)

Q:(T) = Ri0,000)(TRp.022(TRG11.2(T)

Z(Xe/Fp, T) =




The Fermat quartic pencil

Let X; be the Fermat quartic pencil. Xenia de la Ossa and
Shabnam Kadir (building on results of Dwork) showed:

1
(1=T)1—=pT)(L—p>T)Q:(T)

Q(T) = 0000)(T)R(0022 (T)R(o,l,l »(T)

Z(Xe/Fp, T) =

where

> Ro000)(T)=(1£pT)(1—a:T +p*T)
> R0,022)(T)=(1xpT)(1+pT)
> Ro1,12)(T) =

It ikl

[(1=pT)(1+pT)]? when p=3mod 4
(1£pT) otherwise



Mirror Quartics

Let Y; be the mirror family to quartics in P (constructed using
Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir
showed:

1
(1-T)1- PT)lg(l - p? T)R(o,o,o,o)(T)'

Z(Y/Fp, T) =



Mirror Quartics

Let Y; be the mirror family to quartics in P (constructed using
Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir
showed:

1
(1-T)1- PT)lg(l - p? T)R(o,o,o,o)(T)'

Z(Y/Fp, T) =

The factor R(g,0,0,0)(T) corresponds to periods of the holomorphic
form and its derivatives, and is invariant under mirror symmetry.



Zeta function and monomial equivalence classes

» The 1, 3, and 12 monomial equivalence classes correspond to
the factors of the zeta function.

» The orders of the corresponding Picard-Fuchs equations
correspond to the degrees of the polynomials in each factor.

1

Z(Xt/IFp; T) = (1 _ T)(]_ _ pT)(l — P2 T)Qt(T)

Q:(T) = R(o,o,o,o)(T)R?o,o,z,z)(T)R(lo2,1,172)(T)



Kloosterman's Work

Kloosterman ('07) gives a general explanation of the factorization
of zeta functions of monomial deformations of Fermat varieties
using Monsky-Washnitzer cohomology. He builds on work by
Candelas, de la Ossa, & Rodriguez-Villegas and Kadir & Yui.



Counting Points

We can use group actions to count points on the Fermat pencil
and the alternate pencils.

» Let N(t) be the number of points on a hypersurface X; over
Fq, where g = p°

» Let N*(t) be the number of points where all coordinates are
nonzero



Point Counts and Hypergeometric Functions

For the Fermat pencil, there is a relationship between the point
count and the truncation of the solution to the Picard-Fuchs

equation:

p=1_

113 _ 4
N]Fp(t)_N]Fp(O)E |:3F2 <47274;171‘t 4>:| mod p
0

Here, if u(z) =302, an, [u(z)]J, is the truncation Z{,:,‘ an.



Gauss Sums

> Let x1/(q-1) : Fqg = K™ be a fixed generator of the character
group of g, where K is C or Cp,.
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Gauss Sums

> Let x1/(q-1) : Fqg = K™ be a fixed generator of the character
group of IF:;, where K is C or C,,.

» Fors € ﬁZ/Z we let ys = (Xl/(q_l))s(q_l)
set xs(0) = 0.

> Let ¢ : Fy — K* be a (fixed) additive character.

» For s € —1~7/7 we let g(s) denote the Gauss sum
(g-1)

g(s) = D xs(x)v(x).

x€Fq

, and for any s



Finite Field Analogues

We can think of Gauss sums as the finite field analogue of the

Gamma function - ”
M(x) :/ e ttX—.
0 t

1
More generally, let a1, ...,aa4,51,...,08 € ﬁZ/Z' Katz

defines the finite field analogue of a hypergeometric function as:

H(a: BIt) = qil S g(s+a1)-gls+an)

s€ Z/Z

g(—s—P1)---8(=s — Bm)Xs(1)



Point Counting for the Fermat Quartic Pencil

()~ M, (0) = 1y Y

1
se€ 12/

3 3 g(s)’g(s + 3)°

(4 ) X4s(4t)

SE—Z/Z

12 3 g(s)g(s + 3)%g(s + 3)

- g(4s)

X4s(4't)

1



Point Counting, Monomials, and Picard-Fuchs Equations

There are three terms in the expression for Ng,(t) — Ng,(0), with
coefficients 1, 3, and 12, respectively.

» The terms correspond to our equivalence classes of
monomials.

» Each of the sums yields an approximation to the solution of
the Picard-Fuchs equation for the corresponding monomials.



The Hodge Diamond

Calabi-Yau Threefolds

0
0
1 h%1(X)
0
0



The Hodge Diamond

Calabi-Yau Threefolds

1
0 0
0 ALY (X
1 h%1(X) h>1(X)
0 hL1(X)
0 0
1

If X and X° are mirror, h*>1(X) = h1}(X°) and
hl’l(X) o~ h2,1(XO).



Arithmetic Mirror Symmetry for Threefolds

If X and X° are mirror Calabi-Yau threefolds, we can expect a
relationship between Z(X/Fq, T) and Z(Y /Fq, T) due to the
interchange of Hodge numbers.

We know:

>

CP3(T)
(1=T)1=p*T)P2(T)Pa(T)
> deg Po(T) = deg P4(T)

Z(X,p, T) =

Mirror symmetry implies:

> deg P, +2 =deg P3
» deg Py +2 =deg P3



Batyrev's Insight

We can describe mirror families of Calabi-Yau manifolds using
objects called reflexive polytopes.




Toric Experimentation?

» For mirror pairs of Calabi-Yau threefolds in (weighted)
projective spaces, the zeta functions have a common factor.

» This phenomenon can be studied using reflexive simplices.

> For other reflexive polytope pairs, we have mirror families but
not necessarily mirror pairs of varieties.
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