Zeta Functions, Point Counting, and Mirror Symmetry

Adriana Salerno and Ursula Whitcher

Bates College and University of Wisconsin-Eau Claire

September 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Arithmetic Mirror Symmetry?

Figure: Philip Candelas

Figure: Xenia de la Ossa

Figure: Fernando Rodriguez Villegas

- Theoretical physicists have made conjectures about the number of points on certain varieties over finite fields.
- The motivation comes from mirror symmetry.

Locally, space-time should look like

 $M_{3,1} \times V.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► *M*_{3,1} is four-dimensional space-time
- V is a d-dimensional complex manifold
- Physicists require d = 3 (6 real dimensions)
- V is a Calabi-Yau manifold

A-Model or B-Model?

Choosing Complex Variables

$$\blacktriangleright$$
 $z = a + ib$, $w = c + id$

$$\blacktriangleright$$
 $z = a + ib$, $\overline{w} = c - id$

(ロ)、(型)、(E)、(E)、 E) の(の)

Mirror Symmetry

Physicists say . . .

- Calabi-Yau manifolds appear in pairs (V, V°) .
- ► The universes described by M_{3,1} × V and M_{3,1} × V° have the same observable physics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mirror Symmetry for Mathematicians

The physicists' prediction led to mathematical discoveries! Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $(V_{\alpha}, V_{\alpha}^{\circ})$.
- The families V_{α} and V_{α}° have dual geometric properties.

• Start with all smooth quartics in \mathbb{P}^3

(ロ)、(型)、(E)、(E)、 E) の(の)

- Start with all smooth quartics in \mathbb{P}^3
- Consider the Dwork (or Fermat) pencil X_t : x⁴ + y⁴ + z⁴ + w⁴ - 4txyzw

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Start with all smooth quartics in \mathbb{P}^3
- Consider the Dwork (or Fermat) pencil X_t : x⁴ + y⁴ + z⁴ + w⁴ - 4txyzw
- ► The pencil admits an action of G = (Z/(4))² (multiply coordinates by 4th roots of unity)

- Start with all smooth quartics in \mathbb{P}^3
- Consider the Dwork (or Fermat) pencil X_t : x⁴ + y⁴ + z⁴ + w⁴ - 4txyzw
- ► The pencil admits an action of G = (Z/(4))² (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient X_t/G to obtain Y_t

- Start with all smooth quartics in \mathbb{P}^3
- Consider the Dwork (or Fermat) pencil X_t : x⁴ + y⁴ + z⁴ + w⁴ - 4txyzw
- ► The pencil admits an action of G = (Z/(4))² (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient X_t/G to obtain Y_t

(日) (同) (三) (三) (三) (○) (○)

• Y_t is the mirror family to smooth quartics in \mathbb{P}^3

- Start with all smooth quartics in \mathbb{P}^3
- Consider the Dwork (or Fermat) pencil X_t : x⁴ + y⁴ + z⁴ + w⁴ - 4txyzw
- ► The pencil admits an action of G = (Z/(4))² (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient X_t/G to obtain Y_t
- Y_t is the mirror family to smooth quartics in \mathbb{P}^3
- Smooth quartics in \mathbb{P}^3 have many complex deformation parameters; Y_t has 1

The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X:

$$\operatorname{Res}: H^3(\mathbb{P}^3 - X) \to H^2(X).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X:

$$\operatorname{Res}: H^3(\mathbb{P}^3 - X) \to H^2(X).$$

Let Ω_0 be a holomorphic 3-form on \mathbb{P}^3 . We may represent elements of $H^3(\mathbb{P}^3 - X)$ by forms $\frac{m\Omega_0}{f^k}$, where *m* is a homogeneous polynomial in $\mathbb{C}[z_0, \ldots, z_3]$ of degree 0, 4, or 8, and $k = (\deg m)/4 + 1$. Then:

$$\operatorname{Res}(\frac{m\Omega_0}{f^k}) \in H^{(3-k,k-1)}(X).$$

The Griffiths-Dwork technique

Procedure

1.

Suppose we have a pencil of K3 hypersurfaces X_t in \mathbb{P}^3 .

$$\frac{d}{dt}\int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k\int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Griffiths-Dwork technique

Procedure

1.

Suppose we have a pencil of K3 hypersurfaces X_t in \mathbb{P}^3 .

$$\frac{d}{dt} \int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k \int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

2. Since $H^*(X_t, \mathbb{C})$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^j}{dt^j}\left(\frac{\Omega}{f^k(t)}\right)\right)$ can be linearly independent

The Griffiths-Dwork technique

Procedure

1.

Suppose we have a pencil of K3 hypersurfaces X_t in \mathbb{P}^3 .

$$\frac{d}{dt} \int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k \int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

- 2. Since $H^*(X_t, \mathbb{C})$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^j}{dt^j}\left(\frac{\Omega}{f^k(t)}\right)\right)$ can be linearly independent
- 3. Use the reduction of pole order formula to compare classes of the form $\operatorname{Res}\left(\frac{P\Omega}{f^{k+1}(t)}\right)$ to classes of the form $\operatorname{Res}\left(\frac{Q\Omega}{f^{k}(t)}\right)$

Picard-Fuchs Equations for the Holomorphic Form

The Picard-Fuchs differential equation satisfied by the period of the holomorphic form is:

$$\left((t^4-1)rac{d^3}{dt^3}+6t^3rac{d^2}{dt^2}+7t^2rac{d}{dt}+t
ight)\int\omega=0.$$

If we set $\lambda = t^4$ and $\theta = \lambda \frac{d}{d\lambda}$, we obtain a generalized hypergeometric equation:

$$\left(heta(heta-1/4)(heta-1/2)-\lambda(heta+1/4)^3
ight)\int\omega=0.$$

Hypergeometric Functions

Definition

Let $A, B \in \mathbb{N}$. A hypergeometric function is a function on \mathbb{C} of the form:

$${}_{A}F_{B}(\alpha;\beta|z) = {}_{A}F_{B}(\alpha_{1},\ldots,\alpha_{A};\beta_{1},\ldots,\beta_{B}|z)$$
$$= {}\sum_{k=0}^{\infty}\frac{(\alpha_{1})_{k}\cdots(\alpha_{A})_{k}}{(\beta_{1})_{k}\cdots(\beta_{B})_{k}k!}z^{k},$$

where $\alpha \in \mathbb{Q}^A$ are numerator parameters, $\beta \in \mathbb{Q}^B$ are denominator parameters, and the Pochhammer notation is defined by

$$(x)_k = x(x+1)\cdots(x+k-1) = \frac{\Gamma(x+k)}{\Gamma(x)}.$$

Solving the Picard-Fuchs Equation

The solution to the Picard-Fuchs equation for the holomorphic form is a generalized hypergeometric function:

$$_{3}F_{2}\left(\frac{1}{4},\frac{1}{2},\frac{3}{4};1,1\middle|t^{-4}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let's consider the Fermat quartic pencil X_t , as described by polynomials f_t .

► We may represent a homogeneous monomial x^ay^bz^cw^d by the 4-tuple (a, b, c, d).

• We can classify a monomial *m* using the action of $G = (\mathbb{Z}/(4))^2$ and the Griffiths-Dwork derivative $\frac{d}{dt} \int \operatorname{Res}\left(\frac{m\Omega}{f_t^k}\right).$

Classifying Monomials

Up to permutations of the variables, we have three types of equivalence classes:

1 class:

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)

3 classes:

(0, 0, 2, 2), (1, 1, 3, 3), (2, 2, 0, 0), (3, 3, 1, 1)

12 classes:

(0, 1, 1, 2), (1, 2, 2, 3), (2, 3, 3, 0), (3, 0, 0, 1)

More Picard-Fuchs Equations

Each type of monomial equivalence class yields a Picard-Fuchs equation of a different sort.

- 1 class: 3rd-order differential equation
- ► 3 classes: 2nd-order differential equation
- 12 classes: 1st-order differential equation

The Congruent Zeta Function

- Let X/𝔽_q be an algebraic variety over the finite field of q = p^s elements.
- Let N_s(X) = #X(𝔽_{q^s}) be the number of 𝔽_{q^s}-rational points on X.

Definition The Zeta function of X is

$$Z(X/\mathbb{F}_q, T) := \exp\left(\sum_{s=1}^{\infty} N_s(X) \frac{T^s}{s}\right) \in \mathbb{Q}[[T]].$$

Dwork and the Weil Conjectures

• $Z(X/\mathbb{F}_q, T)$ is rational

► We can factor Z(X/F_q, T) using polynomials with integer coefficients:

$$Z(X/\mathbb{F}_p, T) := rac{\prod_{j=1}^n P_{2j-1}(T)}{\prod_{j=0}^n P_{2j}(T)},$$

 $\blacktriangleright \dim_{\mathbb{C}} X = n$

- $P_0(t) = 1 T$ and $P_{2n}(T) = 1 p^n T$
- ► For $1 \le j \le 2n 1$, $\deg P_j(T) = b_j$, where $b_j = \dim H^j_{dR}(X)$.

The Fermat quartic pencil

Let X_t be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$Z(X_t/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)(1-p^2T)Q_t(T)}$$
$$Q_t(T) = R_{(0,0,0,0)}(T)R_{(0,0,2,2)}^3(T)R_{(0,1,1,2)}^{12}(T)$$

(ロ)、(型)、(E)、(E)、 E) のQの

The Fermat quartic pencil

Let X_t be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$Z(X_t/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)(1-p^2T)Q_t(T)}$$
$$Q_t(T) = R_{(0,0,0,0)}(T)R_{(0,0,2,2)}^3(T)R_{(0,1,1,2)}^{12}(T)$$

where

Mirror Quartics

Let Y_t be the mirror family to quartics in \mathbb{P}^3 (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$Z(Y_t/\mathbb{F}_p, T) = rac{1}{(1-T)(1-pT)^{19}(1-p^2T)R_{(0,0,0,0)}(T)}.$$

Mirror Quartics

Let Y_t be the mirror family to quartics in \mathbb{P}^3 (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$Z(Y_t/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)^{19}(1-p^2T)R_{(0,0,0,0)}(T)}.$$

The factor $R_{(0,0,0,0)}(T)$ corresponds to periods of the holomorphic form and its derivatives, and is invariant under mirror symmetry.

Zeta function and monomial equivalence classes

- The 1, 3, and 12 monomial equivalence classes correspond to the factors of the zeta function.
- The orders of the corresponding Picard-Fuchs equations correspond to the degrees of the polynomials in each factor.

$$Z(X_t/\mathbb{F}_p, T) = \frac{1}{(1-T)(1-pT)(1-p^2T)Q_t(T)}$$
$$Q_t(T) = R_{(0,0,0)}(T)R_{(0,0,2,2)}^3(T)R_{(0,1,1,2)}^{12}(T)$$

Kloosterman ('07) gives a general explanation of the factorization of zeta functions of monomial deformations of Fermat varieties using Monsky-Washnitzer cohomology. He builds on work by Candelas, de la Ossa, & Rodriguez-Villegas and Kadir & Yui.

We can use group actions to count points on the Fermat pencil and the alternate pencils.

- Let N(t) be the number of points on a hypersurface X_t over \mathbb{F}_q , where $q = p^s$
- Let N*(t) be the number of points where all coordinates are nonzero

For the Fermat pencil, there is a relationship between the point count and the truncation of the solution to the Picard-Fuchs equation:

$$N_{\mathbb{F}_p}(t) - N_{\mathbb{F}_p}(0) \equiv \left[{}_{3}F_2\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4}; 1, 1 \middle| t^{-4} \right) \right]_0^{\frac{p-1}{4} - 1} \bmod p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Here, if $u(z) = \sum_{n=0}^{\infty} a_n$, $[u(z)]_i^j$ is the truncation $\sum_{n=i}^j a_n$.

Let \(\chi_1/(q-1)\): \(\mathbb{F}_q^*\) → \(K^*\) be a fixed generator of the character group of \(\mathbb{F}_q^*\), where \(K\) is \(\mathbb{C}\) or \(\mathbb{C}_p\).

- Let \(\chi_1/(q-1)\) : \(\mathbb{F}_q^*\) → \(K^*\) be a fixed generator of the character group of \(\mathbb{F}_q^*\), where \(K\) is \(\mathbb{C}\) or \(\mathbb{C}_p\).
- ▶ For $s \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$ we let $\chi_s = (\chi_{1/(q-1)})^{s(q-1)}$, and for any s set $\chi_s(0) = 0$.

- Let χ_{1/(q-1)} : 𝔽^{*}_q → K^{*} be a fixed generator of the character group of 𝔽^{*}_q, where K is ℂ or ℂ_p.
- ▶ For $s \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$ we let $\chi_s = (\chi_{1/(q-1)})^{s(q-1)}$, and for any s set $\chi_s(0) = 0$.

• Let $\psi : \mathbb{F}_q \to K^*$ be a (fixed) additive character.

- Let χ_{1/(q-1)} : 𝔽^{*}_q → 𝐾^{*} be a fixed generator of the character group of 𝔽^{*}_q, where 𝐾 is ℂ or ℂ_p.
- For $s \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$ we let $\chi_s = (\chi_{1/(q-1)})^{s(q-1)}$, and for any s set $\chi_s(0) = 0$.
- Let $\psi : \mathbb{F}_q \to K^*$ be a (fixed) additive character.
- ▶ For $s \in \frac{1}{(q-1)}\mathbb{Z}/\mathbb{Z}$ we let g(s) denote the Gauss sum

$$g(s) = \sum_{x \in \mathbb{F}_q} \chi_s(x) \psi(x).$$

(日) (同) (三) (三) (三) (○) (○)

Finite Field Analogues

We can think of Gauss sums as the finite field analogue of the Gamma function

$$\Gamma(x) = \int_0^\infty e^{-t} t^x \frac{dt}{t}$$

More generally, let $\alpha_1, \ldots, \alpha_A, \beta_1, \ldots, \beta_B \in \frac{1}{q-1}\mathbb{Z}/\mathbb{Z}$. Katz defines the finite field analogue of a hypergeometric function as:

$$H(\alpha;\beta|t) = \frac{1}{q-1} \sum_{s \in \frac{1}{q-1} \mathbb{Z}/\mathbb{Z}} g(s+\alpha_1) \cdots g(s+\alpha_n)$$
$$\cdot g(-s-\beta_1) \cdots g(-s-\beta_m) \overline{\chi_s}(t)$$

Point Counting for the Fermat Quartic Pencil

$$\begin{split} N_{\mathbb{F}_{p}}(t) - N_{\mathbb{F}_{p}}(0) &= \frac{1}{p-1} \sum_{s \in \frac{1}{p-1} \mathbb{Z}/\mathbb{Z}} \frac{g(s)^{4}}{g(4s)} \chi_{4s}(4t) \\ &+ \frac{3}{p-1} \sum_{s \in \frac{1}{p-1} \mathbb{Z}/\mathbb{Z}} \frac{g(s)^{2}g(s+\frac{1}{2})^{2}}{g(4s)} \chi_{4s}(4t) \\ &+ \frac{12}{p-1} \sum_{s \in \frac{1}{p-1} \mathbb{Z}/\mathbb{Z}} \frac{g(s)g(s+\frac{1}{4})^{2}g(s+\frac{1}{2})}{g(4s)} \chi_{4s}(4t) \end{split}$$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Point Counting, Monomials, and Picard-Fuchs Equations

There are three terms in the expression for $N_{\mathbb{F}_p}(t) - N_{\mathbb{F}_p}(0)$, with coefficients 1, 3, and 12, respectively.

- The terms correspond to our equivalence classes of monomials.
- Each of the sums yields an approximation to the solution of the Picard-Fuchs equation for the corresponding monomials.

The Hodge Diamond

Calabi-Yau Threefolds

ヘロト ヘ週ト ヘヨト ヘヨト

臣

The Hodge Diamond

Calabi-Yau Threefolds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If X and X° are mirror, $h^{2,1}(X) \cong h^{1,1}(X^\circ)$ and $h^{1,1}(X) \cong h^{2,1}(X^\circ)$.

Arithmetic Mirror Symmetry for Threefolds

If X and X° are mirror Calabi-Yau threefolds, we can expect a relationship between $Z(X/\mathbb{F}_q, T)$ and $Z(Y/\mathbb{F}_q, T)$ due to the interchange of Hodge numbers.

We know:

$$Z(X, p, T) = \frac{cP_3(T)}{(1 - T)(1 - p^3 T)P_2(T)P_4(T)}$$

• deg $P_2(T) = deg P_4(T)$

Mirror symmetry implies:

$$\blacktriangleright \ \deg P_2 + 2 = \deg P_3^\circ$$

$$\blacktriangleright \ \deg P_2^\circ + 2 = \deg P_3$$

Batyrev's Insight

We can describe mirror families of Calabi-Yau manifolds using objects called reflexive polytopes.

Toric Experimentation?

- For mirror pairs of Calabi-Yau threefolds in (weighted) projective spaces, the zeta functions have a common factor.
- This phenomenon can be studied using reflexive simplices.
- For other reflexive polytope pairs, we have mirror families but not necessarily mirror pairs of varieties.