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Arithmetic Mirror Symmetry?

Figure: Philip Candelas Figure: Xenia de la
Ossa Figure: Fernando

Rodriguez Villegas

I Theoretical physicists have made conjectures about the
number of points on certain varieties over finite fields.

I The motivation comes from mirror symmetry.



Building a Model

Locally, space-time should look like

M3,1 × V .

I M3,1 is four-dimensional space-time

I V is a d-dimensional complex manifold

I Physicists require d = 3 (6 real dimensions)

I V is a Calabi-Yau manifold



A-Model or B-Model?

Choosing Complex Variables

I z = a + ib, w = c + id

I z = a + ib, w = c − id



Mirror Symmetry

Physicists say . . .

I Calabi-Yau manifolds appear in pairs (V ,V ◦).

I The universes described by M3,1 × V and M3,1 × V ◦ have the
same observable physics.



Mirror Symmetry for Mathematicians

The physicists’ prediction led to mathematical discoveries!

Mathematicians say . . .

I Calabi-Yau manifolds appear in paired families (Vα,V
◦
α).

I The families Vα and V ◦α have dual geometric properties.



Greene-Plesser Mirror for Quartics in P3

I Start with all smooth quartics in P3

I Consider the Dwork (or Fermat) pencil
Xt : x4 + y4 + z4 + w4 − 4txyzw

I The pencil admits an action of G = (Z/(4))2 (multiply
coordinates by 4th roots of unity)

I Resolve singularities in the quotient Xt/G to obtain Yt

I Yt is the mirror family to smooth quartics in P3

I Smooth quartics in P3 have many complex deformation
parameters; Yt has 1
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The residue map

We will use a residue map to describe the cohomology of a K3
hypersurface X :

Res : H3(P3 − X )→ H2(X ).

Let Ω0 be a holomorphic 3-form on P3. We may represent
elements of H3(P3 − X ) by forms mΩ0

f k
, where m is a homogeneous

polynomial in C[z0, . . . , z3] of degree 0, 4, or 8, and
k = (deg m)/4 + 1. Then:

Res(
mΩ0

f k
) ∈ H(3−k,k−1)(X ).
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The Griffiths-Dwork technique
Procedure

Suppose we have a pencil of K3 hypersurfaces Xt in P3.

1.

d

dt

∫
Res

(
PΩ

f k(t)

)
=

∫
Res

(
d

dt

(
PΩ

f k(t)

))
= −k

∫
Res

(
f ′(t)PΩ

f k+1(t)

)

2. Since H∗(Xt ,C) is a finite-dimensional vector space, only

finitely many of the classes Res
(

d j

dt j

(
Ω

f k (t)

))
can be linearly

independent

3. Use the reduction of pole order formula to compare classes of

the form Res
(

PΩ
f k+1(t)

)
to classes of the form Res

(
QΩ
f k (t)

)
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Picard-Fuchs Equations for the Holomorphic Form

The Picard-Fuchs differential equation satisfied by the period of
the holomorphic form is:(

(t4 − 1)
d3

dt3
+ 6t3 d2

dt2
+ 7t2 d

dt
+ t

)∫
ω = 0.

If we set λ = t4 and θ = λ d
dλ , we obtain a generalized

hypergeometric equation:

(
θ(θ − 1/4)(θ − 1/2)− λ(θ + 1/4)3

) ∫
ω = 0.



Hypergeometric Functions

Definition
Let A,B ∈ N. A hypergeometric function is a function on C of the
form:

AFB(α;β|z) = AFB(α1, . . . , αA;β1, . . . , βB |z)

=
∞∑
k=0

(α1)k · · · (αA)k
(β1)k · · · (βB)kk!

zk ,

where α ∈ QA are numerator parameters, β ∈ QB are denominator
parameters, and the Pochhammer notation is defined by

(x)k = x(x + 1) · · · (x + k − 1) =
Γ(x + k)

Γ(x)
.



Solving the Picard-Fuchs Equation

The solution to the Picard-Fuchs equation for the holomorphic
form is a generalized hypergeometric function:

3F2

(
1

4
,

1

2
,

3

4
; 1, 1

∣∣∣∣ t−4

)
.



Fermat Monomials

Let’s consider the Fermat quartic pencil Xt , as described by
polynomials ft .

I We may represent a homogeneous monomial xaybzcwd by
the 4-tuple (a, b, c , d).

I We can classify a monomial m using the action of
G = (Z/(4))2 and the Griffiths-Dwork derivative
d
dt

∫
Res

(
mΩ
f kt

)
.



Classifying Monomials

Up to permutations of the variables, we have three types of
equivalence classes:

I 1 class:

(0, 0, 0, 0), (1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3)

I 3 classes:

(0, 0, 2, 2), (1, 1, 3, 3), (2, 2, 0, 0), (3, 3, 1, 1)

I 12 classes:

(0, 1, 1, 2), (1, 2, 2, 3), (2, 3, 3, 0), (3, 0, 0, 1)



More Picard-Fuchs Equations

Each type of monomial equivalence class yields a Picard-Fuchs
equation of a different sort.

I 1 class: 3rd-order differential equation

I 3 classes: 2nd-order differential equation

I 12 classes: 1st-order differential equation



The Congruent Zeta Function

I Let X/Fq be an algebraic variety over the finite field of
q = ps elements.

I Let Ns(X ) = #X (Fqs ) be the number of Fqs -rational points
on X .

Definition
The Zeta function of X is

Z (X/Fq,T ) := exp

( ∞∑
s=1

Ns(X )
T s

s

)
∈ Q[[T ]].



Dwork and the Weil Conjectures

I Z (X/Fq,T ) is rational

I We can factor Z (X/Fq,T ) using polynomials with integer
coefficients:

Z (X/Fp,T ) :=

∏n
j=1 P2j−1(T )∏n
j=0 P2j(T )

,

I dimCX = n

I P0(t) = 1− T and P2n(T ) = 1− pnT

I For 1 ≤ j ≤ 2n − 1, degPj(T ) = bj , where bj = dimH j
dR(X ).



The Fermat quartic pencil

Let Xt be the Fermat quartic pencil. Xenia de la Ossa and
Shabnam Kadir (building on results of Dwork) showed:

Z (Xt/Fp,T ) =
1

(1− T )(1− pT )(1− p2T )Qt(T )

Qt(T ) = R(0,0,0,0)(T )R3
(0,0,2,2)(T )R12

(0,1,1,2)(T )

where

I R(0,0,0,0)(T ) = (1± pT )(1− atT + p2T )

I R(0,0,2,2)(T ) = (1± pT )(1± pT )

I R(0,1,1,2)(T ) ={
[(1− pT )(1 + pT )]1/2 when p ≡ 3 mod 4

(1± pT ) otherwise
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Mirror Quartics

Let Yt be the mirror family to quartics in P3 (constructed using
Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir
showed:

Z (Yt/Fp,T ) =
1

(1− T )(1− pT )19(1− p2T )R(0,0,0,0)(T ).

The factor R(0,0,0,0)(T ) corresponds to periods of the holomorphic
form and its derivatives, and is invariant under mirror symmetry.
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Zeta function and monomial equivalence classes

I The 1, 3, and 12 monomial equivalence classes correspond to
the factors of the zeta function.

I The orders of the corresponding Picard-Fuchs equations
correspond to the degrees of the polynomials in each factor.

Z (Xt/Fp,T ) =
1

(1− T )(1− pT )(1− p2T )Qt(T )

Qt(T ) = R(0,0,0,0)(T )R3
(0,0,2,2)(T )R12

(0,1,1,2)(T )



Kloosterman’s Work

Kloosterman (’07) gives a general explanation of the factorization
of zeta functions of monomial deformations of Fermat varieties
using Monsky-Washnitzer cohomology. He builds on work by
Candelas, de la Ossa, & Rodriguez-Villegas and Kadir & Yui.



Counting Points

We can use group actions to count points on the Fermat pencil
and the alternate pencils.

I Let N(t) be the number of points on a hypersurface Xt over
Fq, where q = ps

I Let N∗(t) be the number of points where all coordinates are
nonzero



Point Counts and Hypergeometric Functions

For the Fermat pencil, there is a relationship between the point
count and the truncation of the solution to the Picard-Fuchs
equation:

NFp(t)− NFp(0) ≡
[

3F2

(
1

4
,

1

2
,

3

4
; 1, 1

∣∣∣∣ t−4

)] p−1
4
−1

0

mod p

Here, if u(z) =
∑∞

n=0 an, [u(z)]ji is the truncation
∑j

n=i an.



Gauss Sums

I Let χ1/(q−1) : F∗q → K ∗ be a fixed generator of the character
group of F∗q, where K is C or Cp.

I For s ∈ 1
q−1Z/Z we let χs =

(
χ1/(q−1)

)s(q−1)
, and for any s

set χs(0) = 0.

I Let ψ : Fq → K ∗ be a (fixed) additive character.

I For s ∈ 1
(q−1)Z/Z we let g(s) denote the Gauss sum

g(s) =
∑
x∈Fq

χs(x)ψ(x).



Gauss Sums

I Let χ1/(q−1) : F∗q → K ∗ be a fixed generator of the character
group of F∗q, where K is C or Cp.

I For s ∈ 1
q−1Z/Z we let χs =

(
χ1/(q−1)

)s(q−1)
, and for any s

set χs(0) = 0.

I Let ψ : Fq → K ∗ be a (fixed) additive character.

I For s ∈ 1
(q−1)Z/Z we let g(s) denote the Gauss sum

g(s) =
∑
x∈Fq

χs(x)ψ(x).



Gauss Sums

I Let χ1/(q−1) : F∗q → K ∗ be a fixed generator of the character
group of F∗q, where K is C or Cp.

I For s ∈ 1
q−1Z/Z we let χs =

(
χ1/(q−1)

)s(q−1)
, and for any s

set χs(0) = 0.

I Let ψ : Fq → K ∗ be a (fixed) additive character.

I For s ∈ 1
(q−1)Z/Z we let g(s) denote the Gauss sum

g(s) =
∑
x∈Fq

χs(x)ψ(x).



Gauss Sums

I Let χ1/(q−1) : F∗q → K ∗ be a fixed generator of the character
group of F∗q, where K is C or Cp.

I For s ∈ 1
q−1Z/Z we let χs =

(
χ1/(q−1)

)s(q−1)
, and for any s

set χs(0) = 0.

I Let ψ : Fq → K ∗ be a (fixed) additive character.

I For s ∈ 1
(q−1)Z/Z we let g(s) denote the Gauss sum

g(s) =
∑
x∈Fq

χs(x)ψ(x).



Finite Field Analogues

We can think of Gauss sums as the finite field analogue of the
Gamma function

Γ(x) =

∫ ∞
0

e−ttx
dt

t
.

More generally, let α1, . . . , αA, β1, . . . , βB ∈
1

q − 1
Z/Z. Katz

defines the finite field analogue of a hypergeometric function as:

H(α;β|t) =
1

q − 1

∑
s∈ 1

q−1
Z/Z

g(s + α1) · · · g(s + αn)

·g(−s − β1) · · · g(−s − βm)χs(t)



Point Counting for the Fermat Quartic Pencil

NFp(t)− NFp(0) =
1

p − 1

∑
s∈ 1

p−1
Z/Z

g(s)4

g(4s)
χ4s(4t)

+
3

p − 1

∑
s∈ 1

p−1
Z/Z

g(s)2g(s + 1
2 )2

g(4s)
χ4s(4t)

+
12

p − 1

∑
s∈ 1

p−1
Z/Z

g(s)g(s + 1
4 )2g(s + 1

2 )

g(4s)
χ4s(4t)



Point Counting, Monomials, and Picard-Fuchs Equations

There are three terms in the expression for NFp(t)− NFp(0), with
coefficients 1, 3, and 12, respectively.

I The terms correspond to our equivalence classes of
monomials.

I Each of the sums yields an approximation to the solution of
the Picard-Fuchs equation for the corresponding monomials.



The Hodge Diamond
Calabi-Yau Threefolds

1
0 0

0 h1,1(X ) 0
1 h2,1(X ) h2,1(X ) 1

0 h1,1(X ) 0
0 0

1

If X and X ◦ are mirror, h2,1(X ) ∼= h1,1(X ◦) and
h1,1(X ) ∼= h2,1(X ◦).
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Arithmetic Mirror Symmetry for Threefolds

If X and X ◦ are mirror Calabi-Yau threefolds, we can expect a
relationship between Z (X/Fq,T ) and Z (Y /Fq,T ) due to the
interchange of Hodge numbers.

We know:

I

Z (X , p,T ) =
cP3(T )

(1− T )(1− p3T )P2(T )P4(T )

I deg P2(T ) = deg P4(T )

Mirror symmetry implies:

I deg P2 + 2 = deg P◦3
I deg P◦2 + 2 = deg P3



Batyrev’s Insight

We can describe mirror families of Calabi-Yau manifolds using
objects called reflexive polytopes.



Toric Experimentation?

I For mirror pairs of Calabi-Yau threefolds in (weighted)
projective spaces, the zeta functions have a common factor.

I This phenomenon can be studied using reflexive simplices.

I For other reflexive polytope pairs, we have mirror families but
not necessarily mirror pairs of varieties.
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