Zeta Functions, Point Counting, and Mirror Symmetry

Adriana Salerno and Ursula Whitcher

Bates College and University of Wisconsin-Eau Claire
September 2013

Arithmetic Mirror Symmetry?

Figure: Philip Candelas

Figure: Xenia de la Ossa

Figure: Fernando Rodriguez Villegas

- Theoretical physicists have made conjectures about the number of points on certain varieties over finite fields.
- The motivation comes from mirror symmetry.

Building a Model

Locally, space-time should look like

$$
M_{3,1} \times V
$$

- $M_{3,1}$ is four-dimensional space-time
- V is a d-dimensional complex manifold
- Physicists require $d=3$ (6 real dimensions)
- V is a Calabi-Yau manifold

A-Model or B-Model?

Choosing Complex Variables

- $z=a+i b, w=c+i d$
- $z=a+i b, \bar{w}=c-i d$

Mirror Symmetry

Physicists say . . .

- Calabi-Yau manifolds appear in pairs $\left(V, V^{\circ}\right)$.
- The universes described by $M_{3,1} \times V$ and $M_{3,1} \times V^{\circ}$ have the same observable physics.

Mirror Symmetry for Mathematicians

The physicists' prediction led to mathematical discoveries! Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $\left(V_{\alpha}, V_{\alpha}^{\circ}\right)$.
- The families V_{α} and V_{α}° have dual geometric properties.

Greene-Plesser Mirror for Quartics in \mathbb{P}^{3}

- Start with all smooth quartics in \mathbb{P}^{3}

Greene-Plesser Mirror for Quartics in \mathbb{P}^{3}

- Start with all smooth quartics in \mathbb{P}^{3}
- Consider the Dwork (or Fermat) pencil $X_{t}: x^{4}+y^{4}+z^{4}+w^{4}-4 t x y z w$

Greene-Plesser Mirror for Quartics in \mathbb{P}^{3}

- Start with all smooth quartics in \mathbb{P}^{3}
- Consider the Dwork (or Fermat) pencil $X_{t}: x^{4}+y^{4}+z^{4}+w^{4}-4 t x y z w$
- The pencil admits an action of $G=(\mathbb{Z} /(4))^{2}$ (multiply coordinates by 4th roots of unity)

Greene-Plesser Mirror for Quartics in \mathbb{P}^{3}

- Start with all smooth quartics in \mathbb{P}^{3}
- Consider the Dwork (or Fermat) pencil $X_{t}: x^{4}+y^{4}+z^{4}+w^{4}-4 t x y z w$
- The pencil admits an action of $G=(\mathbb{Z} /(4))^{2}$ (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient X_{t} / G to obtain Y_{t}

Greene-Plesser Mirror for Quartics in \mathbb{P}^{3}

- Start with all smooth quartics in \mathbb{P}^{3}
- Consider the Dwork (or Fermat) pencil $X_{t}: x^{4}+y^{4}+z^{4}+w^{4}-4 t x y z w$
- The pencil admits an action of $G=(\mathbb{Z} /(4))^{2}$ (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient X_{t} / G to obtain Y_{t}
- Y_{t} is the mirror family to smooth quartics in \mathbb{P}^{3}

Greene-Plesser Mirror for Quartics in \mathbb{P}^{3}

- Start with all smooth quartics in \mathbb{P}^{3}
- Consider the Dwork (or Fermat) pencil $X_{t}: x^{4}+y^{4}+z^{4}+w^{4}-4 t x y z w$
- The pencil admits an action of $G=(\mathbb{Z} /(4))^{2}$ (multiply coordinates by 4th roots of unity)
- Resolve singularities in the quotient X_{t} / G to obtain Y_{t}
- Y_{t} is the mirror family to smooth quartics in \mathbb{P}^{3}
- Smooth quartics in \mathbb{P}^{3} have many complex deformation parameters; Y_{t} has 1

The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X :

$$
\text { Res : } H^{3}\left(\mathbb{P}^{3}-X\right) \rightarrow H^{2}(X)
$$

The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X :

$$
\text { Res : } H^{3}\left(\mathbb{P}^{3}-X\right) \rightarrow H^{2}(X)
$$

Let Ω_{0} be a holomorphic 3 -form on \mathbb{P}^{3}. We may represent elements of $H^{3}\left(\mathbb{P}^{3}-X\right)$ by forms $\frac{m \Omega_{0}}{f^{k}}$, where m is a homogeneous polynomial in $\mathbb{C}\left[z_{0}, \ldots, z_{3}\right]$ of degree 0 , 4 , or 8 , and $k=(\operatorname{deg} m) / 4+1$. Then:

$$
\operatorname{Res}\left(\frac{m \Omega_{0}}{f^{k}}\right) \in H^{(3-k, k-1)}(X)
$$

The Griffiths-Dwork technique

Procedure

Suppose we have a pencil of K 3 hypersurfaces X_{t} in \mathbb{P}^{3}.
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

The Griffiths-Dwork technique

Procedure

Suppose we have a pencil of K 3 hypersurfaces X_{t} in \mathbb{P}^{3}.
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

2. Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^{j}}{d t^{j}}\left(\frac{\Omega}{f^{k}(t)}\right)\right)$ can be linearly independent

The Griffiths-Dwork technique

Procedure

Suppose we have a pencil of K 3 hypersurfaces X_{t} in \mathbb{P}^{3}.
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

2. Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^{j}}{d t^{j}}\left(\frac{\Omega}{f^{k}(t)}\right)\right)$ can be linearly independent
3. Use the reduction of pole order formula to compare classes of the form $\operatorname{Res}\left(\frac{P \Omega}{f^{k+1}(t)}\right)$ to classes of the form $\operatorname{Res}\left(\frac{Q \Omega}{f^{k}(t)}\right)$

Picard-Fuchs Equations for the Holomorphic Form

The Picard-Fuchs differential equation satisfied by the period of the holomorphic form is:

$$
\left(\left(t^{4}-1\right) \frac{d^{3}}{d t^{3}}+6 t^{3} \frac{d^{2}}{d t^{2}}+7 t^{2} \frac{d}{d t}+t\right) \int \omega=0
$$

If we set $\lambda=t^{4}$ and $\theta=\lambda \frac{d}{d \lambda}$, we obtain a generalized hypergeometric equation:

$$
\left(\theta(\theta-1 / 4)(\theta-1 / 2)-\lambda(\theta+1 / 4)^{3}\right) \int \omega=0
$$

Hypergeometric Functions

Definition

Let $A, B \in \mathbb{N}$. A hypergeometric function is a function on \mathbb{C} of the form:

$$
\begin{aligned}
{ }_{A} F_{B}(\alpha ; \beta \mid z) & =\quad{ }_{A} F_{B}\left(\alpha_{1}, \ldots, \alpha_{A} ; \beta_{1}, \ldots, \beta_{B} \mid z\right) \\
& =\quad \sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \cdots\left(\alpha_{A}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{B}\right)_{k} k!} z^{k}
\end{aligned}
$$

where $\alpha \in \mathbb{Q}^{A}$ are numerator parameters, $\beta \in \mathbb{Q}^{B}$ are denominator parameters, and the Pochhammer notation is defined by

$$
(x)_{k}=x(x+1) \cdots(x+k-1)=\frac{\Gamma(x+k)}{\Gamma(x)}
$$

Solving the Picard-Fuchs Equation

The solution to the Picard-Fuchs equation for the holomorphic form is a generalized hypergeometric function:

$$
{ }_{3} F_{2}\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4} ; 1,1 \mid t^{-4}\right) .
$$

Fermat Monomials

Let's consider the Fermat quartic pencil X_{t}, as described by polynomials f_{t}.

- We may represent a homogeneous monomial $x^{a} y^{b} z^{c} w^{d}$ by the 4-tuple (a, b, c, d).
- We can classify a monomial m using the action of $G=(\mathbb{Z} /(4))^{2}$ and the Griffiths-Dwork derivative $\frac{d}{d t} \int \operatorname{Res}\left(\frac{m \Omega}{f_{t}^{k}}\right)$.

Classifying Monomials

Up to permutations of the variables, we have three types of equivalence classes:

- 1 class:

$$
(0,0,0,0),(1,1,1,1),(2,2,2,2),(3,3,3,3)
$$

- 3 classes:

$$
(0,0,2,2),(1,1,3,3),(2,2,0,0),(3,3,1,1)
$$

- 12 classes:

$$
(0,1,1,2),(1,2,2,3),(2,3,3,0),(3,0,0,1)
$$

More Picard-Fuchs Equations

Each type of monomial equivalence class yields a Picard-Fuchs equation of a different sort.

- 1 class: 3rd-order differential equation
- 3 classes: 2nd-order differential equation
- 12 classes: 1st-order differential equation

The Congruent Zeta Function

- Let X / \mathbb{F}_{q} be an algebraic variety over the finite field of $q=p^{s}$ elements.
- Let $N_{s}(X)=\# X\left(\mathbb{F}_{q^{s}}\right)$ be the number of $\mathbb{F}_{q^{s}}$-rational points on X.

Definition
The Zeta function of X is

$$
Z\left(X / \mathbb{F}_{q}, T\right):=\exp \left(\sum_{s=1}^{\infty} N_{s}(X) \frac{T^{s}}{s}\right) \in \mathbb{Q}[[T]]
$$

Dwork and the Weil Conjectures

- $Z\left(X / \mathbb{F}_{q}, T\right)$ is rational
- We can factor $Z\left(X / \mathbb{F}_{q}, T\right)$ using polynomials with integer coefficients:

$$
Z\left(X / \mathbb{F}_{p}, T\right):=\frac{\prod_{j=1}^{n} P_{2 j-1}(T)}{\prod_{j=0}^{n} P_{2 j}(T)}
$$

- $\operatorname{dim}_{\mathbb{C}} X=n$
- $P_{0}(t)=1-T$ and $P_{2 n}(T)=1-p^{n} T$
- For $1 \leq j \leq 2 n-1, \operatorname{deg} P_{j}(T)=b_{j}$, where $b_{j}=\operatorname{dim} H_{d R}^{j}(X)$.

The Fermat quartic pencil

Let X_{t} be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$
\begin{gathered}
Z\left(X_{t} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) Q_{t}(T)} \\
Q_{t}(T)=R_{(0,0,0,0)}(T) R_{(0,0,2,2)}^{3}(T) R_{(0,1,1,2)}^{12}(T)
\end{gathered}
$$

The Fermat quartic pencil

Let X_{t} be the Fermat quartic pencil. Xenia de la Ossa and Shabnam Kadir (building on results of Dwork) showed:

$$
\begin{gathered}
Z\left(X_{t} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) Q_{t}(T)} \\
Q_{t}(T)=R_{(0,0,0,0)}(T) R_{(0,0,2,2)}^{3}(T) R_{(0,1,1,2)}^{12}(T)
\end{gathered}
$$

where

- $R_{(0,0,0,0)}(T)=(1 \pm p T)\left(1-a_{t} T+p^{2} T\right)$
- $R_{(0,0,2,2)}(T)=(1 \pm p T)(1 \pm p T)$
- $R_{(0,1,1,2)}(T)=$

$$
\left\{\begin{array}{cc}
{[(1-p T)(1+p T)]^{1 / 2}} & \text { when } p \equiv 3 \bmod 4 \\
(1 \pm p T) & \text { otherwise }
\end{array}\right.
$$

Mirror Quartics

Let Y_{t} be the mirror family to quartics in \mathbb{P}^{3} (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$
Z\left(Y_{t} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)^{19}\left(1-p^{2} T\right) R_{(0,0,0,0)}(T)}
$$

Mirror Quartics

Let Y_{t} be the mirror family to quartics in \mathbb{P}^{3} (constructed using Greene-Plesser and the Fermat pencil). Then de la Ossa and Kadir showed:

$$
Z\left(Y_{t} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)^{19}\left(1-p^{2} T\right) R_{(0,0,0,0)}(T)}
$$

The factor $R_{(0,0,0,0)}(T)$ corresponds to periods of the holomorphic form and its derivatives, and is invariant under mirror symmetry.

Zeta function and monomial equivalence classes

- The 1,3 , and 12 monomial equivalence classes correspond to the factors of the zeta function.
- The orders of the corresponding Picard-Fuchs equations correspond to the degrees of the polynomials in each factor.

$$
\begin{gathered}
Z\left(X_{t} / \mathbb{F}_{p}, T\right)=\frac{1}{(1-T)(1-p T)\left(1-p^{2} T\right) Q_{t}(T)} \\
Q_{t}(T)=R_{(0,0,0,0)}(T) R_{(0,0,2,2)}^{3}(T) R_{(0,1,1,2)}^{12}(T)
\end{gathered}
$$

Kloosterman's Work

Kloosterman ('07) gives a general explanation of the factorization of zeta functions of monomial deformations of Fermat varieties using Monsky-Washnitzer cohomology. He builds on work by Candelas, de la Ossa, \& Rodriguez-Villegas and Kadir \& Yui.

Counting Points

We can use group actions to count points on the Fermat pencil and the alternate pencils.

- Let $N(t)$ be the number of points on a hypersurface X_{t} over \mathbb{F}_{q}, where $q=p^{s}$
- Let $N^{*}(t)$ be the number of points where all coordinates are nonzero

Point Counts and Hypergeometric Functions

For the Fermat pencil, there is a relationship between the point count and the truncation of the solution to the Picard-Fuchs equation:

$$
N_{\mathbb{F}_{p}}(t)-N_{\mathbb{F}_{p}}(0) \equiv\left[{ }_{3} F_{2}\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4} ; 1,1 \mid t^{-4}\right)\right]_{0}^{\frac{p-1}{4}-1} \bmod p
$$

Here, if $u(z)=\sum_{n=0}^{\infty} a_{n},[u(z)]_{i}^{j}$ is the truncation $\sum_{n=i}^{j} a_{n}$.

Gauss Sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*}, where K is \mathbb{C} or \mathbb{C}_{p}.

Gauss Sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*}, where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.

Gauss Sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*}, where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.
- Let $\psi: \mathbb{F}_{q} \rightarrow K^{*}$ be a (fixed) additive character.

Gauss Sums

- Let $\chi_{1 /(q-1)}: \mathbb{F}_{q}^{*} \rightarrow K^{*}$ be a fixed generator of the character group of \mathbb{F}_{q}^{*}, where K is \mathbb{C} or \mathbb{C}_{p}.
- For $s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$ we let $\chi_{s}=\left(\chi_{1 /(q-1)}\right)^{s(q-1)}$, and for any s set $\chi_{s}(0)=0$.
- Let $\psi: \mathbb{F}_{q} \rightarrow K^{*}$ be a (fixed) additive character.
- For $s \in \frac{1}{(q-1)} \mathbb{Z} / \mathbb{Z}$ we let $g(s)$ denote the Gauss sum

$$
g(s)=\sum_{x \in \mathbb{F}_{q}} \chi_{s}(x) \psi(x)
$$

Finite Field Analogues

We can think of Gauss sums as the finite field analogue of the Gamma function

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x} \frac{d t}{t}
$$

More generally, let $\alpha_{1}, \ldots, \alpha_{A}, \beta_{1}, \ldots, \beta_{B} \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}$. Katz defines the finite field analogue of a hypergeometric function as:

$$
\begin{gathered}
H(\alpha ; \beta \mid t)=\frac{1}{q-1} \sum_{s \in \frac{1}{q-1} \mathbb{Z} / \mathbb{Z}} g\left(s+\alpha_{1}\right) \cdots g\left(s+\alpha_{n}\right) \\
\cdot g\left(-s-\beta_{1}\right) \cdots g\left(-s-\beta_{m}\right) \overline{\chi_{s}}(t)
\end{gathered}
$$

Point Counting for the Fermat Quartic Pencil

$$
\begin{aligned}
& N_{\mathbb{F}_{p}}(t)-N_{\mathbb{F}_{p}}(0)=\frac{1}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s)^{4}}{g(4 s)} \chi_{4 s}(4 t) \\
& \quad+\frac{3}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s)^{2} g\left(s+\frac{1}{2}\right)^{2}}{g(4 s)} \chi_{4 s}(4 t) \\
& +\frac{12}{p-1} \sum_{s \in \frac{1}{\rho-1} \mathbb{Z} / \mathbb{Z}} \frac{g(s) g\left(s+\frac{1}{4}\right)^{2} g\left(s+\frac{1}{2}\right)}{g(4 s)} \chi_{4 s}(4 t)
\end{aligned}
$$

Point Counting, Monomials, and Picard-Fuchs Equations

There are three terms in the expression for $N_{\mathbb{F}_{p}}(t)-N_{\mathbb{F}_{p}}(0)$, with coefficients 1,3 , and 12 , respectively.

- The terms correspond to our equivalence classes of monomials.
- Each of the sums yields an approximation to the solution of the Picard-Fuchs equation for the corresponding monomials.

The Hodge Diamond

Calabi-Yau Threefolds

1

		0		0	
	0		$h^{1,1}(X)$		0
1		$h^{2,1}(X)$		$h^{2,1}(X)$	
0		$h^{1,1}(X)$		0	1
	0		0		

The Hodge Diamond

Calabi-Yau Threefolds

1

		0		0	
	0		$h^{1,1}(X)$		0
		$h^{2,1}(X)$		$h^{2,1}(X)$	
0		$h^{1,1}(X)$		0	1

If X and X° are mirror, $h^{2,1}(X) \cong h^{1,1}\left(X^{\circ}\right)$ and $h^{1,1}(X) \cong h^{2,1}\left(X^{\circ}\right)$.

Arithmetic Mirror Symmetry for Threefolds

If X and X° are mirror Calabi-Yau threefolds, we can expect a relationship between $Z\left(X / \mathbb{F}_{q}, T\right)$ and $Z\left(Y / \mathbb{F}_{q}, T\right)$ due to the interchange of Hodge numbers.

We know:

$$
Z(X, p, T)=\frac{c P_{3}(T)}{(1-T)\left(1-p^{3} T\right) P_{2}(T) P_{4}(T)}
$$

- $\operatorname{deg} P_{2}(T)=\operatorname{deg} P_{4}(T)$

Mirror symmetry implies:

- $\operatorname{deg} P_{2}+2=\operatorname{deg} P_{3}^{\circ}$
- $\operatorname{deg} P_{2}^{\circ}+2=\operatorname{deg} P_{3}$

Batyrev's Insight

We can describe mirror families of Calabi-Yau manifolds using objects called reflexive polytopes.

Toric Experimentation?

- For mirror pairs of Calabi-Yau threefolds in (weighted) projective spaces, the zeta functions have a common factor.
- This phenomenon can be studied using reflexive simplices.
- For other reflexive polytope pairs, we have mirror families but not necessarily mirror pairs of varieties.

