Frobenius lifts and point counting for smooth curves

Amnon Besser, Francois Escriva

(Joint with Rob de Jeu) 25/9/2013

Goal

- A new method for point counting on smooth curves.

■ Based, like Kedlaya's algorithm, on Monsky-Washnitzer cohomology.

- Timing is comparable (theoretically) with Kedlaya's algorithm.
■ arxiv.org/abs/1306.5102

Key new ideas

- Replacing reduction in cohomology by cup product computations.
- A general lift of Frobenius based on Arabia's work.

■ Local computation of the lift of Frobenius.

Computing the action of Frobenius on cohomology using cup products

Amnon Besser, Francois Escriva

Frobenius lifts and point counting for smooth curves

Serre's formula for the cup product

- C / K a smooth complete curve
- $\omega, \eta \in \Omega^{1}$ of the second kind

Theorem (Serre)

The cup product $\omega \cup \eta \in K$ is given as follows:

$$
\omega \cup \eta=\sum_{x} \operatorname{Res}_{x} \eta \int \omega,
$$

where the sum is over all points x and the integral is a local integral with arbitrary constant term.

p-adic cup product formula

$$
\begin{aligned}
& K \text { - } p \text {-adic } \\
& U=C-\cup D_{i} \text {, where } D_{i} \text { are discs }
\end{aligned}
$$

Figure: A wide open space

For $\omega \in \Omega^{1}(U)$

- Notion of $\operatorname{Res}_{D_{i}} \omega$
- Notion of "of second kind"
- "cup product like" pairing

$$
\langle\omega, \eta\rangle=\sum_{i} \operatorname{Res}_{D_{i}} \eta \int \omega
$$

Basic observation: $\omega \cup \eta=\left\langle\left.\omega\right|_{U},\left.\eta\right|_{U}\right\rangle$

Cup product and Frobenius

For U as above we can find (compute) a lift of Frobenius ϕ. Example: hyperelliptic curve $-U=C-$ Weierstrass discs, $\phi(x, y)=\left(x^{p}, \cdots\right)$.
Restriction $H^{1}(C) \rightarrow H^{1}(U)$ is compatible with Frobenius.
Corollary
$\omega \cup \phi \eta=\langle\omega \cup \phi \eta\rangle$

Application for computing the matrix of Frobenius

$\left\{\omega_{1}, \ldots \omega_{2 g}\right\}$ - a basis for $H^{1}(C)$
1 Compute M_{1} with entries $\omega_{i} \cup \omega_{j}$
2 Compute M_{2} with entries $\omega_{i} \cup \phi \omega_{j}$
3 Matrix of Frobenius is given by $M_{1}^{-1} M_{2}$.

Lifting of Frobenius

- The problem with Frobenius lifting is that it is not unique.

■ Solution: Impose additional conditions.

Example: 1 equation, 2 variables

$f(x, y)$ in $\mathbb{Z}_{p}[x, y]$
reduction $\bar{f}(x, y)$ non-singular

$$
\bar{P}_{1} \bar{f}_{x}+\bar{P}_{2} \bar{f}_{y}=1+\bar{\Delta} \bar{f} .
$$

Lift \bar{P}_{1}, \bar{P}_{2} and $\bar{\Delta}$ to P_{1}, P_{2} and Δ in $\mathbb{Z}_{p}[x, y]$
Then,

$$
\phi(x, y)=\left(x^{p}, y^{p}\right)+s \times\left(P_{1}\left(x^{p}, y^{p}\right), P_{2}\left(x^{p}, y^{p}\right)\right)
$$

where s in $p \mathbb{Z}_{p}\langle x, y\rangle$ solves

$$
\begin{aligned}
f\left[\left(x^{p}, y^{p}\right)\right. & \left.+S \times\left(P_{1}\left(x^{p}, y^{p}\right), P_{2}\left(x^{p}, y^{p}\right)\right)\right] \\
& -f(x, y)^{p}-f(x, y)^{p} \Delta\left(x^{p}, y^{p}\right) S=0 .
\end{aligned}
$$

is a lift of Frobenius.

Amnon Besser, Francois Escriva

Frobenius lifts and point counting for smooth curves

The equation can be solved since its derivative with respect to S at $S=0$ is
$f_{x}\left(x^{p}, y^{p}\right) P_{1}\left(x^{p}, y^{p}\right)+f_{y}\left(x^{p}, y^{p}\right) P_{2}\left(x^{p}, y^{p}\right)-f\left(x^{p}, y^{p}\right) \Delta\left(x^{p}, y^{p}\right)$,
which is 1 modulo p.
s is found using Newton iterations.
It is unique once P_{1}, P_{2} and Δ are chosen.

Local liftings of Frobenius

For a disc D with parameter t we need the expansion $\phi(t)$.
■ Naive "global" strategy
1 Compute $\phi(x, y)$
2 Compute $t(\phi(x(t), y(t)))$
■ Local strategy

- Write $x, y, P_{1}, P_{2}, \Delta$ in terms of t
- Solve for s as a power series in t.
- Compute ϕ in terms of t

Disadvantage - Has to be done separately for every D_{i} Advantage - All computations are with power series in one variable.

Things we don't deal with yet

■ How to lift in general from char p to char 0 (May be enough to find a formal lift)
■ How to find a basis of de Rham cohomology
■ It's a problem of computing Riemann-Roch spaces

- Might be enough to find one element, then use Frobenius to generate other elements.

