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Goal

A new method for point counting on smooth curves.

Based, like Kedlaya's algorithm, on Monsky-Washnitzer
cohomology.

Timing is comparable (theoretically) with Kedlaya's
algorithm.
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Key new ideas

Replacing reduction in cohomology by cup product
computations.

A general lift of Frobenius based on Arabia's work.

Local computation of the lift of Frobenius.
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Computing the action of Frobenius on cohomology

using cup products
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Serre's formula for the cup product

C/K a smooth complete curve

ω, η ∈ Ω1 of the second kind

Theorem (Serre)

The cup product ω ∪ η ∈ K is given as follows:

ω ∪ η =
∑
x

Resx η

∫
ω ,

where the sum is over all points x and the integral is a local

integral with arbitrary constant term.
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p-adic cup product formula

K - p-adic
U = C − ∪Di , where Di are discs

1

r

Ur

Figure: A wide open space
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For ω ∈ Ω1(U)

Notion of ResDi
ω

Notion of �of second kind�

�cup product like� pairing

〈ω, η〉 =
∑
i

ResDi
η

∫
ω

Basic observation: ω ∪ η = 〈ω|U , η|U〉
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Cup product and Frobenius

For U as above we can �nd (compute) a lift of Frobenius φ.
Example: hyperelliptic curve - U = C− Weierstrass discs,
φ(x , y) = (xp, · · · ).
Restriction H1(C )→ H1(U) is compatible with Frobenius.

Corollary

ω ∪ φη = 〈ω ∪ φη〉
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Application for computing the matrix of Frobenius

{ω1, . . . ω2g} - a basis for H1(C )

1 Compute M1 with entries ωi ∪ ωj

2 Compute M2 with entries ωi ∪ φωj

3 Matrix of Frobenius is given by M−1

1
M2.
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Lifting of Frobenius

The problem with Frobenius lifting is that it is not unique.

Solution: Impose additional conditions.
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Example: 1 equation, 2 variables

f (x , y) in Zp[x , y ]

reduction f (x , y) non-singular

P1f x + P2f y = 1 + ∆ f .

Lift P1, P2 and ∆ to P1, P2 and ∆ in Zp[x , y ]
Then,

φ(x , y) = (xp, yp) + s × (P1(xp, yp),P2(xp, yp))

where s in pZp〈x , y〉 solves

f [(xp, yp) + S × (P1(xp, yp),P2(xp, yp))]

− f (x , y)p − f (x , y)p∆(xp, yp)S = 0 .

is a lift of Frobenius.
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The equation can be solved since its derivative with respect to
S at S = 0 is

fx(xp, yp)P1(xp, yp)+fy (xp, yp)P2(xp, yp)−f (xp, yp)∆(xp, yp) ,

which is 1 modulo p.
s is found using Newton iterations.
It is unique once P1, P2 and ∆ are chosen.
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Local liftings of Frobenius

For a disc D with parameter t we need the expansion φ(t).

Naive �global� strategy

1 Compute φ(x , y)
2 Compute t(φ(x(t), y(t)))

Local strategy

Write x , y , P1, P2, ∆ in terms of t

Solve for s as a power series in t.

Compute φ in terms of t

Disadvantage - Has to be done separately for every Di

Advantage - All computations are with power series in one
variable.
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Things we don't deal with yet

How to lift in general from char p to char 0
(May be enough to �nd a formal lift)

How to �nd a basis of de Rham cohomology

It's a problem of computing Riemann-Roch spaces

Might be enough to �nd one element, then use Frobenius

to generate other elements.
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