Frobenius lifts and point counting for smooth curves

Amnon Besser, Francois Escriva

(Joint with Rob de Jeu) 25/9/2013

イロト 不良 トイヨト イヨト ヨー ろくで

Amnon Besser, Francois Escriva

- A new method for point counting on smooth curves.
- Based, like Kedlaya's algorithm, on Monsky-Washnitzer cohomology.
- Timing is comparable (theoretically) with Kedlaya's algorithm.
- arxiv.org/abs/1306.5102

Key new ideas

- Replacing reduction in cohomology by cup product computations.
- A general lift of Frobenius based on Arabia's work.
- Local computation of the lift of Frobenius.

Computing the action of Frobenius on cohomology using cup products

Amnon Besser, Francois Escriva

Serre's formula for the cup product

• C/K a smooth complete curve • $\omega, \eta \in \Omega^1$ of the second kind

Theorem (Serre)

The cup product $\omega \cup \eta \in K$ is given as follows:

$$\omega\cup\eta=\sum_{\mathbf{x}}\operatorname{Res}_{\mathbf{x}}\eta\int\omega\,,$$

where the sum is over all points x and the integral is a local integral with arbitrary constant term.

▲日▼▲□▼▲目▼▲目▼ 回 ろくの

Amnon Besser, Francois Escriva

p-adic cup product formula

K - p-adic $U = C - \cup D_i$, where D_i are discs

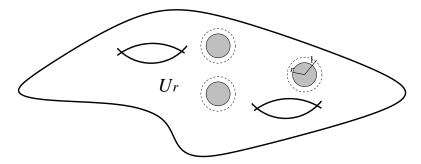


Figure: A wide open space

・ロト ・回ト ・ヨト ・ヨト

Э

nan

Amnon Besser, Francois Escriva

For $\omega \in \Omega^1(U)$

- Notion of $\operatorname{Res}_{D_i} \omega$
- Notion of "of second kind"
- "cup product like" pairing

$$\langle \omega, \eta \rangle = \sum_{i} \operatorname{Res}_{D_{i}} \eta \int \omega$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Basic observation: $\omega \cup \eta = \langle \omega |_U, \eta |_U \rangle$

Amnon Besser, Francois Escriva

For U as above we can find (compute) a lift of Frobenius ϕ . **Example:** hyperelliptic curve - U = C- Weierstrass discs, $\phi(x, y) = (x^{p}, \cdots)$. Restriction $H^{1}(C) \rightarrow H^{1}(U)$ is compatible with Frobenius.

Corollary

 $\omega\cup\phi\eta=\langle\omega\cup\phi\eta\rangle$

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

Amnon Besser, Francois Escriva

Application for computing the matrix of Frobenius

$\{\omega_1,\ldots\omega_{2g}\}$ - a basis for $H^1(\mathcal{C})$

- **1** Compute M_1 with entries $\omega_i \cup \omega_j$
- **2** Compute M_2 with entries $\omega_i \cup \phi \omega_j$
- **3** Matrix of Frobenius is given by $M_1^{-1}M_2$.

Amnon Besser, Francois Escriva

Lifting of Frobenius

The problem with Frobenius lifting is that it is not unique.Solution: Impose additional conditions.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … り へ ()~

Example: 1 equation, 2 variables

f(x, y) in $\mathbb{Z}_p[x, y]$ reduction $\overline{f}(x, y)$ non-singular

$$\overline{P}_1\overline{f}_x + \overline{P}_2\overline{f}_y = 1 + \overline{\Delta}\,\overline{f}\,.$$

Lift \overline{P}_1 , \overline{P}_2 and $\overline{\Delta}$ to P_1 , P_2 and Δ in $\mathbb{Z}_p[x, y]$ Then,

$$\phi(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{p},\mathbf{y}^{p}) + \mathbf{s} \times (P_{1}(\mathbf{x}^{p},\mathbf{y}^{p}),P_{2}(\mathbf{x}^{p},\mathbf{y}^{p}))$$

where s in $p\mathbb{Z}_p\langle x, y \rangle$ solves

$$\begin{split} f[(x^p, y^p) + S \times (P_1(x^p, y^p), P_2(x^p, y^p))] \\ &- f(x, y)^p - f(x, y)^p \Delta(x^p, y^p)S = 0 \,. \end{split}$$

イロト イポト イヨト イヨト

3

is a lift of Frobenius.

Amnon Besser, Francois Escriva

The equation can be solved since its derivative with respect to S at S = 0 is

$$f_x(x^{p}, y^{p})P_1(x^{p}, y^{p})+f_y(x^{p}, y^{p})P_2(x^{p}, y^{p})-f(x^{p}, y^{p})\Delta(x^{p}, y^{p}),$$

which is 1 modulo p. s is found using Newton iterations. It is **unique** once P_1 , P_2 and Δ are chosen.

Local liftings of Frobenius

For a disc D with parameter t we need the expansion $\phi(t)$.

Naive "global" strategy

- **1** Compute $\phi(x, y)$
- **2** Compute $t(\phi(x(t), y(t)))$
- Local strategy
 - Write x, y, P_1 , P_2 , Δ in terms of t
 - Solve for s as a power series in t.
 - Compute ϕ in terms of t

Disadvantage - Has to be done separately for every D_i Advantage - All computations are with power series in one variable.

Things we don't deal with yet

- How to lift in general from char p to char 0 (May be enough to find a formal lift)
- How to find a basis of de Rham cohomology
 - It's a problem of computing Riemann-Roch spaces
 - Might be enough to find one element, then use Frobenius to generate other elements.