Frobenius lifts and point counting for smooth curves

Amnon Besser, François Escriva

(Joint work with Rob de Jeu) September, 25th 2013

The algorithm

INPUT: A smooth, complete curve C/R (+ some assumptions) together with some auxiliary data.

- Compute the matrix M_1 with entries $\omega_i \cup \omega_j$.
- For each missing point:
 - Estimate the required precision in t.
 - Solve some local equations to get a local lift of the Frobenius.
 - Compute all the contributions $\operatorname{Res}_{\mathcal{E}}\phi\omega_i\int\omega_j$ to the matrix M_2 .

The algorithm

• From this recover the matrix M of the action of the Frobenius as $M = M_1^{-1}M_2$.

OUTPUT: If the starting precision is high enough, returns the numerator of the zeta function of C_k .

Proposition

The asymptotic complexity of this algorithm is $\tilde{O}(pl^3)$, where the \tilde{O} term depends polynomially on the genus, and $\#k = p^l$.

Finite precision calculations

- Fix a missing point, given η and ω of the second kind with local expansions $\eta = \sum_m a_m t^m \mathrm{d}t$ and $\omega = \sum_m b_m t^m \mathrm{d}t$, we need to compute $\mathrm{Res}_{\mathcal{E}} \omega \int \eta = \sum_{m \neq -1} \frac{a_m b_{-m-2}}{m+1}$.
- Can these residue computations be done with a finite precision in *p* and in *t*?

• For α, β rational numbers with $\alpha > 0$, we let:

$$R_{\alpha,\beta}((t)) = \left\{ \sum_{m \in \mathbb{Z}} a_m t^m, a_m \text{ in } R \text{ and } v(a_m) \geq -\alpha m + \beta \right\}.$$

Finite precision calculations

Proposition

At a given missing point, the expansions of all the ω_i and $\phi(\omega_i)$ are in some $R_{\alpha,*}((t)) \cdot dt$.

- For N in $\mathbb{Q}_{>0}$, we define $I_N = \{x \in K \text{ with } v(x) \geq N\}$.
- Similarly

$$S_{\alpha,\beta}^N((t)) = \left\{ \sum_{m \in \mathbb{Z}} \overline{a_m} t^m \text{ with } \sum_{m \in \mathbb{Z}} a_m t^m \text{ in } R_{\alpha,\beta}((t)) \right\},$$

where we take the coefficients in $S^N = R/I_N$.

Finite precision calculations

• There is a well-defined multiplication

$$S_{lpha,eta_1}^{\it N}((t))/t^{\it L} imes S_{lpha,eta_2}^{\it N}((t))/t^{\it L}
ightarrow S_{lpha,eta_1+eta_2}^{\it N}((t))/t^{\it L}$$
 .

Proposition

Given N in $\mathbb{Q}_{>0}$, the map $(\omega, \eta) \mapsto \operatorname{Res}_{\mathcal{E}} \omega \int \eta + I_N$ factors through $S_{\alpha,\beta_1}^{N_1}/t^{L_1} \cdot \operatorname{d}t \times S_{\alpha,\beta_2}^{N_2}/t^{L_2} \cdot \operatorname{d}t$ for suitable N_1, N_2 in $\mathbb{Q}_{>0}$ and positive integers L_1, L_2 .

• The residue calculations can be done using the $S_{\alpha_i,\beta_i}^{N_i}((t))/t^{L_i}\cdot dt$.

The implementation

Implementation done using SAGE.

A few remarks:

- All the operations in the $S_{\alpha,\beta}^N((t))/t^L$ have been implemented using NTL.
- To estimate the N_i 's and L_i 's, one needs to estimate α beforehand.

Timings

With an Intel Core i5@3.10GHz

g	1	1	2	2	9	9
#k	7	101	23	101	23	101
Time (s)	0.31	1.30	7.58	19.51	221.59	680.18

Rather slow, however

- The implementation does not use any "trick" and deals with general curves.
- Localizing seems to noticeably improve some of these timings.

Possible improvements

- Automating (part of) the computation of the auxiliary data.
- Avoid recomputing the local equations if the precision of the input data is high enough?
- Optimizing for special cases?
- Bottleneck when applying the local lift to the 1-forms.
- Parallelization.